dataset_traversal.py 13.6 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import os
T
tink2123 已提交
16
import sys
L
LDOUBLEV 已提交
17 18 19 20 21 22 23 24 25
import math
import random
import numpy as np
import cv2

import string
import lmdb

from ppocr.utils.utility import initial_logger
T
tink2123 已提交
26
from ppocr.utils.utility import get_image_file_list
L
LDOUBLEV 已提交
27 28
logger = initial_logger()

T
tink2123 已提交
29
from .img_tools import process_image, process_image_srn, get_img_data
L
LDOUBLEV 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43


class LMDBReader(object):
    def __init__(self, params):
        if params['mode'] != 'train':
            self.num_workers = 1
        else:
            self.num_workers = params['num_workers']
        self.lmdb_sets_dir = params['lmdb_sets_dir']
        self.char_ops = params['char_ops']
        self.image_shape = params['image_shape']
        self.loss_type = params['loss_type']
        self.max_text_length = params['max_text_length']
        self.mode = params['mode']
T
tink2123 已提交
44
        self.drop_last = False
T
tink2123 已提交
45
        self.use_tps = False
T
tink2123 已提交
46 47 48
        self.num_heads = None
        if "num_heads" in params:
            self.num_heads = params['num_heads']
T
tink2123 已提交
49
        if "tps" in params:
T
tink2123 已提交
50
            self.ues_tps = True
T
tink2123 已提交
51
        self.use_distort = False
T
tink2123 已提交
52
        if "distort" in params:
T
tink2123 已提交
53 54 55 56 57
            self.use_distort = params['distort'] and params['use_gpu']
            if not params['use_gpu']:
                logger.info(
                    "Distort operation can only support in GPU. Distort will be set to False."
                )
L
LDOUBLEV 已提交
58 59
        if params['mode'] == 'train':
            self.batch_size = params['train_batch_size_per_card']
T
tink2123 已提交
60
            self.drop_last = True
T
tink2123 已提交
61
        else:
L
LDOUBLEV 已提交
62
            self.batch_size = params['test_batch_size_per_card']
T
tink2123 已提交
63
            self.drop_last = False
64
            self.use_distort = False
T
tink2123 已提交
65 66
        self.infer_img = params['infer_img']

L
LDOUBLEV 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    def load_hierarchical_lmdb_dataset(self):
        lmdb_sets = {}
        dataset_idx = 0
        for dirpath, dirnames, filenames in os.walk(self.lmdb_sets_dir + '/'):
            if not dirnames:
                env = lmdb.open(
                    dirpath,
                    max_readers=32,
                    readonly=True,
                    lock=False,
                    readahead=False,
                    meminit=False)
                txn = env.begin(write=False)
                num_samples = int(txn.get('num-samples'.encode()))
                lmdb_sets[dataset_idx] = {"dirpath":dirpath, "env":env, \
                    "txn":txn, "num_samples":num_samples}
                dataset_idx += 1
        return lmdb_sets

    def print_lmdb_sets_info(self, lmdb_sets):
        lmdb_info_strs = []
        for dataset_idx in range(len(lmdb_sets)):
            tmp_str = " %s:%d," % (lmdb_sets[dataset_idx]['dirpath'],
                                   lmdb_sets[dataset_idx]['num_samples'])
            lmdb_info_strs.append(tmp_str)
        lmdb_info_strs = ''.join(lmdb_info_strs)
        logger.info("DataSummary:" + lmdb_info_strs)
        return

    def close_lmdb_dataset(self, lmdb_sets):
        for dataset_idx in lmdb_sets:
            lmdb_sets[dataset_idx]['env'].close()
        return

    def get_lmdb_sample_info(self, txn, index):
        label_key = 'label-%09d'.encode() % index
        label = txn.get(label_key)
        if label is None:
            return None
        label = label.decode('utf-8')
        img_key = 'image-%09d'.encode() % index
        imgbuf = txn.get(img_key)
        img = get_img_data(imgbuf)
        if img is None:
            return None
        return img, label

    def __call__(self, process_id):
        if self.mode != 'train':
            process_id = 0

        def sample_iter_reader():
T
tink2123 已提交
119
            if self.mode != 'train' and self.infer_img is not None:
T
tink2123 已提交
120 121 122
                image_file_list = get_image_file_list(self.infer_img)
                for single_img in image_file_list:
                    img = cv2.imread(single_img)
T
tink2123 已提交
123
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
T
tink2123 已提交
124
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
T
tink2123 已提交
125 126 127 128 129
                    if self.loss_type == 'srn':
                        norm_img = process_image_srn(
                            img=img,
                            image_shape=self.image_shape,
                            num_heads=self.num_heads,
T
tink2123 已提交
130
                            max_text_length=self.max_text_length)
T
tink2123 已提交
131 132 133 134 135 136 137
                    else:
                        norm_img = process_image(
                            img=img,
                            image_shape=self.image_shape,
                            char_ops=self.char_ops,
                            tps=self.use_tps,
                            infer_mode=True)
T
tink2123 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
                    yield norm_img
            else:
                lmdb_sets = self.load_hierarchical_lmdb_dataset()
                if process_id == 0:
                    self.print_lmdb_sets_info(lmdb_sets)
                cur_index_sets = [1 + process_id] * len(lmdb_sets)
                while True:
                    finish_read_num = 0
                    for dataset_idx in range(len(lmdb_sets)):
                        cur_index = cur_index_sets[dataset_idx]
                        if cur_index > lmdb_sets[dataset_idx]['num_samples']:
                            finish_read_num += 1
                        else:
                            sample_info = self.get_lmdb_sample_info(
                                lmdb_sets[dataset_idx]['txn'], cur_index)
                            cur_index_sets[dataset_idx] += self.num_workers
                            if sample_info is None:
                                continue
                            img, label = sample_info
T
tink2123 已提交
157 158
                            outs = []
                            if self.loss_type == "srn":
T
tink2123 已提交
159
                                outs = process_image_srn(
T
tink2123 已提交
160 161 162 163 164 165 166
                                    img=img,
                                    image_shape=self.image_shape,
                                    num_heads=self.num_heads,
                                    max_text_length=self.max_text_length,
                                    label=label,
                                    char_ops=self.char_ops,
                                    loss_type=self.loss_type)
T
tink2123 已提交
167 168

                            else:
T
tink2123 已提交
169
                                outs = process_image(
T
tink2123 已提交
170 171 172 173 174 175
                                    img=img,
                                    image_shape=self.image_shape,
                                    label=label,
                                    char_ops=self.char_ops,
                                    loss_type=self.loss_type,
                                    max_text_length=self.max_text_length)
T
tink2123 已提交
176 177 178 179 180 181 182
                            if outs is None:
                                continue
                            yield outs

                    if finish_read_num == len(lmdb_sets):
                        break
                self.close_lmdb_dataset(lmdb_sets)
T
tink2123 已提交
183

L
LDOUBLEV 已提交
184 185 186 187 188 189 190
        def batch_iter_reader():
            batch_outs = []
            for outs in sample_iter_reader():
                batch_outs.append(outs)
                if len(batch_outs) == self.batch_size:
                    yield batch_outs
                    batch_outs = []
T
tink2123 已提交
191 192 193
            if not self.drop_last:
                if len(batch_outs) != 0:
                    yield batch_outs
L
LDOUBLEV 已提交
194

T
tink2123 已提交
195
        if self.infer_img is None:
T
tink2123 已提交
196 197
            return batch_iter_reader
        return sample_iter_reader
L
LDOUBLEV 已提交
198 199 200 201 202 203 204 205


class SimpleReader(object):
    def __init__(self, params):
        if params['mode'] != 'train':
            self.num_workers = 1
        else:
            self.num_workers = params['num_workers']
T
tink2123 已提交
206 207 208
        if params['mode'] != 'test':
            self.img_set_dir = params['img_set_dir']
            self.label_file_path = params['label_file_path']
T
tink2123 已提交
209
        self.use_gpu = params['use_gpu']
L
LDOUBLEV 已提交
210 211 212 213 214
        self.char_ops = params['char_ops']
        self.image_shape = params['image_shape']
        self.loss_type = params['loss_type']
        self.max_text_length = params['max_text_length']
        self.mode = params['mode']
T
tink2123 已提交
215
        self.infer_img = params['infer_img']
T
tink2123 已提交
216
        self.use_tps = False
T
tink2123 已提交
217 218
        if "num_heads" in params:
            self.num_heads = params['num_heads']
T
tink2123 已提交
219
        if "tps" in params:
T
tink2123 已提交
220
            self.use_tps = True
T
tink2123 已提交
221
        self.use_distort = False
T
tink2123 已提交
222
        if "distort" in params:
T
tink2123 已提交
223 224 225 226 227
            self.use_distort = params['distort'] and params['use_gpu']
            if not params['use_gpu']:
                logger.info(
                    "Distort operation can only support in GPU.Distort will be set to False."
                )
L
LDOUBLEV 已提交
228 229
        if params['mode'] == 'train':
            self.batch_size = params['train_batch_size_per_card']
T
tink2123 已提交
230
            self.drop_last = True
L
LDOUBLEV 已提交
231
        else:
T
tink2123 已提交
232
            self.batch_size = params['test_batch_size_per_card']
T
tink2123 已提交
233
            self.drop_last = False
234
            self.use_distort = False
L
LDOUBLEV 已提交
235 236 237 238 239

    def __call__(self, process_id):
        if self.mode != 'train':
            process_id = 0

T
tink2123 已提交
240 241
        def get_device_num():
            if self.use_gpu:
Neo__Wong's avatar
Neo__Wong 已提交
242
                gpus = os.environ.get("CUDA_VISIBLE_DEVICES", '1')
T
tink2123 已提交
243 244 245 246 247 248
                gpu_num = len(gpus.split(','))
                return gpu_num
            else:
                cpu_num = os.environ.get("CPU_NUM", 1)
                return int(cpu_num)

L
LDOUBLEV 已提交
249
        def sample_iter_reader():
T
tink2123 已提交
250
            if self.mode != 'train' and self.infer_img is not None:
T
tink2123 已提交
251
                image_file_list = get_image_file_list(self.infer_img)
T
tink2123 已提交
252 253
                for single_img in image_file_list:
                    img = cv2.imread(single_img)
T
tink2123 已提交
254
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
T
tink2123 已提交
255
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
T
tink2123 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268
                    if self.loss_type == 'srn':
                        norm_img = process_image_srn(
                            img=img,
                            image_shape=self.image_shape,
                            num_heads=self.num_heads,
                            max_text_length=self.max_text_length)
                    else:
                        norm_img = process_image(
                            img=img,
                            image_shape=self.image_shape,
                            char_ops=self.char_ops,
                            tps=self.use_tps,
                            infer_mode=True)
T
tink2123 已提交
269
                    yield norm_img
T
tink2123 已提交
270 271 272 273 274 275
            else:
                with open(self.label_file_path, "rb") as fin:
                    label_infor_list = fin.readlines()
                img_num = len(label_infor_list)
                img_id_list = list(range(img_num))
                random.shuffle(img_id_list)
littletomatodonkey's avatar
littletomatodonkey 已提交
276
                if sys.platform == "win32" and self.num_workers != 1:
T
tink2123 已提交
277 278 279
                    print("multiprocess is not fully compatible with Windows."
                          "num_workers will be 1.")
                    self.num_workers = 1
littletomatodonkey's avatar
littletomatodonkey 已提交
280 281
                if self.batch_size * get_device_num(
                ) * self.num_workers > img_num:
T
tink2123 已提交
282
                    raise Exception(
littletomatodonkey's avatar
littletomatodonkey 已提交
283 284 285
                        "The number of the whole data ({}) is smaller than the batch_size * devices_num * num_workers ({})".
                        format(img_num, self.batch_size * get_device_num() *
                               self.num_workers))
T
tink2123 已提交
286 287 288 289 290 291 292 293
                for img_id in range(process_id, img_num, self.num_workers):
                    label_infor = label_infor_list[img_id_list[img_id]]
                    substr = label_infor.decode('utf-8').strip("\n").split("\t")
                    img_path = self.img_set_dir + "/" + substr[0]
                    img = cv2.imread(img_path)
                    if img is None:
                        logger.info("{} does not exist!".format(img_path))
                        continue
T
tink2123 已提交
294
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
T
tink2123 已提交
295 296
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

T
tink2123 已提交
297
                    label = substr[1]
T
tink2123 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
                    if self.loss_type == "srn":
                        outs = process_image_srn(
                            img=img,
                            image_shape=self.image_shape,
                            num_heads=self.num_heads,
                            max_text_length=self.max_text_length,
                            label=label,
                            char_ops=self.char_ops,
                            loss_type=self.loss_type)

                    else:
                        outs = process_image(
                            img=img,
                            image_shape=self.image_shape,
                            label=label,
                            char_ops=self.char_ops,
                            loss_type=self.loss_type,
                            max_text_length=self.max_text_length,
                            distort=self.use_distort)
T
tink2123 已提交
317 318 319
                    if outs is None:
                        continue
                    yield outs
L
LDOUBLEV 已提交
320 321 322 323 324 325 326 327

        def batch_iter_reader():
            batch_outs = []
            for outs in sample_iter_reader():
                batch_outs.append(outs)
                if len(batch_outs) == self.batch_size:
                    yield batch_outs
                    batch_outs = []
T
tink2123 已提交
328 329 330
            if not self.drop_last:
                if len(batch_outs) != 0:
                    yield batch_outs
L
LDOUBLEV 已提交
331

T
tink2123 已提交
332
        if self.infer_img is None:
T
tink2123 已提交
333 334
            return batch_iter_reader
        return sample_iter_reader