README.md 7.6 KB
Newer Older
文幕地方's avatar
文幕地方 已提交
1 2 3 4 5 6 7 8 9 10
- [Table Recognition](#table-recognition)
  - [1. pipeline](#1-pipeline)
  - [2. Performance](#2-performance)
  - [3. How to use](#3-how-to-use)
    - [3.1 quick start](#31-quick-start)
    - [3.2 Train](#32-train)
    - [3.3 Eval](#33-eval)
    - [3.4 Inference](#34-inference)


M
MissPenguin 已提交
11
# Table Recognition
W
WenmuZhou 已提交
12 13

## 1. pipeline
M
MissPenguin 已提交
14
The table recognition mainly contains three models
W
WenmuZhou 已提交
15 16 17 18
1. Single line text detection-DB
2. Single line text recognition-CRNN
3. Table structure and cell coordinate prediction-RARE

M
MissPenguin 已提交
19
The table recognition flow chart is as follows
W
WenmuZhou 已提交
20

M
MissPenguin 已提交
21
![tableocr_pipeline](../docs/table/tableocr_pipeline_en.jpg)
W
WenmuZhou 已提交
22 23 24 25 26 27

1. The coordinates of single-line text is detected by DB model, and then sends it to the recognition model to get the recognition result.
2. The table structure and cell coordinates is predicted by RARE model.
3. The recognition result of the cell is combined by the coordinates, recognition result of the single line and the coordinates of the cell.
4. The cell recognition result and the table structure together construct the html string of the table.

W
WenmuZhou 已提交
28 29
## 2. Performance
We evaluated the algorithm on the PubTabNet<sup>[1]</sup> eval dataset, and the performance is as follows:
W
WenmuZhou 已提交
30

W
WenmuZhou 已提交
31 32

|Method|[TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src)|
33 34
| --- | --- |
| EDD<sup>[2]</sup> | 88.3 |
文幕地方's avatar
文幕地方 已提交
35 36
| TableRec-RARE(ours) | 93.32 |
| SLANet(ours) | 94.98 |
W
WenmuZhou 已提交
37 38 39 40

## 3. How to use

### 3.1 quick start
W
WenmuZhou 已提交
41

W
WenmuZhou 已提交
42 43 44 45 46
```python
cd PaddleOCR/ppstructure

# download model
mkdir inference && cd inference
文幕地方's avatar
文幕地方 已提交
47 48 49 50 51 52
# Download the PP-OCRv3 text detection model and unzip it
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_det_slim_infer.tar && tar xf ch_PP-OCRv3_det_slim_infer.tar
# Download the PP-OCRv3 text recognition model and unzip it
wget https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/ch_PP-OCRv3_rec_slim_infer.tar && tar xf ch_PP-OCRv3_rec_slim_infer.tar
# Download the PP-Structurev2 form recognition model and unzip it
wget https://paddleocr.bj.bcebos.com/ppstructure/models/slanet/ch_ppstructure_mobile_v2.0_SLANet_infer.tar && tar xf ch_ppstructure_mobile_v2.0_SLANet_infer.tar
W
WenmuZhou 已提交
53
cd ..
54
# run
文幕地方's avatar
文幕地方 已提交
55 56 57 58 59 60 61 62 63
python3.7 table/predict_table.py \
    --det_model_dir=inference/ch_PP-OCRv3_det_slim_infer \
    --rec_model_dir=inference/ch_PP-OCRv3_rec_slim_infer  \
    --table_model_dir=inference/ch_ppstructure_mobile_v2.0_SLANet_infer \
    --rec_char_dict_path=../ppocr/utils/ppocr_keys_v1.txt \
    --table_char_dict_path=../ppocr/utils/dict/table_structure_dict_ch.txt \
    --image_dir=docs/table/table.jpg \
    --output=../output/table

W
WenmuZhou 已提交
64
```
65

文幕地方's avatar
文幕地方 已提交
66
After the operation is completed, the excel table of each image will be saved to the directory specified by the output field, and an html file will be produced in the directory to visually view the cell coordinates and the recognized table.
W
WenmuZhou 已提交
67

W
WenmuZhou 已提交
68
### 3.2 Train
W
WenmuZhou 已提交
69 70 71

In this chapter, we only introduce the training of the table structure model, For model training of [text detection](../../doc/doc_en/detection_en.md) and [text recognition](../../doc/doc_en/recognition_en.md), please refer to the corresponding documents

文幕地方's avatar
文幕地方 已提交
72
* data preparation  
文幕地方's avatar
文幕地方 已提交
73 74 75 76 77 78 79 80 81 82

For the Chinese model and the English model, the data sources are different, as follows:

English dataset: The training data uses public data set [PubTabNet](https://arxiv.org/abs/1911.10683 ), Can be downloaded from the official [website](https://github.com/ibm-aur-nlp/PubTabNet) 。The PubTabNet data set contains about 500,000 images, as well as annotations in html format。

Chinese dataset: The Chinese dataset consists of the following two parts, which are trained with a 1:1 sampling ratio.
>   1. Generate dataset: Use [Table Generation Tool](https://github.com/WenmuZhou/TableGeneration) to generate 40,000 images.
>   2. Crop 10,000 images from [WTW](https://github.com/wangwen-whu/WTW-Dataset).

For a detailed introduction to public datasets, please refer to [table_datasets](../../doc/doc_en/dataset/table_datasets_en.md). The following training and evaluation procedures are based on the English dataset as an example.
W
WenmuZhou 已提交
83

文幕地方's avatar
文幕地方 已提交
84
* Start training  
W
WenmuZhou 已提交
85 86 87 88 89 90 91 92 93 94 95 96
*If you are installing the cpu version of paddle, please modify the `use_gpu` field in the configuration file to false*
```shell
# single GPU training
python3 tools/train.py -c configs/table/table_mv3.yml
# multi-GPU training
# Set the GPU ID used by the '--gpus' parameter.
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py -c configs/table/table_mv3.yml
```

In the above instruction, use `-c` to select the training to use the `configs/table/table_mv3.yml` configuration file.
For a detailed explanation of the configuration file, please refer to [config](../../doc/doc_en/config_en.md).

文幕地方's avatar
文幕地方 已提交
97
* load trained model and continue training
W
WenmuZhou 已提交
98 99 100 101 102 103 104 105

If you expect to load trained model and continue the training again, you can specify the parameter `Global.checkpoints` as the model path to be loaded.

```shell
python3 tools/train.py -c configs/table/table_mv3.yml -o Global.checkpoints=./your/trained/model
```

**Note**: The priority of `Global.checkpoints` is higher than that of `Global.pretrain_weights`, that is, when two parameters are specified at the same time, the model specified by `Global.checkpoints` will be loaded first. If the model path specified by `Global.checkpoints` is wrong, the one specified by `Global.pretrain_weights` will be loaded.
W
WenmuZhou 已提交
106

W
WenmuZhou 已提交
107
### 3.3 Eval
W
WenmuZhou 已提交
108

W
WenmuZhou 已提交
109
The table uses [TEDS(Tree-Edit-Distance-based Similarity)](https://github.com/ibm-aur-nlp/PubTabNet/tree/master/src) as the evaluation metric of the model. Before the model evaluation, the three models in the pipeline need to be exported as inference models (we have provided them), and the gt for evaluation needs to be prepared. Examples of gt are as follows:
文幕地方's avatar
文幕地方 已提交
110 111 112 113 114 115 116 117
```txt
PMC5755158_010_01.png    <html><body><table><thead><tr><td></td><td><b>Weaning</b></td><td><b>Week 15</b></td><td><b>Off-test</b></td></tr></thead><tbody><tr><td>Weaning</td><td>–</td><td>–</td><td>–</td></tr><tr><td>Week 15</td><td>–</td><td>0.17 ± 0.08</td><td>0.16 ± 0.03</td></tr><tr><td>Off-test</td><td>–</td><td>0.80 ± 0.24</td><td>0.19 ± 0.09</td></tr></tbody></table></body></html>
```
Each line in gt consists of the file name and the html string of the table. The file name and the html string of the table are separated by `\t`.

You can also use the following command to generate an evaluation gt file from the annotation file:
```python
python3 ppstructure/table/convert_label2html.py --ori_gt_path /path/to/your_label_file --save_path /path/to/save_file
W
WenmuZhou 已提交
118 119 120 121
```

Use the following command to evaluate. After the evaluation is completed, the teds indicator will be output.
```python
W
WenmuZhou 已提交
122
cd PaddleOCR/ppstructure
文幕地方's avatar
文幕地方 已提交
123
python3 table/eval_table.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --table_model_dir=path/to/table_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --det_limit_side_len=736 --det_limit_type=min --gt_path=path/to/gt.txt
W
WenmuZhou 已提交
124 125
```

W
WenmuZhou 已提交
126 127
If the PubLatNet eval dataset is used, it will be output
```bash
文幕地方's avatar
文幕地方 已提交
128
teds: 94.98
W
WenmuZhou 已提交
129
```
W
WenmuZhou 已提交
130

W
WenmuZhou 已提交
131
### 3.4 Inference
W
WenmuZhou 已提交
132 133

```python
W
WenmuZhou 已提交
134
cd PaddleOCR/ppstructure
文幕地方's avatar
文幕地方 已提交
135
python3 table/predict_table.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --table_model_dir=path/to/table_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --det_limit_side_len=736 --det_limit_type=min --output ../output/table
W
WenmuZhou 已提交
136
```
M
MissPenguin 已提交
137
After running, the excel sheet of each picture will be saved in the directory specified by the output field
W
WenmuZhou 已提交
138 139 140

Reference
1. https://github.com/ibm-aur-nlp/PubTabNet
141
2. https://arxiv.org/pdf/1911.10683