dataset_traversal.py 11.5 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import os
T
tink2123 已提交
16
import sys
L
LDOUBLEV 已提交
17 18 19 20 21 22 23 24 25
import math
import random
import numpy as np
import cv2

import string
import lmdb

from ppocr.utils.utility import initial_logger
T
tink2123 已提交
26
from ppocr.utils.utility import get_image_file_list
L
LDOUBLEV 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
logger = initial_logger()

from .img_tools import process_image, get_img_data


class LMDBReader(object):
    def __init__(self, params):
        if params['mode'] != 'train':
            self.num_workers = 1
        else:
            self.num_workers = params['num_workers']
        self.lmdb_sets_dir = params['lmdb_sets_dir']
        self.char_ops = params['char_ops']
        self.image_shape = params['image_shape']
        self.loss_type = params['loss_type']
        self.max_text_length = params['max_text_length']
        self.mode = params['mode']
T
tink2123 已提交
44
        self.drop_last = False
T
tink2123 已提交
45
        self.use_tps = False
T
tink2123 已提交
46
        if "tps" in params:
T
tink2123 已提交
47
            self.ues_tps = True
T
tink2123 已提交
48
        self.use_distort = False
T
tink2123 已提交
49
        if "distort" in params:
T
tink2123 已提交
50 51 52 53 54
            self.use_distort = params['distort'] and params['use_gpu']
            if not params['use_gpu']:
                logger.info(
                    "Distort operation can only support in GPU. Distort will be set to False."
                )
L
LDOUBLEV 已提交
55 56
        if params['mode'] == 'train':
            self.batch_size = params['train_batch_size_per_card']
T
tink2123 已提交
57
            self.drop_last = True
T
tink2123 已提交
58
        else:
L
LDOUBLEV 已提交
59
            self.batch_size = params['test_batch_size_per_card']
T
tink2123 已提交
60
            self.drop_last = False
61
            self.use_distort = False
T
tink2123 已提交
62 63
        self.infer_img = params['infer_img']

L
LDOUBLEV 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    def load_hierarchical_lmdb_dataset(self):
        lmdb_sets = {}
        dataset_idx = 0
        for dirpath, dirnames, filenames in os.walk(self.lmdb_sets_dir + '/'):
            if not dirnames:
                env = lmdb.open(
                    dirpath,
                    max_readers=32,
                    readonly=True,
                    lock=False,
                    readahead=False,
                    meminit=False)
                txn = env.begin(write=False)
                num_samples = int(txn.get('num-samples'.encode()))
                lmdb_sets[dataset_idx] = {"dirpath":dirpath, "env":env, \
                    "txn":txn, "num_samples":num_samples}
                dataset_idx += 1
        return lmdb_sets

    def print_lmdb_sets_info(self, lmdb_sets):
        lmdb_info_strs = []
        for dataset_idx in range(len(lmdb_sets)):
            tmp_str = " %s:%d," % (lmdb_sets[dataset_idx]['dirpath'],
                                   lmdb_sets[dataset_idx]['num_samples'])
            lmdb_info_strs.append(tmp_str)
        lmdb_info_strs = ''.join(lmdb_info_strs)
        logger.info("DataSummary:" + lmdb_info_strs)
        return

    def close_lmdb_dataset(self, lmdb_sets):
        for dataset_idx in lmdb_sets:
            lmdb_sets[dataset_idx]['env'].close()
        return

    def get_lmdb_sample_info(self, txn, index):
        label_key = 'label-%09d'.encode() % index
        label = txn.get(label_key)
        if label is None:
            return None
        label = label.decode('utf-8')
        img_key = 'image-%09d'.encode() % index
        imgbuf = txn.get(img_key)
        img = get_img_data(imgbuf)
        if img is None:
            return None
        return img, label

    def __call__(self, process_id):
        if self.mode != 'train':
            process_id = 0

        def sample_iter_reader():
T
tink2123 已提交
116
            if self.mode != 'train' and self.infer_img is not None:
T
tink2123 已提交
117 118 119
                image_file_list = get_image_file_list(self.infer_img)
                for single_img in image_file_list:
                    img = cv2.imread(single_img)
T
tink2123 已提交
120
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
T
tink2123 已提交
121
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
T
tink2123 已提交
122 123 124
                    norm_img = process_image(
                        img=img,
                        image_shape=self.image_shape,
T
tink2123 已提交
125
                        char_ops=self.char_ops,
T
tink2123 已提交
126
                        tps=self.use_tps,
T
tink2123 已提交
127
                        infer_mode=True)
T
tink2123 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
                    yield norm_img
            else:
                lmdb_sets = self.load_hierarchical_lmdb_dataset()
                if process_id == 0:
                    self.print_lmdb_sets_info(lmdb_sets)
                cur_index_sets = [1 + process_id] * len(lmdb_sets)
                while True:
                    finish_read_num = 0
                    for dataset_idx in range(len(lmdb_sets)):
                        cur_index = cur_index_sets[dataset_idx]
                        if cur_index > lmdb_sets[dataset_idx]['num_samples']:
                            finish_read_num += 1
                        else:
                            sample_info = self.get_lmdb_sample_info(
                                lmdb_sets[dataset_idx]['txn'], cur_index)
                            cur_index_sets[dataset_idx] += self.num_workers
                            if sample_info is None:
                                continue
                            img, label = sample_info
T
tink2123 已提交
147 148 149 150 151 152
                            outs = process_image(
                                img=img,
                                image_shape=self.image_shape,
                                label=label,
                                char_ops=self.char_ops,
                                loss_type=self.loss_type,
T
tink2123 已提交
153 154
                                max_text_length=self.max_text_length,
                                distort=self.use_distort)
T
tink2123 已提交
155 156 157 158 159 160 161
                            if outs is None:
                                continue
                            yield outs

                    if finish_read_num == len(lmdb_sets):
                        break
                self.close_lmdb_dataset(lmdb_sets)
T
tink2123 已提交
162

L
LDOUBLEV 已提交
163 164 165 166 167 168 169
        def batch_iter_reader():
            batch_outs = []
            for outs in sample_iter_reader():
                batch_outs.append(outs)
                if len(batch_outs) == self.batch_size:
                    yield batch_outs
                    batch_outs = []
T
tink2123 已提交
170 171 172
            if not self.drop_last:
                if len(batch_outs) != 0:
                    yield batch_outs
L
LDOUBLEV 已提交
173

T
tink2123 已提交
174
        if self.infer_img is None:
T
tink2123 已提交
175 176
            return batch_iter_reader
        return sample_iter_reader
L
LDOUBLEV 已提交
177 178 179 180 181 182 183 184


class SimpleReader(object):
    def __init__(self, params):
        if params['mode'] != 'train':
            self.num_workers = 1
        else:
            self.num_workers = params['num_workers']
T
tink2123 已提交
185 186 187
        if params['mode'] != 'test':
            self.img_set_dir = params['img_set_dir']
            self.label_file_path = params['label_file_path']
T
tink2123 已提交
188
        self.use_gpu = params['use_gpu']
L
LDOUBLEV 已提交
189 190 191 192 193
        self.char_ops = params['char_ops']
        self.image_shape = params['image_shape']
        self.loss_type = params['loss_type']
        self.max_text_length = params['max_text_length']
        self.mode = params['mode']
T
tink2123 已提交
194
        self.infer_img = params['infer_img']
T
tink2123 已提交
195
        self.use_tps = False
T
tink2123 已提交
196
        if "tps" in params:
T
tink2123 已提交
197
            self.use_tps = True
T
tink2123 已提交
198
        self.use_distort = False
T
tink2123 已提交
199
        if "distort" in params:
T
tink2123 已提交
200 201 202 203 204
            self.use_distort = params['distort'] and params['use_gpu']
            if not params['use_gpu']:
                logger.info(
                    "Distort operation can only support in GPU.Distort will be set to False."
                )
L
LDOUBLEV 已提交
205 206
        if params['mode'] == 'train':
            self.batch_size = params['train_batch_size_per_card']
T
tink2123 已提交
207
            self.drop_last = True
L
LDOUBLEV 已提交
208
        else:
T
tink2123 已提交
209
            self.batch_size = params['test_batch_size_per_card']
T
tink2123 已提交
210
            self.drop_last = False
211
            self.use_distort = False
L
LDOUBLEV 已提交
212 213 214 215 216

    def __call__(self, process_id):
        if self.mode != 'train':
            process_id = 0

T
tink2123 已提交
217 218 219 220 221 222 223 224 225
        def get_device_num():
            if self.use_gpu:
                gpus = os.environ.get("CUDA_VISIBLE_DEVICES", 1)
                gpu_num = len(gpus.split(','))
                return gpu_num
            else:
                cpu_num = os.environ.get("CPU_NUM", 1)
                return int(cpu_num)

L
LDOUBLEV 已提交
226
        def sample_iter_reader():
T
tink2123 已提交
227
            if self.mode != 'train' and self.infer_img is not None:
T
tink2123 已提交
228
                image_file_list = get_image_file_list(self.infer_img)
T
tink2123 已提交
229 230
                for single_img in image_file_list:
                    img = cv2.imread(single_img)
T
tink2123 已提交
231
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
T
tink2123 已提交
232
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
T
tink2123 已提交
233 234 235
                    norm_img = process_image(
                        img=img,
                        image_shape=self.image_shape,
T
tink2123 已提交
236
                        char_ops=self.char_ops,
T
tink2123 已提交
237
                        tps=self.use_tps,
T
tink2123 已提交
238
                        infer_mode=True)
T
tink2123 已提交
239
                    yield norm_img
T
tink2123 已提交
240 241 242 243 244 245
            else:
                with open(self.label_file_path, "rb") as fin:
                    label_infor_list = fin.readlines()
                img_num = len(label_infor_list)
                img_id_list = list(range(img_num))
                random.shuffle(img_id_list)
littletomatodonkey's avatar
littletomatodonkey 已提交
246
                if sys.platform == "win32" and self.num_workers != 1:
T
tink2123 已提交
247 248 249
                    print("multiprocess is not fully compatible with Windows."
                          "num_workers will be 1.")
                    self.num_workers = 1
T
tink2123 已提交
250 251 252 253
                if self.batch_size * get_device_num() > img_num:
                    logger.error(
                        "The number of the whole data ({}) is smaller than the batch_size * devices_num ({})".
                        format(img_num, self.batch_size * get_device_num()))
T
tink2123 已提交
254 255 256 257 258 259 260 261
                for img_id in range(process_id, img_num, self.num_workers):
                    label_infor = label_infor_list[img_id_list[img_id]]
                    substr = label_infor.decode('utf-8').strip("\n").split("\t")
                    img_path = self.img_set_dir + "/" + substr[0]
                    img = cv2.imread(img_path)
                    if img is None:
                        logger.info("{} does not exist!".format(img_path))
                        continue
T
tink2123 已提交
262
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
T
tink2123 已提交
263 264
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

T
tink2123 已提交
265
                    label = substr[1]
T
tink2123 已提交
266 267 268 269 270 271 272 273
                    outs = process_image(
                        img=img,
                        image_shape=self.image_shape,
                        label=label,
                        char_ops=self.char_ops,
                        loss_type=self.loss_type,
                        max_text_length=self.max_text_length,
                        distort=self.use_distort)
T
tink2123 已提交
274 275 276
                    if outs is None:
                        continue
                    yield outs
L
LDOUBLEV 已提交
277 278 279 280 281 282 283 284

        def batch_iter_reader():
            batch_outs = []
            for outs in sample_iter_reader():
                batch_outs.append(outs)
                if len(batch_outs) == self.batch_size:
                    yield batch_outs
                    batch_outs = []
T
tink2123 已提交
285 286 287
            if not self.drop_last:
                if len(batch_outs) != 0:
                    yield batch_outs
L
LDOUBLEV 已提交
288

T
tink2123 已提交
289
        if self.infer_img is None:
T
tink2123 已提交
290 291
            return batch_iter_reader
        return sample_iter_reader