README.md 7.3 KB
Newer Older
文幕地方's avatar
文幕地方 已提交
1 2 3 4 5 6 7 8 9 10
- [Table Recognition](#table-recognition)
  - [1. pipeline](#1-pipeline)
  - [2. Performance](#2-performance)
  - [3. How to use](#3-how-to-use)
    - [3.1 quick start](#31-quick-start)
    - [3.2 Train](#32-train)
    - [3.3 Eval](#33-eval)
    - [3.4 Inference](#34-inference)


M
MissPenguin 已提交
11
# Table Recognition
W
WenmuZhou 已提交
12 13

## 1. pipeline
M
MissPenguin 已提交
14
The table recognition mainly contains three models
W
WenmuZhou 已提交
15 16 17 18
1. Single line text detection-DB
2. Single line text recognition-CRNN
3. Table structure and cell coordinate prediction-RARE

M
MissPenguin 已提交
19
The table recognition flow chart is as follows
W
WenmuZhou 已提交
20

M
MissPenguin 已提交
21
![tableocr_pipeline](../docs/table/tableocr_pipeline_en.jpg)
W
WenmuZhou 已提交
22 23 24 25 26 27

1. The coordinates of single-line text is detected by DB model, and then sends it to the recognition model to get the recognition result.
2. The table structure and cell coordinates is predicted by RARE model.
3. The recognition result of the cell is combined by the coordinates, recognition result of the single line and the coordinates of the cell.
4. The cell recognition result and the table structure together construct the html string of the table.

W
WenmuZhou 已提交
28 29
## 2. Performance
We evaluated the algorithm on the PubTabNet<sup>[1]</sup> eval dataset, and the performance is as follows:
W
WenmuZhou 已提交
30

W
WenmuZhou 已提交
31 32

|Method|[TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src)|
33 34
| --- | --- |
| EDD<sup>[2]</sup> | 88.3 |
文幕地方's avatar
文幕地方 已提交
35 36
| TableRec-RARE(ours) | 93.32 |
| SLANet(ours) | 94.98 |
W
WenmuZhou 已提交
37 38 39 40

## 3. How to use

### 3.1 quick start
W
WenmuZhou 已提交
41

W
WenmuZhou 已提交
42 43 44 45 46
```python
cd PaddleOCR/ppstructure

# download model
mkdir inference && cd inference
47 48 49 50 51
# Download the detection model of the ultra-lightweight table English OCR model and unzip it
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar && tar xf en_ppocr_mobile_v2.0_table_det_infer.tar
# Download the recognition model of the ultra-lightweight table English OCR model and unzip it
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar && tar xf en_ppocr_mobile_v2.0_table_rec_infer.tar
# Download the ultra-lightweight English table inch model and unzip it
W
WenmuZhou 已提交
52 53
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar && tar xf en_ppocr_mobile_v2.0_table_structure_infer.tar
cd ..
54
# run
55
python3 table/predict_table.py --det_model_dir=inference/en_ppocr_mobile_v2.0_table_det_infer --rec_model_dir=inference/en_ppocr_mobile_v2.0_table_rec_infer --table_model_dir=inference/en_ppocr_mobile_v2.0_table_structure_infer --image_dir=./docs/table/table.jpg --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --det_limit_side_len=736 --det_limit_type=min --output ./output/table
W
WenmuZhou 已提交
56
```
57 58
Note: The above model is trained on the PubLayNet dataset and only supports English scanning scenarios. If you need to identify other scenarios, you need to train the model yourself and replace the three fields `det_model_dir`, `rec_model_dir`, `table_model_dir`.

文幕地方's avatar
文幕地方 已提交
59
After the operation is completed, the excel table of each image will be saved to the directory specified by the output field, and an html file will be produced in the directory to visually view the cell coordinates and the recognized table.
W
WenmuZhou 已提交
60

W
WenmuZhou 已提交
61
### 3.2 Train
W
WenmuZhou 已提交
62 63 64

In this chapter, we only introduce the training of the table structure model, For model training of [text detection](../../doc/doc_en/detection_en.md) and [text recognition](../../doc/doc_en/recognition_en.md), please refer to the corresponding documents

文幕地方's avatar
文幕地方 已提交
65
* data preparation  
W
WenmuZhou 已提交
66 67
The training data uses public data set [PubTabNet](https://arxiv.org/abs/1911.10683 ), Can be downloaded from the official [website](https://github.com/ibm-aur-nlp/PubTabNet) 。The PubTabNet data set contains about 500,000 images, as well as annotations in html format。

文幕地方's avatar
文幕地方 已提交
68
* Start training  
W
WenmuZhou 已提交
69 70 71 72 73 74 75 76 77 78 79 80
*If you are installing the cpu version of paddle, please modify the `use_gpu` field in the configuration file to false*
```shell
# single GPU training
python3 tools/train.py -c configs/table/table_mv3.yml
# multi-GPU training
# Set the GPU ID used by the '--gpus' parameter.
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/table/table_mv3.yml
```

In the above instruction, use `-c` to select the training to use the `configs/table/table_mv3.yml` configuration file.
For a detailed explanation of the configuration file, please refer to [config](../../doc/doc_en/config_en.md).

文幕地方's avatar
文幕地方 已提交
81
* load trained model and continue training
W
WenmuZhou 已提交
82 83 84 85 86 87 88 89

If you expect to load trained model and continue the training again, you can specify the parameter `Global.checkpoints` as the model path to be loaded.

```shell
python3 tools/train.py -c configs/table/table_mv3.yml -o Global.checkpoints=./your/trained/model
```

**Note**: The priority of `Global.checkpoints` is higher than that of `Global.pretrain_weights`, that is, when two parameters are specified at the same time, the model specified by `Global.checkpoints` will be loaded first. If the model path specified by `Global.checkpoints` is wrong, the one specified by `Global.pretrain_weights` will be loaded.
W
WenmuZhou 已提交
90

W
WenmuZhou 已提交
91
### 3.3 Eval
W
WenmuZhou 已提交
92

W
WenmuZhou 已提交
93
The table uses [TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src) as the evaluation metric of the model. Before the model evaluation, the three models in the pipeline need to be exported as inference models (we have provided them), and the gt for evaluation needs to be prepared. Examples of gt are as follows:
文幕地方's avatar
文幕地方 已提交
94 95 96 97 98 99 100 101
```txt
PMC5755158_010_01.png    <html><body><table><thead><tr><td></td><td><b>Weaning</b></td><td><b>Week 15</b></td><td><b>Off-test</b></td></tr></thead><tbody><tr><td>Weaning</td><td>–</td><td>–</td><td>–</td></tr><tr><td>Week 15</td><td>–</td><td>0.17 ± 0.08</td><td>0.16 ± 0.03</td></tr><tr><td>Off-test</td><td>–</td><td>0.80 ± 0.24</td><td>0.19 ± 0.09</td></tr></tbody></table></body></html>
```
Each line in gt consists of the file name and the html string of the table. The file name and the html string of the table are separated by `\t`.

You can also use the following command to generate an evaluation gt file from the annotation file:
```python
python3 ppstructure/table/convert_label2html.py --ori_gt_path /path/to/your_label_file --save_path /path/to/save_file
W
WenmuZhou 已提交
102 103 104 105
```

Use the following command to evaluate. After the evaluation is completed, the teds indicator will be output.
```python
W
WenmuZhou 已提交
106
cd PaddleOCR/ppstructure
文幕地方's avatar
文幕地方 已提交
107
python3 table/eval_table.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --table_model_dir=path/to/table_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --det_limit_side_len=736 --det_limit_type=min --gt_path=path/to/gt.txt
W
WenmuZhou 已提交
108 109
```

W
WenmuZhou 已提交
110 111
If the PubLatNet eval dataset is used, it will be output
```bash
文幕地方's avatar
文幕地方 已提交
112
teds: 94.98
W
WenmuZhou 已提交
113
```
W
WenmuZhou 已提交
114

W
WenmuZhou 已提交
115
### 3.4 Inference
W
WenmuZhou 已提交
116 117

```python
W
WenmuZhou 已提交
118
cd PaddleOCR/ppstructure
文幕地方's avatar
文幕地方 已提交
119
python3 table/predict_table.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --table_model_dir=path/to/table_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --det_limit_side_len=736 --det_limit_type=min --output ../output/table
W
WenmuZhou 已提交
120
```
M
MissPenguin 已提交
121
After running, the excel sheet of each picture will be saved in the directory specified by the output field
W
WenmuZhou 已提交
122 123 124

Reference
1. https://github.com/ibm-aur-nlp/PubTabNet
125
2. https://arxiv.org/pdf/1911.10683