dataset_traversal.py 9.7 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import os
T
tink2123 已提交
16
import sys
L
LDOUBLEV 已提交
17 18 19 20 21 22 23 24 25
import math
import random
import numpy as np
import cv2

import string
import lmdb

from ppocr.utils.utility import initial_logger
T
tink2123 已提交
26
from ppocr.utils.utility import get_image_file_list
L
LDOUBLEV 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
logger = initial_logger()

from .img_tools import process_image, get_img_data


class LMDBReader(object):
    def __init__(self, params):
        if params['mode'] != 'train':
            self.num_workers = 1
        else:
            self.num_workers = params['num_workers']
        self.lmdb_sets_dir = params['lmdb_sets_dir']
        self.char_ops = params['char_ops']
        self.image_shape = params['image_shape']
        self.loss_type = params['loss_type']
        self.max_text_length = params['max_text_length']
        self.mode = params['mode']
T
tink2123 已提交
44
        self.drop_last = False
T
tink2123 已提交
45 46
        if "tps" in params:
            self.tps = True
L
LDOUBLEV 已提交
47 48
        if params['mode'] == 'train':
            self.batch_size = params['train_batch_size_per_card']
T
tink2123 已提交
49
            self.drop_last = params['drop_last']
T
tink2123 已提交
50
        else:
L
LDOUBLEV 已提交
51
            self.batch_size = params['test_batch_size_per_card']
T
tink2123 已提交
52 53
        self.infer_img = params['infer_img']

L
LDOUBLEV 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
    def load_hierarchical_lmdb_dataset(self):
        lmdb_sets = {}
        dataset_idx = 0
        for dirpath, dirnames, filenames in os.walk(self.lmdb_sets_dir + '/'):
            if not dirnames:
                env = lmdb.open(
                    dirpath,
                    max_readers=32,
                    readonly=True,
                    lock=False,
                    readahead=False,
                    meminit=False)
                txn = env.begin(write=False)
                num_samples = int(txn.get('num-samples'.encode()))
                lmdb_sets[dataset_idx] = {"dirpath":dirpath, "env":env, \
                    "txn":txn, "num_samples":num_samples}
                dataset_idx += 1
        return lmdb_sets

    def print_lmdb_sets_info(self, lmdb_sets):
        lmdb_info_strs = []
        for dataset_idx in range(len(lmdb_sets)):
            tmp_str = " %s:%d," % (lmdb_sets[dataset_idx]['dirpath'],
                                   lmdb_sets[dataset_idx]['num_samples'])
            lmdb_info_strs.append(tmp_str)
        lmdb_info_strs = ''.join(lmdb_info_strs)
        logger.info("DataSummary:" + lmdb_info_strs)
        return

    def close_lmdb_dataset(self, lmdb_sets):
        for dataset_idx in lmdb_sets:
            lmdb_sets[dataset_idx]['env'].close()
        return

    def get_lmdb_sample_info(self, txn, index):
        label_key = 'label-%09d'.encode() % index
        label = txn.get(label_key)
        if label is None:
            return None
        label = label.decode('utf-8')
        img_key = 'image-%09d'.encode() % index
        imgbuf = txn.get(img_key)
        img = get_img_data(imgbuf)
        if img is None:
            return None
        return img, label

    def __call__(self, process_id):
        if self.mode != 'train':
            process_id = 0

        def sample_iter_reader():
T
tink2123 已提交
106
            if self.mode != 'train' and self.infer_img is not None:
T
tink2123 已提交
107 108 109
                image_file_list = get_image_file_list(self.infer_img)
                for single_img in image_file_list:
                    img = cv2.imread(single_img)
T
tink2123 已提交
110
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
T
tink2123 已提交
111
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
T
tink2123 已提交
112 113 114
                    norm_img = process_image(
                        img=img,
                        image_shape=self.image_shape,
T
tink2123 已提交
115
                        char_ops=self.char_ops,
T
tink2123 已提交
116 117
                        tps=self.tps,
                        infer_mode=True)
T
tink2123 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
                    yield norm_img
            else:
                lmdb_sets = self.load_hierarchical_lmdb_dataset()
                if process_id == 0:
                    self.print_lmdb_sets_info(lmdb_sets)
                cur_index_sets = [1 + process_id] * len(lmdb_sets)
                while True:
                    finish_read_num = 0
                    for dataset_idx in range(len(lmdb_sets)):
                        cur_index = cur_index_sets[dataset_idx]
                        if cur_index > lmdb_sets[dataset_idx]['num_samples']:
                            finish_read_num += 1
                        else:
                            sample_info = self.get_lmdb_sample_info(
                                lmdb_sets[dataset_idx]['txn'], cur_index)
                            cur_index_sets[dataset_idx] += self.num_workers
                            if sample_info is None:
                                continue
                            img, label = sample_info
T
tink2123 已提交
137 138 139 140 141 142 143
                            outs = process_image(
                                img=img,
                                image_shape=self.image_shape,
                                label=label,
                                char_ops=self.char_ops,
                                loss_type=self.loss_type,
                                max_text_length=self.max_text_length)
T
tink2123 已提交
144 145 146 147 148 149 150
                            if outs is None:
                                continue
                            yield outs

                    if finish_read_num == len(lmdb_sets):
                        break
                self.close_lmdb_dataset(lmdb_sets)
T
tink2123 已提交
151

L
LDOUBLEV 已提交
152 153 154 155 156 157 158
        def batch_iter_reader():
            batch_outs = []
            for outs in sample_iter_reader():
                batch_outs.append(outs)
                if len(batch_outs) == self.batch_size:
                    yield batch_outs
                    batch_outs = []
T
tink2123 已提交
159 160 161
            if not self.drop_last:
                if len(batch_outs) != 0:
                    yield batch_outs
L
LDOUBLEV 已提交
162

T
tink2123 已提交
163
        if self.infer_img is None:
T
tink2123 已提交
164 165
            return batch_iter_reader
        return sample_iter_reader
L
LDOUBLEV 已提交
166 167 168 169 170 171 172 173


class SimpleReader(object):
    def __init__(self, params):
        if params['mode'] != 'train':
            self.num_workers = 1
        else:
            self.num_workers = params['num_workers']
T
tink2123 已提交
174 175 176
        if params['mode'] != 'test':
            self.img_set_dir = params['img_set_dir']
            self.label_file_path = params['label_file_path']
L
LDOUBLEV 已提交
177 178 179 180 181
        self.char_ops = params['char_ops']
        self.image_shape = params['image_shape']
        self.loss_type = params['loss_type']
        self.max_text_length = params['max_text_length']
        self.mode = params['mode']
T
tink2123 已提交
182
        self.infer_img = params['infer_img']
T
tink2123 已提交
183
        self.drop_last = False
L
LDOUBLEV 已提交
184 185
        if params['mode'] == 'train':
            self.batch_size = params['train_batch_size_per_card']
T
tink2123 已提交
186
            self.drop_last = params['drop_last']
L
LDOUBLEV 已提交
187
        else:
T
tink2123 已提交
188
            self.batch_size = params['test_batch_size_per_card']
L
LDOUBLEV 已提交
189 190 191 192 193 194

    def __call__(self, process_id):
        if self.mode != 'train':
            process_id = 0

        def sample_iter_reader():
T
tink2123 已提交
195
            if self.infer_img is not None:
T
tink2123 已提交
196
                image_file_list = get_image_file_list(self.infer_img)
T
tink2123 已提交
197 198
                for single_img in image_file_list:
                    img = cv2.imread(single_img)
T
tink2123 已提交
199
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
T
tink2123 已提交
200
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
T
tink2123 已提交
201 202 203 204
                    norm_img = process_image(
                        img=img,
                        image_shape=self.image_shape,
                        char_ops=self.char_ops)
T
tink2123 已提交
205
                    yield norm_img
T
tink2123 已提交
206 207 208 209 210 211
            else:
                with open(self.label_file_path, "rb") as fin:
                    label_infor_list = fin.readlines()
                img_num = len(label_infor_list)
                img_id_list = list(range(img_num))
                random.shuffle(img_id_list)
T
tink2123 已提交
212
                if sys.platform == "win32":
T
tink2123 已提交
213 214 215
                    print("multiprocess is not fully compatible with Windows."
                          "num_workers will be 1.")
                    self.num_workers = 1
T
tink2123 已提交
216 217 218 219 220 221 222 223
                for img_id in range(process_id, img_num, self.num_workers):
                    label_infor = label_infor_list[img_id_list[img_id]]
                    substr = label_infor.decode('utf-8').strip("\n").split("\t")
                    img_path = self.img_set_dir + "/" + substr[0]
                    img = cv2.imread(img_path)
                    if img is None:
                        logger.info("{} does not exist!".format(img_path))
                        continue
T
tink2123 已提交
224
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
T
tink2123 已提交
225 226
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

T
tink2123 已提交
227 228 229 230 231 232 233
                    label = substr[1]
                    outs = process_image(img, self.image_shape, label,
                                         self.char_ops, self.loss_type,
                                         self.max_text_length)
                    if outs is None:
                        continue
                    yield outs
L
LDOUBLEV 已提交
234 235 236 237 238 239 240 241

        def batch_iter_reader():
            batch_outs = []
            for outs in sample_iter_reader():
                batch_outs.append(outs)
                if len(batch_outs) == self.batch_size:
                    yield batch_outs
                    batch_outs = []
T
tink2123 已提交
242 243 244
            if not self.drop_last:
                if len(batch_outs) != 0:
                    yield batch_outs
L
LDOUBLEV 已提交
245

T
tink2123 已提交
246
        if self.infer_img is None:
T
tink2123 已提交
247 248
            return batch_iter_reader
        return sample_iter_reader