utility.py 26.6 KB
Newer Older
L
LDOUBLEV 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
W
WenmuZhou 已提交
16
import os
W
WenmuZhou 已提交
17
import sys
文幕地方's avatar
文幕地方 已提交
18
import platform
L
LDOUBLEV 已提交
19 20
import cv2
import numpy as np
Z
zhoujun 已提交
21
import paddle
L
LDOUBLEV 已提交
22
from PIL import Image, ImageDraw, ImageFont
23
import math
W
WenmuZhou 已提交
24
from paddle import inference
L
LDOUBLEV 已提交
25 26
import time
from ppocr.utils.logging import get_logger
W
WenmuZhou 已提交
27

L
LDOUBLEV 已提交
28

29 30
def str2bool(v):
    return v.lower() in ("true", "t", "1")
L
LDOUBLEV 已提交
31 32


W
WenmuZhou 已提交
33
def init_args():
L
LDOUBLEV 已提交
34
    parser = argparse.ArgumentParser()
W
WenmuZhou 已提交
35
    # params for prediction engine
L
LDOUBLEV 已提交
36
    parser.add_argument("--use_gpu", type=str2bool, default=True)
X
xiaoting 已提交
37
    parser.add_argument("--use_xpu", type=str2bool, default=False)
L
LDOUBLEV 已提交
38 39
    parser.add_argument("--ir_optim", type=str2bool, default=True)
    parser.add_argument("--use_tensorrt", type=str2bool, default=False)
L
LDOUBLEV 已提交
40
    parser.add_argument("--min_subgraph_size", type=int, default=15)
littletomatodonkey's avatar
littletomatodonkey 已提交
41
    parser.add_argument("--shape_info_filename", type=str, default=None)
L
LDOUBLEV 已提交
42
    parser.add_argument("--precision", type=str, default="fp32")
L
LDOUBLEV 已提交
43
    parser.add_argument("--gpu_mem", type=int, default=500)
L
LDOUBLEV 已提交
44

W
WenmuZhou 已提交
45
    # params for text detector
L
LDOUBLEV 已提交
46 47 48
    parser.add_argument("--image_dir", type=str)
    parser.add_argument("--det_algorithm", type=str, default='DB')
    parser.add_argument("--det_model_dir", type=str)
W
WenmuZhou 已提交
49 50
    parser.add_argument("--det_limit_side_len", type=float, default=960)
    parser.add_argument("--det_limit_type", type=str, default='max')
L
LDOUBLEV 已提交
51

W
WenmuZhou 已提交
52
    # DB parmas
L
LDOUBLEV 已提交
53
    parser.add_argument("--det_db_thresh", type=float, default=0.3)
L
LDOUBLEV 已提交
54 55
    parser.add_argument("--det_db_box_thresh", type=float, default=0.6)
    parser.add_argument("--det_db_unclip_ratio", type=float, default=1.5)
L
LDOUBLEV 已提交
56
    parser.add_argument("--max_batch_size", type=int, default=10)
littletomatodonkey's avatar
littletomatodonkey 已提交
57
    parser.add_argument("--use_dilation", type=str2bool, default=False)
littletomatodonkey's avatar
littletomatodonkey 已提交
58
    parser.add_argument("--det_db_score_mode", type=str, default="fast")
W
WenmuZhou 已提交
59
    # EAST parmas
L
LDOUBLEV 已提交
60 61 62 63
    parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
    parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
    parser.add_argument("--det_east_nms_thresh", type=float, default=0.2)

W
WenmuZhou 已提交
64
    # SAST parmas
L
licx 已提交
65 66
    parser.add_argument("--det_sast_score_thresh", type=float, default=0.5)
    parser.add_argument("--det_sast_nms_thresh", type=float, default=0.2)
littletomatodonkey's avatar
littletomatodonkey 已提交
67
    parser.add_argument("--det_sast_polygon", type=str2bool, default=False)
L
licx 已提交
68

W
WenmuZhou 已提交
69 70 71 72
    # PSE parmas
    parser.add_argument("--det_pse_thresh", type=float, default=0)
    parser.add_argument("--det_pse_box_thresh", type=float, default=0.85)
    parser.add_argument("--det_pse_min_area", type=float, default=16)
文幕地方's avatar
文幕地方 已提交
73
    parser.add_argument("--det_pse_box_type", type=str, default='quad')
W
WenmuZhou 已提交
74 75
    parser.add_argument("--det_pse_scale", type=int, default=1)

文幕地方's avatar
文幕地方 已提交
76 77 78 79 80 81 82
    # FCE parmas
    parser.add_argument("--scales", type=list, default=[8, 16, 32])
    parser.add_argument("--alpha", type=float, default=1.0)
    parser.add_argument("--beta", type=float, default=1.0)
    parser.add_argument("--fourier_degree", type=int, default=5)
    parser.add_argument("--det_fce_box_type", type=str, default='poly')

W
WenmuZhou 已提交
83
    # params for text recognizer
A
andyjpaddle 已提交
84
    parser.add_argument("--rec_algorithm", type=str, default='SVTR_LCNet')
L
LDOUBLEV 已提交
85
    parser.add_argument("--rec_model_dir", type=str)
T
tink2123 已提交
86
    parser.add_argument("--rec_image_shape", type=str, default="3, 48, 320")
L
LDOUBLEV 已提交
87
    parser.add_argument("--rec_batch_num", type=int, default=6)
T
fix bug  
tink2123 已提交
88
    parser.add_argument("--max_text_length", type=int, default=25)
L
LDOUBLEV 已提交
89 90 91 92
    parser.add_argument(
        "--rec_char_dict_path",
        type=str,
        default="./ppocr/utils/ppocr_keys_v1.txt")
W
WenmuZhou 已提交
93 94
    parser.add_argument("--use_space_char", type=str2bool, default=True)
    parser.add_argument(
T
tink2123 已提交
95
        "--vis_font_path", type=str, default="./doc/fonts/simfang.ttf")
W
WenmuZhou 已提交
96
    parser.add_argument("--drop_score", type=float, default=0.5)
W
WenmuZhou 已提交
97

J
Jethong 已提交
98 99 100 101 102 103 104 105 106
    # params for e2e
    parser.add_argument("--e2e_algorithm", type=str, default='PGNet')
    parser.add_argument("--e2e_model_dir", type=str)
    parser.add_argument("--e2e_limit_side_len", type=float, default=768)
    parser.add_argument("--e2e_limit_type", type=str, default='max')

    # PGNet parmas
    parser.add_argument("--e2e_pgnet_score_thresh", type=float, default=0.5)
    parser.add_argument(
J
Jethong 已提交
107
        "--e2e_char_dict_path", type=str, default="./ppocr/utils/ic15_dict.txt")
J
Jethong 已提交
108
    parser.add_argument("--e2e_pgnet_valid_set", type=str, default='totaltext')
J
Jethong 已提交
109
    parser.add_argument("--e2e_pgnet_mode", type=str, default='fast')
J
Jethong 已提交
110

W
WenmuZhou 已提交
111 112 113 114 115
    # params for text classifier
    parser.add_argument("--use_angle_cls", type=str2bool, default=False)
    parser.add_argument("--cls_model_dir", type=str)
    parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
    parser.add_argument("--label_list", type=list, default=['0', '180'])
L
LDOUBLEV 已提交
116
    parser.add_argument("--cls_batch_num", type=int, default=6)
W
WenmuZhou 已提交
117 118 119
    parser.add_argument("--cls_thresh", type=float, default=0.9)

    parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
L
LDOUBLEV 已提交
120
    parser.add_argument("--cpu_threads", type=int, default=10)
W
WenmuZhou 已提交
121
    parser.add_argument("--use_pdserving", type=str2bool, default=False)
122 123
    parser.add_argument("--warmup", type=str2bool, default=False)

X
xiaoting 已提交
124 125 126 127 128
    # SR parmas
    parser.add_argument("--sr_model_dir", type=str)
    parser.add_argument("--sr_image_shape", type=str, default="3, 32, 128")
    parser.add_argument("--sr_batch_num", type=int, default=1)

129 130 131 132 133
    #
    parser.add_argument(
        "--draw_img_save_dir", type=str, default="./inference_results")
    parser.add_argument("--save_crop_res", type=str2bool, default=False)
    parser.add_argument("--crop_res_save_dir", type=str, default="./output")
W
WenmuZhou 已提交
134

L
LDOUBLEV 已提交
135
    # multi-process
littletomatodonkey's avatar
littletomatodonkey 已提交
136
    parser.add_argument("--use_mp", type=str2bool, default=False)
137 138
    parser.add_argument("--total_process_num", type=int, default=1)
    parser.add_argument("--process_id", type=int, default=0)
W
WenmuZhou 已提交
139

littletomatodonkey's avatar
littletomatodonkey 已提交
140
    parser.add_argument("--benchmark", type=str2bool, default=False)
L
LDOUBLEV 已提交
141
    parser.add_argument("--save_log_path", type=str, default="./log_output/")
D
Double_V 已提交
142

W
WenmuZhou 已提交
143
    parser.add_argument("--show_log", type=str2bool, default=True)
T
tink2123 已提交
144
    parser.add_argument("--use_onnx", type=str2bool, default=False)
W
WenmuZhou 已提交
145
    return parser
W
WenmuZhou 已提交
146

147

148
def parse_args():
W
WenmuZhou 已提交
149
    parser = init_args()
L
LDOUBLEV 已提交
150 151 152
    return parser.parse_args()


W
WenmuZhou 已提交
153 154 155 156 157
def create_predictor(args, mode, logger):
    if mode == "det":
        model_dir = args.det_model_dir
    elif mode == 'cls':
        model_dir = args.cls_model_dir
J
Jethong 已提交
158
    elif mode == 'rec':
W
WenmuZhou 已提交
159
        model_dir = args.rec_model_dir
W
WenmuZhou 已提交
160 161
    elif mode == 'table':
        model_dir = args.table_model_dir
162 163
    elif mode == 'ser':
        model_dir = args.ser_model_dir
X
xiaoting 已提交
164 165
    elif mode == "sr":
        model_dir = args.sr_model_dir
文幕地方's avatar
文幕地方 已提交
166 167
    elif mode == 'layout':
        model_dir = args.layout_model_dir
J
Jethong 已提交
168 169
    else:
        model_dir = args.e2e_model_dir
W
WenmuZhou 已提交
170 171 172 173

    if model_dir is None:
        logger.info("not find {} model file path {}".format(mode, model_dir))
        sys.exit(0)
T
tink2123 已提交
174 175 176 177 178 179 180 181
    if args.use_onnx:
        import onnxruntime as ort
        model_file_path = model_dir
        if not os.path.exists(model_file_path):
            raise ValueError("not find model file path {}".format(
                model_file_path))
        sess = ort.InferenceSession(model_file_path)
        return sess, sess.get_inputs()[0], None, None
L
LDOUBLEV 已提交
182

L
LDOUBLEV 已提交
183
    else:
T
tink2123 已提交
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
        model_file_path = model_dir + "/inference.pdmodel"
        params_file_path = model_dir + "/inference.pdiparams"
        if not os.path.exists(model_file_path):
            raise ValueError("not find model file path {}".format(
                model_file_path))
        if not os.path.exists(params_file_path):
            raise ValueError("not find params file path {}".format(
                params_file_path))

        config = inference.Config(model_file_path, params_file_path)

        if hasattr(args, 'precision'):
            if args.precision == "fp16" and args.use_tensorrt:
                precision = inference.PrecisionType.Half
            elif args.precision == "int8":
                precision = inference.PrecisionType.Int8
            else:
                precision = inference.PrecisionType.Float32
L
LDOUBLEV 已提交
202
        else:
T
tink2123 已提交
203 204 205 206 207
            precision = inference.PrecisionType.Float32

        if args.use_gpu:
            gpu_id = get_infer_gpuid()
            if gpu_id is None:
L
LDOUBLEV 已提交
208
                logger.warning(
209
                    "GPU is not found in current device by nvidia-smi. Please check your device or ignore it if run on jetson."
T
tink2123 已提交
210 211 212 213
                )
            config.enable_use_gpu(args.gpu_mem, 0)
            if args.use_tensorrt:
                config.enable_tensorrt_engine(
L
LDOUBLEV 已提交
214
                    workspace_size=1 << 30,
T
tink2123 已提交
215 216
                    precision_mode=precision,
                    max_batch_size=args.max_batch_size,
217 218
                    min_subgraph_size=args.
                    min_subgraph_size,  # skip the minmum trt subgraph
219
                    use_calib_mode=False)
220

littletomatodonkey's avatar
littletomatodonkey 已提交
221 222 223 224
            # collect shape
            if args.shape_info_filename is not None:
                if not os.path.exists(args.shape_info_filename):
                    config.collect_shape_range_info(args.shape_info_filename)
225 226 227
                    logger.info(
                        f"collect dynamic shape info into : {args.shape_info_filename}"
                    )
littletomatodonkey's avatar
littletomatodonkey 已提交
228
                else:
229 230 231 232 233 234
                    logger.info(
                        f"dynamic shape info file( {args.shape_info_filename} ) already exists, not need to generate again."
                    )
                config.enable_tuned_tensorrt_dynamic_shape(
                    args.shape_info_filename, True)

L
fix trt  
LDOUBLEV 已提交
235
            use_dynamic_shape = True
L
fix  
LDOUBLEV 已提交
236
            if mode == "det":
T
tink2123 已提交
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
                min_input_shape = {
                    "x": [1, 3, 50, 50],
                    "conv2d_92.tmp_0": [1, 120, 20, 20],
                    "conv2d_91.tmp_0": [1, 24, 10, 10],
                    "conv2d_59.tmp_0": [1, 96, 20, 20],
                    "nearest_interp_v2_1.tmp_0": [1, 256, 10, 10],
                    "nearest_interp_v2_2.tmp_0": [1, 256, 20, 20],
                    "conv2d_124.tmp_0": [1, 256, 20, 20],
                    "nearest_interp_v2_3.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_4.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_5.tmp_0": [1, 64, 20, 20],
                    "elementwise_add_7": [1, 56, 2, 2],
                    "nearest_interp_v2_0.tmp_0": [1, 256, 2, 2]
                }
                max_input_shape = {
L
fix trt  
LDOUBLEV 已提交
252
                    "x": [1, 3, 1536, 1536],
T
tink2123 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
                    "conv2d_92.tmp_0": [1, 120, 400, 400],
                    "conv2d_91.tmp_0": [1, 24, 200, 200],
                    "conv2d_59.tmp_0": [1, 96, 400, 400],
                    "nearest_interp_v2_1.tmp_0": [1, 256, 200, 200],
                    "conv2d_124.tmp_0": [1, 256, 400, 400],
                    "nearest_interp_v2_2.tmp_0": [1, 256, 400, 400],
                    "nearest_interp_v2_3.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_4.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_5.tmp_0": [1, 64, 400, 400],
                    "elementwise_add_7": [1, 56, 400, 400],
                    "nearest_interp_v2_0.tmp_0": [1, 256, 400, 400]
                }
                opt_input_shape = {
                    "x": [1, 3, 640, 640],
                    "conv2d_92.tmp_0": [1, 120, 160, 160],
                    "conv2d_91.tmp_0": [1, 24, 80, 80],
                    "conv2d_59.tmp_0": [1, 96, 160, 160],
                    "nearest_interp_v2_1.tmp_0": [1, 256, 80, 80],
                    "nearest_interp_v2_2.tmp_0": [1, 256, 160, 160],
                    "conv2d_124.tmp_0": [1, 256, 160, 160],
                    "nearest_interp_v2_3.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_4.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_5.tmp_0": [1, 64, 160, 160],
                    "elementwise_add_7": [1, 56, 40, 40],
                    "nearest_interp_v2_0.tmp_0": [1, 256, 40, 40]
                }
                min_pact_shape = {
                    "nearest_interp_v2_26.tmp_0": [1, 256, 20, 20],
                    "nearest_interp_v2_27.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_28.tmp_0": [1, 64, 20, 20],
                    "nearest_interp_v2_29.tmp_0": [1, 64, 20, 20]
                }
                max_pact_shape = {
                    "nearest_interp_v2_26.tmp_0": [1, 256, 400, 400],
                    "nearest_interp_v2_27.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_28.tmp_0": [1, 64, 400, 400],
                    "nearest_interp_v2_29.tmp_0": [1, 64, 400, 400]
                }
                opt_pact_shape = {
                    "nearest_interp_v2_26.tmp_0": [1, 256, 160, 160],
                    "nearest_interp_v2_27.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_28.tmp_0": [1, 64, 160, 160],
                    "nearest_interp_v2_29.tmp_0": [1, 64, 160, 160]
                }
                min_input_shape.update(min_pact_shape)
                max_input_shape.update(max_pact_shape)
                opt_input_shape.update(opt_pact_shape)
            elif mode == "rec":
A
andyjpaddle 已提交
301
                if args.rec_algorithm not in ["CRNN", "SVTR_LCNet"]:
L
fix trt  
LDOUBLEV 已提交
302
                    use_dynamic_shape = False
303
                imgH = int(args.rec_image_shape.split(',')[-2])
littletomatodonkey's avatar
fix  
littletomatodonkey 已提交
304 305 306 307
                min_input_shape = {"x": [1, 3, imgH, 10]}
                max_input_shape = {"x": [args.rec_batch_num, 3, imgH, 2304]}
                opt_input_shape = {"x": [args.rec_batch_num, 3, imgH, 320]}
                config.exp_disable_tensorrt_ops(["transpose2"])
T
tink2123 已提交
308 309
            elif mode == "cls":
                min_input_shape = {"x": [1, 3, 48, 10]}
L
LDOUBLEV 已提交
310
                max_input_shape = {"x": [args.rec_batch_num, 3, 48, 1024]}
T
tink2123 已提交
311 312
                opt_input_shape = {"x": [args.rec_batch_num, 3, 48, 320]}
            else:
L
fix trt  
LDOUBLEV 已提交
313 314
                use_dynamic_shape = False
            if use_dynamic_shape:
A
andyjpaddle 已提交
315 316
                config.set_trt_dynamic_shape_info(
                    min_input_shape, max_input_shape, opt_input_shape)
L
LDOUBLEV 已提交
317

X
xiaoting 已提交
318 319
        elif args.use_xpu:
            config.enable_xpu(10 * 1024 * 1024)
L
LDOUBLEV 已提交
320
        else:
T
tink2123 已提交
321 322 323 324 325 326 327 328 329 330 331 332 333 334
            config.disable_gpu()
            if hasattr(args, "cpu_threads"):
                config.set_cpu_math_library_num_threads(args.cpu_threads)
            else:
                # default cpu threads as 10
                config.set_cpu_math_library_num_threads(10)
            if args.enable_mkldnn:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
                if args.precision == "fp16":
                    config.enable_mkldnn_bfloat16()
        # enable memory optim
        config.enable_memory_optim()
littletomatodonkey's avatar
fix  
littletomatodonkey 已提交
335
        config.disable_glog_info()
T
tink2123 已提交
336
        config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
T
tink2123 已提交
337
        config.delete_pass("matmul_transpose_reshape_fuse_pass")
T
tink2123 已提交
338 339 340 341 342 343 344 345
        if mode == 'table':
            config.delete_pass("fc_fuse_pass")  # not supported for table
        config.switch_use_feed_fetch_ops(False)
        config.switch_ir_optim(True)

        # create predictor
        predictor = inference.create_predictor(config)
        input_names = predictor.get_input_names()
文幕地方's avatar
文幕地方 已提交
346
        if mode in ['ser', 're']:
347 348 349 350 351 352
            input_tensor = []
            for name in input_names:
                input_tensor.append(predictor.get_input_handle(name))
        else:
            for name in input_names:
                input_tensor = predictor.get_input_handle(name)
L
LDOUBLEV 已提交
353 354 355 356 357 358 359
        output_tensors = get_output_tensors(args, mode, predictor)
        return predictor, input_tensor, output_tensors, config


def get_output_tensors(args, mode, predictor):
    output_names = predictor.get_output_names()
    output_tensors = []
A
andyjpaddle 已提交
360
    if mode == "rec" and args.rec_algorithm in ["CRNN", "SVTR_LCNet"]:
L
LDOUBLEV 已提交
361 362 363
        output_name = 'softmax_0.tmp_0'
        if output_name in output_names:
            return [predictor.get_output_handle(output_name)]
L
LDOUBLEV 已提交
364 365 366 367
        else:
            for output_name in output_names:
                output_tensor = predictor.get_output_handle(output_name)
                output_tensors.append(output_tensor)
L
LDOUBLEV 已提交
368
    else:
T
tink2123 已提交
369 370 371
        for output_name in output_names:
            output_tensor = predictor.get_output_handle(output_name)
            output_tensors.append(output_tensor)
L
LDOUBLEV 已提交
372
    return output_tensors
W
WenmuZhou 已提交
373 374


L
LDOUBLEV 已提交
375
def get_infer_gpuid():
文幕地方's avatar
文幕地方 已提交
376 377 378 379
    sysstr = platform.system()
    if sysstr == "Windows":
        return 0

R
ronny1996 已提交
380 381 382 383
    if not paddle.fluid.core.is_compiled_with_rocm():
        cmd = "env | grep CUDA_VISIBLE_DEVICES"
    else:
        cmd = "env | grep HIP_VISIBLE_DEVICES"
L
LDOUBLEV 已提交
384 385 386 387 388 389 390 391
    env_cuda = os.popen(cmd).readlines()
    if len(env_cuda) == 0:
        return 0
    else:
        gpu_id = env_cuda[0].strip().split("=")[1]
        return int(gpu_id[0])


J
Jethong 已提交
392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
def draw_e2e_res(dt_boxes, strs, img_path):
    src_im = cv2.imread(img_path)
    for box, str in zip(dt_boxes, strs):
        box = box.astype(np.int32).reshape((-1, 1, 2))
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
        cv2.putText(
            src_im,
            str,
            org=(int(box[0, 0, 0]), int(box[0, 0, 1])),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=0.7,
            color=(0, 255, 0),
            thickness=1)
    return src_im


L
LDOUBLEV 已提交
408
def draw_text_det_res(dt_boxes, img_path):
L
LDOUBLEV 已提交
409 410 411 412
    src_im = cv2.imread(img_path)
    for box in dt_boxes:
        box = np.array(box).astype(np.int32).reshape(-1, 2)
        cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
L
LDOUBLEV 已提交
413
    return src_im
L
LDOUBLEV 已提交
414 415


L
LDOUBLEV 已提交
416 417
def resize_img(img, input_size=600):
    """
L
LDOUBLEV 已提交
418
    resize img and limit the longest side of the image to input_size
L
LDOUBLEV 已提交
419 420 421 422 423
    """
    img = np.array(img)
    im_shape = img.shape
    im_size_max = np.max(im_shape[0:2])
    im_scale = float(input_size) / float(im_size_max)
W
WenmuZhou 已提交
424 425
    img = cv2.resize(img, None, None, fx=im_scale, fy=im_scale)
    return img
L
LDOUBLEV 已提交
426 427


W
WenmuZhou 已提交
428 429 430 431 432
def draw_ocr(image,
             boxes,
             txts=None,
             scores=None,
             drop_score=0.5,
L
LDOUBLEV 已提交
433
             font_path="./doc/fonts/simfang.ttf"):
434 435 436
    """
    Visualize the results of OCR detection and recognition
    args:
L
LDOUBLEV 已提交
437
        image(Image|array): RGB image
438 439 440 441
        boxes(list): boxes with shape(N, 4, 2)
        txts(list): the texts
        scores(list): txxs corresponding scores
        drop_score(float): only scores greater than drop_threshold will be visualized
W
WenmuZhou 已提交
442
        font_path: the path of font which is used to draw text
443 444 445
    return(array):
        the visualized img
    """
L
LDOUBLEV 已提交
446 447
    if scores is None:
        scores = [1] * len(boxes)
W
WenmuZhou 已提交
448 449 450 451
    box_num = len(boxes)
    for i in range(box_num):
        if scores is not None and (scores[i] < drop_score or
                                   math.isnan(scores[i])):
L
LDOUBLEV 已提交
452
            continue
W
WenmuZhou 已提交
453
        box = np.reshape(np.array(boxes[i]), [-1, 1, 2]).astype(np.int64)
L
LDOUBLEV 已提交
454
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
W
WenmuZhou 已提交
455
    if txts is not None:
L
LDOUBLEV 已提交
456
        img = np.array(resize_img(image, input_size=600))
457
        txt_img = text_visual(
W
WenmuZhou 已提交
458 459 460 461 462 463
            txts,
            scores,
            img_h=img.shape[0],
            img_w=600,
            threshold=drop_score,
            font_path=font_path)
464
        img = np.concatenate([np.array(img), np.array(txt_img)], axis=1)
L
LDOUBLEV 已提交
465 466
        return img
    return image
467 468


W
WenmuZhou 已提交
469 470 471 472 473 474
def draw_ocr_box_txt(image,
                     boxes,
                     txts,
                     scores=None,
                     drop_score=0.5,
                     font_path="./doc/simfang.ttf"):
475 476 477
    h, w = image.height, image.width
    img_left = image.copy()
    img_right = Image.new('RGB', (w, h), (255, 255, 255))
478 479

    import random
L
LDOUBLEV 已提交
480

481 482 483
    random.seed(0)
    draw_left = ImageDraw.Draw(img_left)
    draw_right = ImageDraw.Draw(img_right)
W
WenmuZhou 已提交
484 485 486
    for idx, (box, txt) in enumerate(zip(boxes, txts)):
        if scores is not None and scores[idx] < drop_score:
            continue
T
tink2123 已提交
487 488
        color = (random.randint(0, 255), random.randint(0, 255),
                 random.randint(0, 255))
489
        draw_left.polygon(box, fill=color)
T
tink2123 已提交
490 491 492 493 494 495 496 497 498 499
        draw_right.polygon(
            [
                box[0][0], box[0][1], box[1][0], box[1][1], box[2][0],
                box[2][1], box[3][0], box[3][1]
            ],
            outline=color)
        box_height = math.sqrt((box[0][0] - box[3][0])**2 + (box[0][1] - box[3][
            1])**2)
        box_width = math.sqrt((box[0][0] - box[1][0])**2 + (box[0][1] - box[1][
            1])**2)
500 501
        if box_height > 2 * box_width:
            font_size = max(int(box_width * 0.9), 10)
W
WenmuZhou 已提交
502
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
503 504 505
            cur_y = box[0][1]
            for c in txt:
                char_size = font.getsize(c)
T
tink2123 已提交
506 507
                draw_right.text(
                    (box[0][0] + 3, cur_y), c, fill=(0, 0, 0), font=font)
508 509 510
                cur_y += char_size[1]
        else:
            font_size = max(int(box_height * 0.8), 10)
W
WenmuZhou 已提交
511
            font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
T
tink2123 已提交
512 513
            draw_right.text(
                [box[0][0], box[0][1]], txt, fill=(0, 0, 0), font=font)
514 515 516 517
    img_left = Image.blend(image, img_left, 0.5)
    img_show = Image.new('RGB', (w * 2, h), (255, 255, 255))
    img_show.paste(img_left, (0, 0, w, h))
    img_show.paste(img_right, (w, 0, w * 2, h))
518 519 520
    return np.array(img_show)


521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
def str_count(s):
    """
    Count the number of Chinese characters,
    a single English character and a single number
    equal to half the length of Chinese characters.
    args:
        s(string): the input of string
    return(int):
        the number of Chinese characters
    """
    import string
    count_zh = count_pu = 0
    s_len = len(s)
    en_dg_count = 0
    for c in s:
        if c in string.ascii_letters or c.isdigit() or c.isspace():
            en_dg_count += 1
        elif c.isalpha():
            count_zh += 1
        else:
            count_pu += 1
    return s_len - math.ceil(en_dg_count / 2)


W
WenmuZhou 已提交
545 546 547 548 549 550
def text_visual(texts,
                scores,
                img_h=400,
                img_w=600,
                threshold=0.,
                font_path="./doc/simfang.ttf"):
551 552 553 554 555 556 557
    """
    create new blank img and draw txt on it
    args:
        texts(list): the text will be draw
        scores(list|None): corresponding score of each txt
        img_h(int): the height of blank img
        img_w(int): the width of blank img
W
WenmuZhou 已提交
558
        font_path: the path of font which is used to draw text
559 560 561 562 563 564 565 566 567
    return(array):
    """
    if scores is not None:
        assert len(texts) == len(
            scores), "The number of txts and corresponding scores must match"

    def create_blank_img():
        blank_img = np.ones(shape=[img_h, img_w], dtype=np.int8) * 255
        blank_img[:, img_w - 1:] = 0
L
LDOUBLEV 已提交
568 569
        blank_img = Image.fromarray(blank_img).convert("RGB")
        draw_txt = ImageDraw.Draw(blank_img)
570
        return blank_img, draw_txt
L
LDOUBLEV 已提交
571

572 573 574 575
    blank_img, draw_txt = create_blank_img()

    font_size = 20
    txt_color = (0, 0, 0)
W
WenmuZhou 已提交
576
    font = ImageFont.truetype(font_path, font_size, encoding="utf-8")
577 578 579

    gap = font_size + 5
    txt_img_list = []
L
LDOUBLEV 已提交
580
    count, index = 1, 0
581 582
    for idx, txt in enumerate(texts):
        index += 1
L
LDOUBLEV 已提交
583
        if scores[idx] < threshold or math.isnan(scores[idx]):
584 585 586 587 588 589 590 591 592 593 594
            index -= 1
            continue
        first_line = True
        while str_count(txt) >= img_w // font_size - 4:
            tmp = txt
            txt = tmp[:img_w // font_size - 4]
            if first_line:
                new_txt = str(index) + ': ' + txt
                first_line = False
            else:
                new_txt = '    ' + txt
L
LDOUBLEV 已提交
595
            draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
596 597 598 599 600
            txt = tmp[img_w // font_size - 4:]
            if count >= img_h // gap - 1:
                txt_img_list.append(np.array(blank_img))
                blank_img, draw_txt = create_blank_img()
                count = 0
L
LDOUBLEV 已提交
601
            count += 1
602 603 604
        if first_line:
            new_txt = str(index) + ': ' + txt + '   ' + '%.3f' % (scores[idx])
        else:
L
LDOUBLEV 已提交
605
            new_txt = "  " + txt + "  " + '%.3f' % (scores[idx])
L
LDOUBLEV 已提交
606
        draw_txt.text((0, gap * count), new_txt, txt_color, font=font)
607
        # whether add new blank img or not
L
LDOUBLEV 已提交
608
        if count >= img_h // gap - 1 and idx + 1 < len(texts):
609 610 611
            txt_img_list.append(np.array(blank_img))
            blank_img, draw_txt = create_blank_img()
            count = 0
L
LDOUBLEV 已提交
612
        count += 1
613 614 615 616 617 618
    txt_img_list.append(np.array(blank_img))
    if len(txt_img_list) == 1:
        blank_img = np.array(txt_img_list[0])
    else:
        blank_img = np.concatenate(txt_img_list, axis=1)
    return np.array(blank_img)
L
LDOUBLEV 已提交
619 620


D
dyning 已提交
621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639
def base64_to_cv2(b64str):
    import base64
    data = base64.b64decode(b64str.encode('utf8'))
    data = np.fromstring(data, np.uint8)
    data = cv2.imdecode(data, cv2.IMREAD_COLOR)
    return data


def draw_boxes(image, boxes, scores=None, drop_score=0.5):
    if scores is None:
        scores = [1] * len(boxes)
    for (box, score) in zip(boxes, scores):
        if score < drop_score:
            continue
        box = np.reshape(np.array(box), [-1, 1, 2]).astype(np.int64)
        image = cv2.polylines(np.array(image), [box], True, (255, 0, 0), 2)
    return image


W
WenmuZhou 已提交
640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
def get_rotate_crop_image(img, points):
    '''
    img_height, img_width = img.shape[0:2]
    left = int(np.min(points[:, 0]))
    right = int(np.max(points[:, 0]))
    top = int(np.min(points[:, 1]))
    bottom = int(np.max(points[:, 1]))
    img_crop = img[top:bottom, left:right, :].copy()
    points[:, 0] = points[:, 0] - left
    points[:, 1] = points[:, 1] - top
    '''
    assert len(points) == 4, "shape of points must be 4*2"
    img_crop_width = int(
        max(
            np.linalg.norm(points[0] - points[1]),
            np.linalg.norm(points[2] - points[3])))
    img_crop_height = int(
        max(
            np.linalg.norm(points[0] - points[3]),
            np.linalg.norm(points[1] - points[2])))
    pts_std = np.float32([[0, 0], [img_crop_width, 0],
                          [img_crop_width, img_crop_height],
                          [0, img_crop_height]])
    M = cv2.getPerspectiveTransform(points, pts_std)
    dst_img = cv2.warpPerspective(
        img,
        M, (img_crop_width, img_crop_height),
        borderMode=cv2.BORDER_REPLICATE,
        flags=cv2.INTER_CUBIC)
    dst_img_height, dst_img_width = dst_img.shape[0:2]
    if dst_img_height * 1.0 / dst_img_width >= 1.5:
        dst_img = np.rot90(dst_img)
    return dst_img


Z
zhoujun 已提交
675 676 677 678 679 680
def check_gpu(use_gpu):
    if use_gpu and not paddle.is_compiled_with_cuda():
        use_gpu = False
    return use_gpu


L
LDOUBLEV 已提交
681
if __name__ == '__main__':
L
LDOUBLEV 已提交
682
    pass