README.md 5.8 KB
Newer Older
文幕地方's avatar
文幕地方 已提交
1
English | [简体中文](README_ch.md)
文幕地方's avatar
文幕地方 已提交
2

M
MissPenguin 已提交
3
# Table Recognition
W
WenmuZhou 已提交
4

文幕地方's avatar
文幕地方 已提交
5 6
- [1. pipeline](#1-pipeline)
- [2. Performance](#2-performance)
文幕地方's avatar
文幕地方 已提交
7 8 9 10 11 12
- [3. Result](#3-result)
- [4. How to use](#4-how-to-use)
  - [4.1 Quick start](#41-quick-start)
  - [4.2 Train](#42-train)
  - [4.3 Calculate TEDS](#43-calculate-teds)
- [5. Reference](#5-reference)
文幕地方's avatar
文幕地方 已提交
13 14


W
WenmuZhou 已提交
15
## 1. pipeline
M
MissPenguin 已提交
16
The table recognition mainly contains three models
W
WenmuZhou 已提交
17 18
1. Single line text detection-DB
2. Single line text recognition-CRNN
文幕地方's avatar
文幕地方 已提交
19
3. Table structure and cell coordinate prediction-SLANet
W
WenmuZhou 已提交
20

M
MissPenguin 已提交
21
The table recognition flow chart is as follows
W
WenmuZhou 已提交
22

M
MissPenguin 已提交
23
![tableocr_pipeline](../docs/table/tableocr_pipeline_en.jpg)
W
WenmuZhou 已提交
24 25

1. The coordinates of single-line text is detected by DB model, and then sends it to the recognition model to get the recognition result.
文幕地方's avatar
文幕地方 已提交
26
2. The table structure and cell coordinates is predicted by SLANet model.
W
WenmuZhou 已提交
27 28 29
3. The recognition result of the cell is combined by the coordinates, recognition result of the single line and the coordinates of the cell.
4. The cell recognition result and the table structure together construct the html string of the table.

W
WenmuZhou 已提交
30 31
## 2. Performance
We evaluated the algorithm on the PubTabNet<sup>[1]</sup> eval dataset, and the performance is as follows:
W
WenmuZhou 已提交
32

文幕地方's avatar
文幕地方 已提交
33 34 35
|Method|Acc|[TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src)|Speed|
| --- | --- | --- | ---|
| EDD<sup>[2]</sup> |x| 88.3 |x|
文幕地方's avatar
文幕地方 已提交
36 37
| TableRec-RARE(ours) |73.8%| 95.3% |1550ms|
| SLANet(ours) | 76.2%|    95.85% |766ms|
文幕地方's avatar
文幕地方 已提交
38 39 40 41 42

The performance indicators are explained as follows:
- Acc: The accuracy of the table structure in each image, a wrong token is considered an error.
- TEDS: The accuracy of the model's restoration of table information. This indicator evaluates not only the table structure, but also the text content in the table.
- Speed: The inference speed of a single image when the model runs on the CPU machine and MKL is enabled.
文幕地方's avatar
文幕地方 已提交
43

文幕地方's avatar
文幕地方 已提交
44
## 3. Result
W
WenmuZhou 已提交
45

文幕地方's avatar
文幕地方 已提交
46 47 48
![](../docs/imgs/table_ch_result1.jpg)
![](../docs/imgs/table_ch_result2.jpg)
![](../docs/imgs/table_ch_result3.jpg)
W
WenmuZhou 已提交
49

文幕地方's avatar
文幕地方 已提交
50 51 52
## 4. How to use

### 4.1 Quick start
W
WenmuZhou 已提交
53

文幕地方's avatar
文幕地方 已提交
54
Use the following commands to quickly complete the identification of a table.
文幕地方's avatar
文幕地方 已提交
55

W
WenmuZhou 已提交
56 57 58 59 60
```python
cd PaddleOCR/ppstructure

# download model
mkdir inference && cd inference
文幕地方's avatar
文幕地方 已提交
61 62 63 64 65 66
# Download the PP-OCRv3 text detection model and unzip it
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_slim_infer.tar && tar xf ch_PP-OCRv3_det_slim_infer.tar
# Download the PP-OCRv3 text recognition model and unzip it
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_slim_infer.tar && tar xf ch_PP-OCRv3_rec_slim_infer.tar
# Download the PP-Structurev2 form recognition model and unzip it
wget https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_infer.tar && tar xf ch_ppstructure_mobile_v2.0_SLANet_infer.tar
W
WenmuZhou 已提交
67
cd ..
68
# run
文幕地方's avatar
文幕地方 已提交
69 70 71 72 73 74 75 76 77
python3.7 table/predict_table.py \
    --det_model_dir=inference/ch_PP-OCRv3_det_slim_infer \
    --rec_model_dir=inference/ch_PP-OCRv3_rec_slim_infer  \
    --table_model_dir=inference/ch_ppstructure_mobile_v2.0_SLANet_infer \
    --rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt \
    --table_char_dict_path=../ppocr/utils/dict/table_structure_dict_ch.txt \
    --image_dir=docs/table/table.jpg \
    --output=../output/table

W
WenmuZhou 已提交
78
```
79

文幕地方's avatar
文幕地方 已提交
80
After the operation is completed, the excel table of each image will be saved to the directory specified by the output field, and an html file will be produced in the directory to visually view the cell coordinates and the recognized table.
W
WenmuZhou 已提交
81

文幕地方's avatar
文幕地方 已提交
82
### 4.2 Train
W
WenmuZhou 已提交
83

文幕地方's avatar
文幕地方 已提交
84
The training, evaluation and inference process of the text detection model can be referred to [detection](../../doc/doc_en/detection_en.md)
W
WenmuZhou 已提交
85

文幕地方's avatar
文幕地方 已提交
86
The training, evaluation and inference process of the text recognition model can be referred to [recognition](../../doc/doc_en/recognition_en.md)
文幕地方's avatar
文幕地方 已提交
87

文幕地方's avatar
文幕地方 已提交
88
The training, evaluation and inference process of the table recognition model can be referred to [table_recognition](../../doc/doc_en/table_recognition_en.md)
文幕地方's avatar
文幕地方 已提交
89

文幕地方's avatar
文幕地方 已提交
90
### 4.3 Calculate TEDS
W
WenmuZhou 已提交
91

W
WenmuZhou 已提交
92
The table uses [TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src) as the evaluation metric of the model. Before the model evaluation, the three models in the pipeline need to be exported as inference models (we have provided them), and the gt for evaluation needs to be prepared. Examples of gt are as follows:
文幕地方's avatar
文幕地方 已提交
93 94 95 96 97 98 99 100
```txt
PMC5755158_010_01.png    <html><body><table><thead><tr><td></td><td><b>Weaning</b></td><td><b>Week 15</b></td><td><b>Off-test</b></td></tr></thead><tbody><tr><td>Weaning</td><td>–</td><td>–</td><td>–</td></tr><tr><td>Week 15</td><td>–</td><td>0.17 ± 0.08</td><td>0.16 ± 0.03</td></tr><tr><td>Off-test</td><td>–</td><td>0.80 ± 0.24</td><td>0.19 ± 0.09</td></tr></tbody></table></body></html>
```
Each line in gt consists of the file name and the html string of the table. The file name and the html string of the table are separated by `\t`.

You can also use the following command to generate an evaluation gt file from the annotation file:
```python
python3 ppstructure/table/convert_label2html.py --ori_gt_path /path/to/your_label_file --save_path /path/to/save_file
W
WenmuZhou 已提交
101 102 103 104
```

Use the following command to evaluate. After the evaluation is completed, the teds indicator will be output.
```python
文幕地方's avatar
文幕地方 已提交
105 106 107 108 109 110 111 112 113 114
python3 table/eval_table.py \
    --det_model_dir=path/to/det_model_dir \
    --rec_model_dir=path/to/rec_model_dir \
    --table_model_dir=path/to/table_model_dir \
    --image_dir=../doc/table/1.png \
    --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt \
    --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt \
    --det_limit_side_len=736 \
    --det_limit_type=min \
    --gt_path=path/to/gt.txt
W
WenmuZhou 已提交
115 116
```

W
WenmuZhou 已提交
117 118
If the PubLatNet eval dataset is used, it will be output
```bash
文幕地方's avatar
文幕地方 已提交
119
teds: 94.98
W
WenmuZhou 已提交
120
```
W
WenmuZhou 已提交
121

文幕地方's avatar
文幕地方 已提交
122
## 5. Reference
W
WenmuZhou 已提交
123
1. https://github.com/ibm-aur-nlp/PubTabNet
124
2. https://arxiv.org/pdf/1911.10683