dataset_traversal.py 8.9 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
#copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import os
T
tink2123 已提交
16
import sys
L
LDOUBLEV 已提交
17 18 19 20 21 22 23 24 25
import math
import random
import numpy as np
import cv2

import string
import lmdb

from ppocr.utils.utility import initial_logger
T
tink2123 已提交
26
from ppocr.utils.utility import get_image_file_list
L
LDOUBLEV 已提交
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
logger = initial_logger()

from .img_tools import process_image, get_img_data


class LMDBReader(object):
    def __init__(self, params):
        if params['mode'] != 'train':
            self.num_workers = 1
        else:
            self.num_workers = params['num_workers']
        self.lmdb_sets_dir = params['lmdb_sets_dir']
        self.char_ops = params['char_ops']
        self.image_shape = params['image_shape']
        self.loss_type = params['loss_type']
        self.max_text_length = params['max_text_length']
        self.mode = params['mode']
        if params['mode'] == 'train':
            self.batch_size = params['train_batch_size_per_card']
T
tink2123 已提交
46
        else:
L
LDOUBLEV 已提交
47
            self.batch_size = params['test_batch_size_per_card']
T
tink2123 已提交
48 49
        self.infer_img = params['infer_img']

L
LDOUBLEV 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
    def load_hierarchical_lmdb_dataset(self):
        lmdb_sets = {}
        dataset_idx = 0
        for dirpath, dirnames, filenames in os.walk(self.lmdb_sets_dir + '/'):
            if not dirnames:
                env = lmdb.open(
                    dirpath,
                    max_readers=32,
                    readonly=True,
                    lock=False,
                    readahead=False,
                    meminit=False)
                txn = env.begin(write=False)
                num_samples = int(txn.get('num-samples'.encode()))
                lmdb_sets[dataset_idx] = {"dirpath":dirpath, "env":env, \
                    "txn":txn, "num_samples":num_samples}
                dataset_idx += 1
        return lmdb_sets

    def print_lmdb_sets_info(self, lmdb_sets):
        lmdb_info_strs = []
        for dataset_idx in range(len(lmdb_sets)):
            tmp_str = " %s:%d," % (lmdb_sets[dataset_idx]['dirpath'],
                                   lmdb_sets[dataset_idx]['num_samples'])
            lmdb_info_strs.append(tmp_str)
        lmdb_info_strs = ''.join(lmdb_info_strs)
        logger.info("DataSummary:" + lmdb_info_strs)
        return

    def close_lmdb_dataset(self, lmdb_sets):
        for dataset_idx in lmdb_sets:
            lmdb_sets[dataset_idx]['env'].close()
        return

    def get_lmdb_sample_info(self, txn, index):
        label_key = 'label-%09d'.encode() % index
        label = txn.get(label_key)
        if label is None:
            return None
        label = label.decode('utf-8')
        img_key = 'image-%09d'.encode() % index
        imgbuf = txn.get(img_key)
        img = get_img_data(imgbuf)
        if img is None:
            return None
        return img, label

    def __call__(self, process_id):
        if self.mode != 'train':
            process_id = 0

        def sample_iter_reader():
T
tink2123 已提交
102
            if self.infer_img is not None:
T
tink2123 已提交
103 104 105
                image_file_list = get_image_file_list(self.infer_img)
                for single_img in image_file_list:
                    img = cv2.imread(single_img)
T
tink2123 已提交
106
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
T
tink2123 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
                    norm_img = process_image(img, self.image_shape)
                    yield norm_img
            else:
                lmdb_sets = self.load_hierarchical_lmdb_dataset()
                if process_id == 0:
                    self.print_lmdb_sets_info(lmdb_sets)
                cur_index_sets = [1 + process_id] * len(lmdb_sets)
                while True:
                    finish_read_num = 0
                    for dataset_idx in range(len(lmdb_sets)):
                        cur_index = cur_index_sets[dataset_idx]
                        if cur_index > lmdb_sets[dataset_idx]['num_samples']:
                            finish_read_num += 1
                        else:
                            sample_info = self.get_lmdb_sample_info(
                                lmdb_sets[dataset_idx]['txn'], cur_index)
                            cur_index_sets[dataset_idx] += self.num_workers
                            if sample_info is None:
                                continue
                            img, label = sample_info
                            outs = process_image(img, self.image_shape, label,
                                                 self.char_ops, self.loss_type,
                                                 self.max_text_length)
                            if outs is None:
                                continue
                            yield outs

                    if finish_read_num == len(lmdb_sets):
                        break
                self.close_lmdb_dataset(lmdb_sets)
T
tink2123 已提交
138

L
LDOUBLEV 已提交
139 140 141 142 143 144 145 146 147 148
        def batch_iter_reader():
            batch_outs = []
            for outs in sample_iter_reader():
                batch_outs.append(outs)
                if len(batch_outs) == self.batch_size:
                    yield batch_outs
                    batch_outs = []
            if len(batch_outs) != 0:
                yield batch_outs

T
tink2123 已提交
149
        if self.infer_img is None:
T
tink2123 已提交
150 151
            return batch_iter_reader
        return sample_iter_reader
L
LDOUBLEV 已提交
152 153 154 155 156 157 158 159


class SimpleReader(object):
    def __init__(self, params):
        if params['mode'] != 'train':
            self.num_workers = 1
        else:
            self.num_workers = params['num_workers']
T
tink2123 已提交
160 161 162
        if params['mode'] != 'test':
            self.img_set_dir = params['img_set_dir']
            self.label_file_path = params['label_file_path']
L
LDOUBLEV 已提交
163 164 165 166 167
        self.char_ops = params['char_ops']
        self.image_shape = params['image_shape']
        self.loss_type = params['loss_type']
        self.max_text_length = params['max_text_length']
        self.mode = params['mode']
T
tink2123 已提交
168
        self.infer_img = params['infer_img']
L
LDOUBLEV 已提交
169 170 171
        if params['mode'] == 'train':
            self.batch_size = params['train_batch_size_per_card']
        else:
T
tink2123 已提交
172
            self.batch_size = params['test_batch_size_per_card']
L
LDOUBLEV 已提交
173 174 175 176 177 178

    def __call__(self, process_id):
        if self.mode != 'train':
            process_id = 0

        def sample_iter_reader():
T
tink2123 已提交
179
            if self.infer_img is not None:
T
tink2123 已提交
180
                image_file_list = get_image_file_list(self.infer_img)
T
tink2123 已提交
181 182
                for single_img in image_file_list:
                    img = cv2.imread(single_img)
T
tink2123 已提交
183
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
T
tink2123 已提交
184
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
T
tink2123 已提交
185 186
                    norm_img = process_image(img, self.image_shape)
                    yield norm_img
T
tink2123 已提交
187 188 189 190 191 192
            else:
                with open(self.label_file_path, "rb") as fin:
                    label_infor_list = fin.readlines()
                img_num = len(label_infor_list)
                img_id_list = list(range(img_num))
                random.shuffle(img_id_list)
T
tink2123 已提交
193
                if sys.platform == "win32":
T
tink2123 已提交
194 195 196
                    print("multiprocess is not fully compatible with Windows."
                          "num_workers will be 1.")
                    self.num_workers = 1
T
tink2123 已提交
197 198 199 200 201 202 203 204
                for img_id in range(process_id, img_num, self.num_workers):
                    label_infor = label_infor_list[img_id_list[img_id]]
                    substr = label_infor.decode('utf-8').strip("\n").split("\t")
                    img_path = self.img_set_dir + "/" + substr[0]
                    img = cv2.imread(img_path)
                    if img is None:
                        logger.info("{} does not exist!".format(img_path))
                        continue
T
tink2123 已提交
205
                    if img.shape[-1] == 1 or len(list(img.shape)) == 2:
T
tink2123 已提交
206 207
                        img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)

T
tink2123 已提交
208 209 210 211 212 213 214
                    label = substr[1]
                    outs = process_image(img, self.image_shape, label,
                                         self.char_ops, self.loss_type,
                                         self.max_text_length)
                    if outs is None:
                        continue
                    yield outs
L
LDOUBLEV 已提交
215 216 217 218 219 220 221 222 223 224 225

        def batch_iter_reader():
            batch_outs = []
            for outs in sample_iter_reader():
                batch_outs.append(outs)
                if len(batch_outs) == self.batch_size:
                    yield batch_outs
                    batch_outs = []
            if len(batch_outs) != 0:
                yield batch_outs

T
tink2123 已提交
226
        if self.infer_img is None:
T
tink2123 已提交
227 228
            return batch_iter_reader
        return sample_iter_reader