dataset_traversal.py 10.3 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import os
T
tink2123 已提交
16
import sys
L
LDOUBLEV 已提交
17 18 19 20 21 22 23 24 25
import math
import random
import numpy as np
import cv2

import string
import lmdb

from ppocr.utils.utility import initial_logger
T
tink2123 已提交
26
from ppocr.utils.utility import get_image_file_list
L
LDOUBLEV 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
logger = initial_logger()

from .img_tools import process_image, get_img_data


class LMDBReader(object):
    def __init__(self, params):
        if params['mode'] != 'train':
            self.num_workers = 1
        else:
            self.num_workers = params['num_workers']
        self.lmdb_sets_dir = params['lmdb_sets_dir']
        self.char_ops = params['char_ops']
        self.image_shape = params['image_shape']
        self.loss_type = params['loss_type']
        self.max_text_length = params['max_text_length']
        self.mode = params['mode']
T
tink2123 已提交
44
        self.drop_last = False
T
tink2123 已提交
45
        self.use_tps = False
T
tink2123 已提交
46
        if "tps" in params:
T
tink2123 已提交
47
            self.ues_tps = True
T
tink2123 已提交
48 49
        if "distort" in params:
            self.use_distort = params['distort']
L
LDOUBLEV 已提交
50 51
        if params['mode'] == 'train':
            self.batch_size = params['train_batch_size_per_card']
T
tink2123 已提交
52
            self.drop_last = True
T
tink2123 已提交
53
        else:
L
LDOUBLEV 已提交
54
            self.batch_size = params['test_batch_size_per_card']
T
tink2123 已提交
55
            self.drop_last = False
T
tink2123 已提交
56 57
        self.infer_img = params['infer_img']

L
LDOUBLEV 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    def load_hierarchical_lmdb_dataset(self):
        lmdb_sets = {}
        dataset_idx = 0
        for dirpath, dirnames, filenames in os.walk(self.lmdb_sets_dir + '/'):
            if not dirnames:
                env = lmdb.open(
                    dirpath,
                    max_readers=32,
                    readonly=True,
                    lock=False,
                    readahead=False,
                    meminit=False)
                txn = env.begin(write=False)
                num_samples = int(txn.get('num-samples'.encode()))
                lmdb_sets[dataset_idx] = {"dirpath":dirpath, "env":env, \
                    "txn":txn, "num_samples":num_samples}
                dataset_idx += 1
        return lmdb_sets

    def print_lmdb_sets_info(self, lmdb_sets):
        lmdb_info_strs = []
        for dataset_idx in range(len(lmdb_sets)):
            tmp_str = " %s:%d," % (lmdb_sets[dataset_idx]['dirpath'],
                                   lmdb_sets[dataset_idx]['num_samples'])
            lmdb_info_strs.append(tmp_str)
        lmdb_info_strs = ''.join(lmdb_info_strs)
        logger.info("DataSummary:" + lmdb_info_strs)
        return

    def close_lmdb_dataset(self, lmdb_sets):
        for dataset_idx in lmdb_sets:
            lmdb_sets[dataset_idx]['env'].close()
        return

    def get_lmdb_sample_info(self, txn, index):
        label_key = 'label-%09d'.encode() % index
        label = txn.get(label_key)
        if label is None:
            return None
        label = label.decode('utf-8')
        img_key = 'image-%09d'.encode() % index
        imgbuf = txn.get(img_key)
        img = get_img_data(imgbuf)
        if img is None:
            return None
        return img, label

    def __call__(self, process_id):
        if self.mode != 'train':
            process_id = 0

        def sample_iter_reader():
T
tink2123 已提交
110
            if self.mode != 'train' and self.infer_img is not None:
T
tink2123 已提交
111 112 113
                image_file_list = get_image_file_list(self.infer_img)
                for single_img in image_file_list:
                    img = cv2.imread(single_img)
T
tink2123 已提交
114
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
T
tink2123 已提交
115
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
T
tink2123 已提交
116 117 118
                    norm_img = process_image(
                        img=img,
                        image_shape=self.image_shape,
T
tink2123 已提交
119
                        char_ops=self.char_ops,
T
tink2123 已提交
120
                        tps=self.use_tps,
T
tink2123 已提交
121
                        infer_mode=True)
T
tink2123 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
                    yield norm_img
            else:
                lmdb_sets = self.load_hierarchical_lmdb_dataset()
                if process_id == 0:
                    self.print_lmdb_sets_info(lmdb_sets)
                cur_index_sets = [1 + process_id] * len(lmdb_sets)
                while True:
                    finish_read_num = 0
                    for dataset_idx in range(len(lmdb_sets)):
                        cur_index = cur_index_sets[dataset_idx]
                        if cur_index > lmdb_sets[dataset_idx]['num_samples']:
                            finish_read_num += 1
                        else:
                            sample_info = self.get_lmdb_sample_info(
                                lmdb_sets[dataset_idx]['txn'], cur_index)
                            cur_index_sets[dataset_idx] += self.num_workers
                            if sample_info is None:
                                continue
                            img, label = sample_info
T
tink2123 已提交
141 142 143 144 145 146
                            outs = process_image(
                                img=img,
                                image_shape=self.image_shape,
                                label=label,
                                char_ops=self.char_ops,
                                loss_type=self.loss_type,
T
tink2123 已提交
147 148
                                max_text_length=self.max_text_length,
                                distort=self.use_distort)
T
tink2123 已提交
149 150 151 152 153 154 155
                            if outs is None:
                                continue
                            yield outs

                    if finish_read_num == len(lmdb_sets):
                        break
                self.close_lmdb_dataset(lmdb_sets)
T
tink2123 已提交
156

L
LDOUBLEV 已提交
157 158 159 160 161 162 163
        def batch_iter_reader():
            batch_outs = []
            for outs in sample_iter_reader():
                batch_outs.append(outs)
                if len(batch_outs) == self.batch_size:
                    yield batch_outs
                    batch_outs = []
T
tink2123 已提交
164 165 166
            if not self.drop_last:
                if len(batch_outs) != 0:
                    yield batch_outs
L
LDOUBLEV 已提交
167

T
tink2123 已提交
168
        if self.infer_img is None:
T
tink2123 已提交
169 170
            return batch_iter_reader
        return sample_iter_reader
L
LDOUBLEV 已提交
171 172 173 174 175 176 177 178


class SimpleReader(object):
    def __init__(self, params):
        if params['mode'] != 'train':
            self.num_workers = 1
        else:
            self.num_workers = params['num_workers']
T
tink2123 已提交
179 180 181
        if params['mode'] != 'test':
            self.img_set_dir = params['img_set_dir']
            self.label_file_path = params['label_file_path']
L
LDOUBLEV 已提交
182 183 184 185 186
        self.char_ops = params['char_ops']
        self.image_shape = params['image_shape']
        self.loss_type = params['loss_type']
        self.max_text_length = params['max_text_length']
        self.mode = params['mode']
T
tink2123 已提交
187
        self.infer_img = params['infer_img']
T
tink2123 已提交
188
        self.use_tps = False
T
tink2123 已提交
189
        if "tps" in params:
T
tink2123 已提交
190
            self.use_tps = True
T
tink2123 已提交
191 192
        if "distort" in params:
            self.use_distort = params['distort']
L
LDOUBLEV 已提交
193 194
        if params['mode'] == 'train':
            self.batch_size = params['train_batch_size_per_card']
T
tink2123 已提交
195
            self.drop_last = True
L
LDOUBLEV 已提交
196
        else:
T
tink2123 已提交
197
            self.batch_size = params['test_batch_size_per_card']
T
tink2123 已提交
198
            self.drop_last = False
L
LDOUBLEV 已提交
199 200 201 202 203 204

    def __call__(self, process_id):
        if self.mode != 'train':
            process_id = 0

        def sample_iter_reader():
T
tink2123 已提交
205
            if self.mode != 'train' and self.infer_img is not None:
T
tink2123 已提交
206
                image_file_list = get_image_file_list(self.infer_img)
T
tink2123 已提交
207 208
                for single_img in image_file_list:
                    img = cv2.imread(single_img)
T
tink2123 已提交
209
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
T
tink2123 已提交
210
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
T
tink2123 已提交
211 212 213
                    norm_img = process_image(
                        img=img,
                        image_shape=self.image_shape,
T
tink2123 已提交
214
                        char_ops=self.char_ops,
T
tink2123 已提交
215
                        tps=self.use_tps,
T
tink2123 已提交
216
                        infer_mode=True)
T
tink2123 已提交
217
                    yield norm_img
T
tink2123 已提交
218 219 220 221 222 223
            else:
                with open(self.label_file_path, "rb") as fin:
                    label_infor_list = fin.readlines()
                img_num = len(label_infor_list)
                img_id_list = list(range(img_num))
                random.shuffle(img_id_list)
T
tink2123 已提交
224
                if sys.platform == "win32":
T
tink2123 已提交
225 226 227
                    print("multiprocess is not fully compatible with Windows."
                          "num_workers will be 1.")
                    self.num_workers = 1
T
tink2123 已提交
228 229 230 231 232 233 234 235
                for img_id in range(process_id, img_num, self.num_workers):
                    label_infor = label_infor_list[img_id_list[img_id]]
                    substr = label_infor.decode('utf-8').strip("\n").split("\t")
                    img_path = self.img_set_dir + "/" + substr[0]
                    img = cv2.imread(img_path)
                    if img is None:
                        logger.info("{} does not exist!".format(img_path))
                        continue
T
tink2123 已提交
236
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
T
tink2123 已提交
237 238
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

T
tink2123 已提交
239
                    label = substr[1]
T
tink2123 已提交
240 241 242 243 244 245 246 247
                    outs = process_image(
                        img=img,
                        image_shape=self.image_shape,
                        label=label,
                        char_ops=self.char_ops,
                        loss_type=self.loss_type,
                        max_text_length=self.max_text_length,
                        distort=self.use_distort)
T
tink2123 已提交
248 249 250
                    if outs is None:
                        continue
                    yield outs
L
LDOUBLEV 已提交
251 252 253 254 255 256 257 258

        def batch_iter_reader():
            batch_outs = []
            for outs in sample_iter_reader():
                batch_outs.append(outs)
                if len(batch_outs) == self.batch_size:
                    yield batch_outs
                    batch_outs = []
T
tink2123 已提交
259 260 261
            if not self.drop_last:
                if len(batch_outs) != 0:
                    yield batch_outs
L
LDOUBLEV 已提交
262

T
tink2123 已提交
263
        if self.infer_img is None:
T
tink2123 已提交
264 265
            return batch_iter_reader
        return sample_iter_reader