提交 cf6f7012 编写于 作者: 文幕地方's avatar 文幕地方

add structure predict doc

上级 b26ce237
......@@ -39,6 +39,8 @@ We evaluated the algorithm on the PubTabNet<sup>[1]</sup> eval dataset, and the
### 3.1 quick start
- table recognition
```python
cd PaddleOCR/ppstructure
......@@ -65,6 +67,24 @@ python3.7 table/predict_table.py \
After the operation is completed, the excel table of each image will be saved to the directory specified by the output field, and an html file will be produced in the directory to visually view the cell coordinates and the recognized table.
- table structure recognition
```python
cd PaddleOCR/ppstructure
# download model
mkdir inference && cd inference
# Download the PP-Structurev2 form recognition model and unzip it
wget https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_infer.tar && tar xf ch_ppstructure_mobile_v2.0_SLANet_infer.tar
cd ..
# run
python3.7 table/predict_structure.py \
--table_model_dir=inference/ch_ppstructure_mobile_v2.0_SLANet_infer \
--table_char_dict_path=../ppocr/utils/dict/table_structure_dict_ch.txt \
--image_dir=docs/table/table.jpg \
--output=../output/table
```
After the run is complete, the visualization of the detection frame of the cell will be saved to the directory specified by the output field.
### 3.2 Train
In this chapter, we only introduce the training of the table structure model, For model training of [text detection](../../doc/doc_en/detection_en.md) and [text recognition](../../doc/doc_en/recognition_en.md), please refer to the corresponding documents
......
......@@ -49,6 +49,7 @@
<a name="31"></a>
### 3.1 快速开始
- 表格识别
```python
cd PaddleOCR/ppstructure
......@@ -61,7 +62,7 @@ wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_slim_infer
# 下载PP-Structurev2表格识别模型并解压
wget https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_infer.tar && tar xf ch_ppstructure_mobile_v2.0_SLANet_infer.tar
cd ..
# 执行预测
# 执行表格识别
python3.7 table/predict_table.py \
--det_model_dir=inference/ch_PP-OCRv3_det_slim_infer \
--rec_model_dir=inference/ch_PP-OCRv3_rec_slim_infer \
......@@ -73,6 +74,24 @@ python3.7 table/predict_table.py \
```
运行完成后,每张图片的excel表格会保存到output字段指定的目录下,同时在该目录下回生产一个html文件,用于可视化查看单元格坐标和识别的表格。
- 表格结构识别
```python
cd PaddleOCR/ppstructure
# 下载模型
mkdir inference && cd inference
# 下载PP-Structurev2表格识别模型并解压
wget https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_infer.tar && tar xf ch_ppstructure_mobile_v2.0_SLANet_infer.tar
cd ..
# 执行表格结构识别
python3.7 table/predict_structure.py \
--table_model_dir=inference/ch_ppstructure_mobile_v2.0_SLANet_infer \
--table_char_dict_path=../ppocr/utils/dict/table_structure_dict_ch.txt \
--image_dir=docs/table/table.jpg \
--output=../output/table
```
运行完成后,单元格的检测框可视化会保存到output字段指定的目录下。
<a name="32"></a>
### 3.2 训练
......
......@@ -147,7 +147,10 @@ def main(args):
f_w.write("result: {}, {}\n".format(structure_str_list,
bbox_list_str))
img = draw_rectangle(image_file, bbox_list)
if len(bbox_list) > 0 and len(bbox_list[0]) == 4:
img = draw_rectangle(image_file, pred_res['cell_bbox'])
else:
img = utility.draw_boxes(img, bbox_list)
img_save_path = os.path.join(args.output,
os.path.basename(image_file))
cv2.imwrite(img_save_path, img)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册