README.md 5.7 KB
Newer Older
文幕地方's avatar
文幕地方 已提交
1
English | [简体中文](README_ch.md)
文幕地方's avatar
文幕地方 已提交
2

M
MissPenguin 已提交
3
# Table Recognition
W
WenmuZhou 已提交
4

文幕地方's avatar
文幕地方 已提交
5 6
- [1. pipeline](#1-pipeline)
- [2. Performance](#2-performance)
文幕地方's avatar
文幕地方 已提交
7 8 9 10 11 12
- [3. Result](#3-result)
- [4. How to use](#4-how-to-use)
  - [4.1 Quick start](#41-quick-start)
  - [4.2 Train](#42-train)
  - [4.3 Calculate TEDS](#43-calculate-teds)
- [5. Reference](#5-reference)
文幕地方's avatar
文幕地方 已提交
13 14


W
WenmuZhou 已提交
15
## 1. pipeline
M
MissPenguin 已提交
16
The table recognition mainly contains three models
W
WenmuZhou 已提交
17 18
1. Single line text detection-DB
2. Single line text recognition-CRNN
文幕地方's avatar
文幕地方 已提交
19
3. Table structure and cell coordinate prediction-SLANet
W
WenmuZhou 已提交
20

M
MissPenguin 已提交
21
The table recognition flow chart is as follows
W
WenmuZhou 已提交
22

M
MissPenguin 已提交
23
![tableocr_pipeline](../docs/table/tableocr_pipeline_en.jpg)
W
WenmuZhou 已提交
24 25

1. The coordinates of single-line text is detected by DB model, and then sends it to the recognition model to get the recognition result.
文幕地方's avatar
文幕地方 已提交
26
2. The table structure and cell coordinates is predicted by SLANet model.
W
WenmuZhou 已提交
27 28 29
3. The recognition result of the cell is combined by the coordinates, recognition result of the single line and the coordinates of the cell.
4. The cell recognition result and the table structure together construct the html string of the table.

W
WenmuZhou 已提交
30 31
## 2. Performance
We evaluated the algorithm on the PubTabNet<sup>[1]</sup> eval dataset, and the performance is as follows:
W
WenmuZhou 已提交
32

W
WenmuZhou 已提交
33

文幕地方's avatar
文幕地方 已提交
34 35 36 37 38
|Method|acc|[TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src)|
| --- | --- | --- |
| EDD<sup>[2]</sup> |x| 88.3 |
| TableRec-RARE(ours) |73.8%| 93.32 |
| SLANet(ours) | 76.2%| 94.98 |SLANet |
文幕地方's avatar
文幕地方 已提交
39
## 3. Result
W
WenmuZhou 已提交
40

文幕地方's avatar
文幕地方 已提交
41 42 43 44 45
![图片](http://agroup.baidu-int.com/file/stream/bj/bj-e50a465becdbde9bffb84a84d41d196ac1acf1b6)
![图片](http://agroup.baidu-int.com/file/stream/bj/bj-17ea53b181408a35d977c6c26b1ea308b4c27a79)
![图片](http://agroup.baidu-int.com/file/stream/bj/bj-b905f57beca7115d54b907deac70c10056274858)
![图片](http://agroup.baidu-int.com/file/stream/bj/bj-894694c9558fe7deb8cc896f9411fdfd252bca72)
![图片](http://agroup.baidu-int.com/file/stream/bj/bj-03a0a67378b41a353257bd2fe8a1e9a864c89cb5)
W
WenmuZhou 已提交
46

文幕地方's avatar
文幕地方 已提交
47 48 49
## 4. How to use

### 4.1 Quick start
W
WenmuZhou 已提交
50

文幕地方's avatar
文幕地方 已提交
51
Use the following commands to quickly complete the identification of a table.
文幕地方's avatar
文幕地方 已提交
52

W
WenmuZhou 已提交
53 54 55 56 57
```python
cd PaddleOCR/ppstructure

# download model
mkdir inference && cd inference
文幕地方's avatar
文幕地方 已提交
58 59 60 61 62 63
# Download the PP-OCRv3 text detection model and unzip it
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_slim_infer.tar && tar xf ch_PP-OCRv3_det_slim_infer.tar
# Download the PP-OCRv3 text recognition model and unzip it
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_slim_infer.tar && tar xf ch_PP-OCRv3_rec_slim_infer.tar
# Download the PP-Structurev2 form recognition model and unzip it
wget https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_infer.tar && tar xf ch_ppstructure_mobile_v2.0_SLANet_infer.tar
W
WenmuZhou 已提交
64
cd ..
65
# run
文幕地方's avatar
文幕地方 已提交
66 67 68 69 70 71 72 73 74
python3.7 table/predict_table.py \
    --det_model_dir=inference/ch_PP-OCRv3_det_slim_infer \
    --rec_model_dir=inference/ch_PP-OCRv3_rec_slim_infer  \
    --table_model_dir=inference/ch_ppstructure_mobile_v2.0_SLANet_infer \
    --rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt \
    --table_char_dict_path=../ppocr/utils/dict/table_structure_dict_ch.txt \
    --image_dir=docs/table/table.jpg \
    --output=../output/table

W
WenmuZhou 已提交
75
```
76

文幕地方's avatar
文幕地方 已提交
77
After the operation is completed, the excel table of each image will be saved to the directory specified by the output field, and an html file will be produced in the directory to visually view the cell coordinates and the recognized table.
W
WenmuZhou 已提交
78

文幕地方's avatar
文幕地方 已提交
79
### 4.2 Train
W
WenmuZhou 已提交
80

文幕地方's avatar
文幕地方 已提交
81
The training, evaluation and inference process of the text detection model can be referred to [detection](../../doc/doc_en/detection_en.md)
W
WenmuZhou 已提交
82

文幕地方's avatar
文幕地方 已提交
83
The training, evaluation and inference process of the text recognition model can be referred to [recognition](../../doc/doc_en/recognition_en.md)
文幕地方's avatar
文幕地方 已提交
84

文幕地方's avatar
文幕地方 已提交
85
The training, evaluation and inference process of the table recognition model can be referred to [table_recognition](../../doc/doc_en/table_recognition_en.md)
文幕地方's avatar
文幕地方 已提交
86

文幕地方's avatar
文幕地方 已提交
87
### 4.3 Calculate TEDS
W
WenmuZhou 已提交
88

W
WenmuZhou 已提交
89
The table uses [TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src) as the evaluation metric of the model. Before the model evaluation, the three models in the pipeline need to be exported as inference models (we have provided them), and the gt for evaluation needs to be prepared. Examples of gt are as follows:
文幕地方's avatar
文幕地方 已提交
90 91 92 93 94 95 96 97
```txt
PMC5755158_010_01.png    <html><body><table><thead><tr><td></td><td><b>Weaning</b></td><td><b>Week 15</b></td><td><b>Off-test</b></td></tr></thead><tbody><tr><td>Weaning</td><td>–</td><td>–</td><td>–</td></tr><tr><td>Week 15</td><td>–</td><td>0.17 ± 0.08</td><td>0.16 ± 0.03</td></tr><tr><td>Off-test</td><td>–</td><td>0.80 ± 0.24</td><td>0.19 ± 0.09</td></tr></tbody></table></body></html>
```
Each line in gt consists of the file name and the html string of the table. The file name and the html string of the table are separated by `\t`.

You can also use the following command to generate an evaluation gt file from the annotation file:
```python
python3 ppstructure/table/convert_label2html.py --ori_gt_path /path/to/your_label_file --save_path /path/to/save_file
W
WenmuZhou 已提交
98 99 100 101
```

Use the following command to evaluate. After the evaluation is completed, the teds indicator will be output.
```python
文幕地方's avatar
文幕地方 已提交
102 103 104 105 106 107 108 109 110 111
python3 table/eval_table.py \
    --det_model_dir=path/to/det_model_dir \
    --rec_model_dir=path/to/rec_model_dir \
    --table_model_dir=path/to/table_model_dir \
    --image_dir=../doc/table/1.png \
    --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt \
    --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt \
    --det_limit_side_len=736 \
    --det_limit_type=min \
    --gt_path=path/to/gt.txt
W
WenmuZhou 已提交
112 113
```

W
WenmuZhou 已提交
114 115
If the PubLatNet eval dataset is used, it will be output
```bash
文幕地方's avatar
文幕地方 已提交
116
teds: 94.98
W
WenmuZhou 已提交
117
```
W
WenmuZhou 已提交
118

文幕地方's avatar
文幕地方 已提交
119
## 5. Reference
W
WenmuZhou 已提交
120
1. https://github.com/ibm-aur-nlp/PubTabNet
121
2. https://arxiv.org/pdf/1911.10683