dataset_traversal.py 10.8 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import os
T
tink2123 已提交
16
import sys
L
LDOUBLEV 已提交
17 18 19 20 21 22 23 24 25
import math
import random
import numpy as np
import cv2

import string
import lmdb

from ppocr.utils.utility import initial_logger
T
tink2123 已提交
26
from ppocr.utils.utility import get_image_file_list
L
LDOUBLEV 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
logger = initial_logger()

from .img_tools import process_image, get_img_data


class LMDBReader(object):
    def __init__(self, params):
        if params['mode'] != 'train':
            self.num_workers = 1
        else:
            self.num_workers = params['num_workers']
        self.lmdb_sets_dir = params['lmdb_sets_dir']
        self.char_ops = params['char_ops']
        self.image_shape = params['image_shape']
        self.loss_type = params['loss_type']
        self.max_text_length = params['max_text_length']
        self.mode = params['mode']
T
tink2123 已提交
44
        self.drop_last = False
T
tink2123 已提交
45
        self.use_tps = False
T
tink2123 已提交
46
        if "tps" in params:
T
tink2123 已提交
47
            self.ues_tps = True
T
tink2123 已提交
48
        self.use_distort = False
T
tink2123 已提交
49
        if "distort" in params:
T
tink2123 已提交
50 51 52 53 54
            self.use_distort = params['distort'] and params['use_gpu']
            if not params['use_gpu']:
                logger.info(
                    "Distort operation can only support in GPU. Distort will be set to False."
                )
L
LDOUBLEV 已提交
55 56
        if params['mode'] == 'train':
            self.batch_size = params['train_batch_size_per_card']
T
tink2123 已提交
57
            self.drop_last = True
T
tink2123 已提交
58
        else:
L
LDOUBLEV 已提交
59
            self.batch_size = params['test_batch_size_per_card']
T
tink2123 已提交
60
            self.drop_last = False
T
tink2123 已提交
61 62
        self.infer_img = params['infer_img']

L
LDOUBLEV 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
    def load_hierarchical_lmdb_dataset(self):
        lmdb_sets = {}
        dataset_idx = 0
        for dirpath, dirnames, filenames in os.walk(self.lmdb_sets_dir + '/'):
            if not dirnames:
                env = lmdb.open(
                    dirpath,
                    max_readers=32,
                    readonly=True,
                    lock=False,
                    readahead=False,
                    meminit=False)
                txn = env.begin(write=False)
                num_samples = int(txn.get('num-samples'.encode()))
                lmdb_sets[dataset_idx] = {"dirpath":dirpath, "env":env, \
                    "txn":txn, "num_samples":num_samples}
                dataset_idx += 1
        return lmdb_sets

    def print_lmdb_sets_info(self, lmdb_sets):
        lmdb_info_strs = []
        for dataset_idx in range(len(lmdb_sets)):
            tmp_str = " %s:%d," % (lmdb_sets[dataset_idx]['dirpath'],
                                   lmdb_sets[dataset_idx]['num_samples'])
            lmdb_info_strs.append(tmp_str)
        lmdb_info_strs = ''.join(lmdb_info_strs)
        logger.info("DataSummary:" + lmdb_info_strs)
        return

    def close_lmdb_dataset(self, lmdb_sets):
        for dataset_idx in lmdb_sets:
            lmdb_sets[dataset_idx]['env'].close()
        return

    def get_lmdb_sample_info(self, txn, index):
        label_key = 'label-%09d'.encode() % index
        label = txn.get(label_key)
        if label is None:
            return None
        label = label.decode('utf-8')
        img_key = 'image-%09d'.encode() % index
        imgbuf = txn.get(img_key)
        img = get_img_data(imgbuf)
        if img is None:
            return None
        return img, label

    def __call__(self, process_id):
        if self.mode != 'train':
            process_id = 0

        def sample_iter_reader():
T
tink2123 已提交
115
            if self.mode != 'train' and self.infer_img is not None:
T
tink2123 已提交
116 117 118
                image_file_list = get_image_file_list(self.infer_img)
                for single_img in image_file_list:
                    img = cv2.imread(single_img)
T
tink2123 已提交
119
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
T
tink2123 已提交
120
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
T
tink2123 已提交
121 122 123
                    norm_img = process_image(
                        img=img,
                        image_shape=self.image_shape,
T
tink2123 已提交
124
                        char_ops=self.char_ops,
T
tink2123 已提交
125
                        tps=self.use_tps,
T
tink2123 已提交
126
                        infer_mode=True)
T
tink2123 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
                    yield norm_img
            else:
                lmdb_sets = self.load_hierarchical_lmdb_dataset()
                if process_id == 0:
                    self.print_lmdb_sets_info(lmdb_sets)
                cur_index_sets = [1 + process_id] * len(lmdb_sets)
                while True:
                    finish_read_num = 0
                    for dataset_idx in range(len(lmdb_sets)):
                        cur_index = cur_index_sets[dataset_idx]
                        if cur_index > lmdb_sets[dataset_idx]['num_samples']:
                            finish_read_num += 1
                        else:
                            sample_info = self.get_lmdb_sample_info(
                                lmdb_sets[dataset_idx]['txn'], cur_index)
                            cur_index_sets[dataset_idx] += self.num_workers
                            if sample_info is None:
                                continue
                            img, label = sample_info
T
tink2123 已提交
146 147 148 149 150 151
                            outs = process_image(
                                img=img,
                                image_shape=self.image_shape,
                                label=label,
                                char_ops=self.char_ops,
                                loss_type=self.loss_type,
T
tink2123 已提交
152 153
                                max_text_length=self.max_text_length,
                                distort=self.use_distort)
T
tink2123 已提交
154 155 156 157 158 159 160
                            if outs is None:
                                continue
                            yield outs

                    if finish_read_num == len(lmdb_sets):
                        break
                self.close_lmdb_dataset(lmdb_sets)
T
tink2123 已提交
161

L
LDOUBLEV 已提交
162 163 164 165 166 167 168
        def batch_iter_reader():
            batch_outs = []
            for outs in sample_iter_reader():
                batch_outs.append(outs)
                if len(batch_outs) == self.batch_size:
                    yield batch_outs
                    batch_outs = []
T
tink2123 已提交
169 170 171
            if not self.drop_last:
                if len(batch_outs) != 0:
                    yield batch_outs
L
LDOUBLEV 已提交
172

T
tink2123 已提交
173
        if self.infer_img is None:
T
tink2123 已提交
174 175
            return batch_iter_reader
        return sample_iter_reader
L
LDOUBLEV 已提交
176 177 178 179 180 181 182 183


class SimpleReader(object):
    def __init__(self, params):
        if params['mode'] != 'train':
            self.num_workers = 1
        else:
            self.num_workers = params['num_workers']
T
tink2123 已提交
184 185 186
        if params['mode'] != 'test':
            self.img_set_dir = params['img_set_dir']
            self.label_file_path = params['label_file_path']
L
LDOUBLEV 已提交
187 188 189 190 191
        self.char_ops = params['char_ops']
        self.image_shape = params['image_shape']
        self.loss_type = params['loss_type']
        self.max_text_length = params['max_text_length']
        self.mode = params['mode']
T
tink2123 已提交
192
        self.infer_img = params['infer_img']
T
tink2123 已提交
193
        self.use_tps = False
T
tink2123 已提交
194
        if "tps" in params:
T
tink2123 已提交
195
            self.use_tps = True
T
tink2123 已提交
196
        self.use_distort = False
T
tink2123 已提交
197
        if "distort" in params:
T
tink2123 已提交
198 199 200 201 202
            self.use_distort = params['distort'] and params['use_gpu']
            if not params['use_gpu']:
                logger.info(
                    "Distort operation can only support in GPU.Distort will be set to False."
                )
L
LDOUBLEV 已提交
203 204
        if params['mode'] == 'train':
            self.batch_size = params['train_batch_size_per_card']
T
tink2123 已提交
205
            self.drop_last = True
L
LDOUBLEV 已提交
206
        else:
T
tink2123 已提交
207
            self.batch_size = params['test_batch_size_per_card']
T
tink2123 已提交
208
            self.drop_last = False
L
LDOUBLEV 已提交
209 210 211 212 213 214

    def __call__(self, process_id):
        if self.mode != 'train':
            process_id = 0

        def sample_iter_reader():
T
tink2123 已提交
215
            if self.mode != 'train' and self.infer_img is not None:
T
tink2123 已提交
216
                image_file_list = get_image_file_list(self.infer_img)
T
tink2123 已提交
217 218
                for single_img in image_file_list:
                    img = cv2.imread(single_img)
T
tink2123 已提交
219
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
T
tink2123 已提交
220
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
T
tink2123 已提交
221 222 223
                    norm_img = process_image(
                        img=img,
                        image_shape=self.image_shape,
T
tink2123 已提交
224
                        char_ops=self.char_ops,
T
tink2123 已提交
225
                        tps=self.use_tps,
T
tink2123 已提交
226
                        infer_mode=True)
T
tink2123 已提交
227
                    yield norm_img
T
tink2123 已提交
228 229 230 231 232 233
            else:
                with open(self.label_file_path, "rb") as fin:
                    label_infor_list = fin.readlines()
                img_num = len(label_infor_list)
                img_id_list = list(range(img_num))
                random.shuffle(img_id_list)
T
tink2123 已提交
234
                if sys.platform == "win32":
T
tink2123 已提交
235 236 237
                    print("multiprocess is not fully compatible with Windows."
                          "num_workers will be 1.")
                    self.num_workers = 1
T
tink2123 已提交
238 239 240 241 242 243 244 245
                for img_id in range(process_id, img_num, self.num_workers):
                    label_infor = label_infor_list[img_id_list[img_id]]
                    substr = label_infor.decode('utf-8').strip("\n").split("\t")
                    img_path = self.img_set_dir + "/" + substr[0]
                    img = cv2.imread(img_path)
                    if img is None:
                        logger.info("{} does not exist!".format(img_path))
                        continue
T
tink2123 已提交
246
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
T
tink2123 已提交
247 248
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

T
tink2123 已提交
249
                    label = substr[1]
T
tink2123 已提交
250 251 252 253 254 255 256 257
                    outs = process_image(
                        img=img,
                        image_shape=self.image_shape,
                        label=label,
                        char_ops=self.char_ops,
                        loss_type=self.loss_type,
                        max_text_length=self.max_text_length,
                        distort=self.use_distort)
T
tink2123 已提交
258 259 260
                    if outs is None:
                        continue
                    yield outs
L
LDOUBLEV 已提交
261 262 263 264 265 266 267 268

        def batch_iter_reader():
            batch_outs = []
            for outs in sample_iter_reader():
                batch_outs.append(outs)
                if len(batch_outs) == self.batch_size:
                    yield batch_outs
                    batch_outs = []
T
tink2123 已提交
269 270 271
            if not self.drop_last:
                if len(batch_outs) != 0:
                    yield batch_outs
L
LDOUBLEV 已提交
272

T
tink2123 已提交
273
        if self.infer_img is None:
T
tink2123 已提交
274 275
            return batch_iter_reader
        return sample_iter_reader