trainer.py 17.0 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import pickle
import time
from collections import defaultdict
W
wuzewu 已提交
19
from typing import Any, Callable, Generic, List
W
wuzewu 已提交
20

21
import paddle
22
import numpy as np
W
wuzewu 已提交
23 24
from visualdl import LogWriter

W
wuzewu 已提交
25
from paddlehub.utils.log import logger
W
wuzewu 已提交
26 27 28 29 30
from paddlehub.utils.utils import Timer


class Trainer(object):
    '''
W
wuzewu 已提交
31 32 33 34
    Model trainer

    Args:
        model(paddle.nn.Layer) : Model to train or evaluate.
W
wuzewu 已提交
35
        optimizer(paddle.optimizer.Optimizer) : Optimizer for loss.
36
        use_gpu(bool) : Whether to use gpu to run.
W
wuzewu 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50
        use_vdl(bool) : Whether to use visualdl to record training data.
        checkpoint_dir(str) : Directory where the checkpoint is saved, and the trainer will restore the
            state and model parameters from the checkpoint.
        compare_metrics(callable) : The method of comparing the model metrics. If not specified, the main
            metric return by `validation_step` will be used for comparison by default, the larger the
            value, the better the effect. This method will affect the saving of the best model. If the
            default behavior does not meet your requirements, please pass in a custom method.

            Example:
                .. code-block:: python

                    def compare_metrics(old_metric: dict, new_metric: dict):
                        mainkey = list(new_metric.keys())[0]
                        return old_metric[mainkey] < new_metric[mainkey]
W
wuzewu 已提交
51 52 53
    '''

    def __init__(self,
54
                 model: paddle.nn.Layer,
W
wuzewu 已提交
55
                 optimizer: paddle.optimizer.Optimizer,
56
                 use_gpu: bool = False,
W
wuzewu 已提交
57 58
                 use_vdl: bool = True,
                 checkpoint_dir: str = None,
59 60 61
                 compare_metrics: Callable = None,
                 **kwargs):
        paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu')
W
wuzewu 已提交
62 63
        self.nranks = paddle.distributed.get_world_size()
        self.local_rank = paddle.distributed.get_rank()
W
wuzewu 已提交
64
        self.model = model
W
wuzewu 已提交
65
        self.optimizer = optimizer
W
wuzewu 已提交
66 67
        self.checkpoint_dir = checkpoint_dir if checkpoint_dir else 'ckpt_{}'.format(time.time())

W
wuzewu 已提交
68 69 70
        if not isinstance(self.model, paddle.nn.Layer):
            raise TypeError('The model {} is not a `paddle.nn.Layer` object.'.format(self.model.__name__))

W
wuzewu 已提交
71 72 73 74 75 76 77 78 79 80 81 82
        if self.local_rank == 0 and not os.path.exists(self.checkpoint_dir):
            os.makedirs(self.checkpoint_dir)

        self.use_vdl = use_vdl
        if self.local_rank == 0 and self.use_vdl:
            vdl_dir = os.path.join(self.checkpoint_dir, 'visualization')
            self.log_writer = LogWriter(vdl_dir)

        self.current_epoch = 0
        self.best_metrics = defaultdict(int)

        if self.nranks > 1:
W
wuzewu 已提交
83
            paddle.distributed.init_parallel_env()
H
haoyuying 已提交
84
            self.model = paddle.DataParallel(self.model)
85

W
wuzewu 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
        self.compare_metrics = self._compare_metrics if not compare_metrics else compare_metrics
        self._load_checkpoint()

    def _load_checkpoint(self):
        '''Load checkpoint and state dict'''
        max_epoch = -1

        for file in os.listdir(self.checkpoint_dir):
            if not file.startswith('epoch_'):
                continue

            _epoch = file.split('_')[-1]
            if not _epoch.isdigit():
                continue

            max_epoch = max(max_epoch, int(_epoch))

        if max_epoch == -1:
            if self.local_rank == 0:
                logger.warning('PaddleHub model checkpoint not found, start from scratch...')
            return

        # load best metrics
        self._load_metrics()

        self.current_epoch = max_epoch
        metric_msg = ['{}={:.4f}'.format(metric, value) for metric, value in self.best_metrics.items()]
        metric_msg = ' '.join(metric_msg)
        if self.local_rank == 0:
            logger.info('PaddleHub model checkpoint loaded. current_epoch={} [{}]'.format(
                self.current_epoch, metric_msg))

oqqZun1's avatar
oqqZun1 已提交
118 119 120 121 122
        model_path = os.path.join(self.checkpoint_dir, 'epoch_{}'.format(self.current_epoch))
        self.load_model(model_path)

    def load_model(self, load_dir: str):
        """load model"""
W
wuzewu 已提交
123
        # load model checkpoint
oqqZun1's avatar
oqqZun1 已提交
124
        model_params_path = os.path.join(load_dir, 'model.pdparams')
W
wuzewu 已提交
125
        state_dict = paddle.load(model_params_path)
126
        self.model.set_state_dict(state_dict)
W
wuzewu 已提交
127

W
wuzewu 已提交
128
        # load optimizer checkpoint
oqqZun1's avatar
oqqZun1 已提交
129
        optim_params_path = os.path.join(load_dir, 'model.pdopt')
W
wuzewu 已提交
130
        state_dict = paddle.load(optim_params_path)
131
        self.optimizer.set_state_dict(state_dict)
W
wuzewu 已提交
132

W
wuzewu 已提交
133 134
    def _save_checkpoint(self):
        '''Save model checkpoint and state dict'''
W
wuzewu 已提交
135
        model_path = os.path.join(self.checkpoint_dir, 'epoch_{}'.format(self.current_epoch))
W
wuzewu 已提交
136 137 138 139 140
        logger.info('Saving model checkpoint to {}'.format(model_path))
        self.save_model(model_path)

    def save_model(self, save_dir: str):
        '''Save model'''
W
wuzewu 已提交
141 142 143
        model_params_path = os.path.join(save_dir, 'model.pdparams')
        optim_params_path = os.path.join(save_dir, 'model.pdopt')
        paddle.save(self.model.state_dict(), model_params_path)
144
        paddle.save(self.optimizer.state_dict(), optim_params_path)
W
wuzewu 已提交
145 146 147 148 149 150

    def _save_metrics(self):
        with open(os.path.join(self.checkpoint_dir, 'metrics.pkl'), 'wb') as file:
            pickle.dump(self.best_metrics, file)

    def _load_metrics(self):
151 152 153 154 155
        metrics_file = os.path.join(self.checkpoint_dir, 'metrics.pkl')
        if not os.path.exists(metrics_file):
            return

        with open(metrics_file, 'rb') as file:
W
wuzewu 已提交
156 157 158
            self.best_metrics = pickle.load(file)

    def train(self,
159
              train_dataset: paddle.io.Dataset,
W
wuzewu 已提交
160 161 162
              epochs: int = 1,
              batch_size: int = 1,
              num_workers: int = 0,
163
              eval_dataset: paddle.io.Dataset = None,
W
wuzewu 已提交
164
              log_interval: int = 10,
165 166
              save_interval: int = 10,
              collate_fn: Callable = None):
W
wuzewu 已提交
167 168 169 170
        '''
        Train a model with specific config.

        Args:
171
            train_dataset(paddle.io.Dataset) : Dataset to train the model
W
wuzewu 已提交
172 173 174
            epochs(int) : Number of training loops, default is 1.
            batch_size(int) : Batch size of per step, default is 1.
            num_workers(int) : Number of subprocess to load data, default is 0.
W
wuzewu 已提交
175 176
            eval_dataset(paddle.io.Dataset) : The validation dataset, deafult is None. If set, the Trainer will
                execute evaluate function every `save_interval` epochs.
W
wuzewu 已提交
177 178
            log_interval(int) : Log the train infomation every `log_interval` steps.
            save_interval(int) : Save the checkpoint every `save_interval` epochs.
179 180
            collate_fn(callable): function to generate mini-batch data by merging the sample list.
                None for only stack each fields of sample in axis 0(same as :attr::`np.stack(..., axis=0)`). Default None
W
wuzewu 已提交
181
        '''
182 183 184 185 186 187 188 189
        if eval_dataset is not None:
            if isinstance(self.model, paddle.DataParallel):
                model = self.model._layers
            else:
                model = self.model

            if not hasattr(model, 'validation_step'):
                raise NotImplementedError('The specified finetuning model does not support evaluation.')
190

191 192 193
        batch_sampler = paddle.io.DistributedBatchSampler(
            train_dataset, batch_size=batch_size, shuffle=True, drop_last=False)
        loader = paddle.io.DataLoader(
W
wuzewu 已提交
194 195 196 197
            train_dataset,
            batch_sampler=batch_sampler,
            num_workers=num_workers,
            return_list=True,
198 199
            use_buffer_reader=True,
            collate_fn=collate_fn)
W
wuzewu 已提交
200

201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
        steps_per_epoch = len(batch_sampler)
        timer = Timer(steps_per_epoch * epochs)
        timer.start()

        for i in range(epochs):
            self.current_epoch += 1
            avg_loss = 0
            avg_metrics = defaultdict(int)
            self.model.train()

            for batch_idx, batch in enumerate(loader):
                loss, metrics = self.training_step(batch, batch_idx)
                self.optimizer_step(self.current_epoch, batch_idx, self.optimizer, loss)
                self.optimizer_zero_grad(self.current_epoch, batch_idx, self.optimizer)

                # calculate metrics and loss
                avg_loss += loss.numpy()[0]
                for metric, value in metrics.items():
219 220 221
                    if isinstance(value, paddle.Tensor):
                        value = value.numpy()
                    avg_metrics[metric] += value
222 223 224 225

                timer.count()

                if (batch_idx + 1) % log_interval == 0 and self.local_rank == 0:
W
wuzewu 已提交
226
                    lr = self.optimizer.get_lr()
227 228 229 230 231 232 233
                    avg_loss /= log_interval
                    if self.use_vdl:
                        self.log_writer.add_scalar(tag='TRAIN/loss', step=timer.current_step, value=avg_loss)

                    print_msg = 'Epoch={}/{}, Step={}/{}'.format(self.current_epoch, epochs, batch_idx + 1,
                                                                 steps_per_epoch)
                    print_msg += ' loss={:.4f}'.format(avg_loss)
W
wuzewu 已提交
234

235 236 237 238 239
                    for metric, value in avg_metrics.items():
                        value /= log_interval
                        if self.use_vdl:
                            self.log_writer.add_scalar(
                                tag='TRAIN/{}'.format(metric), step=timer.current_step, value=value)
S
Steffy-zxf 已提交
240 241
                        if isinstance(value, np.ndarray):
                            value = value.item()
242 243 244
                        print_msg += ' {}={:.4f}'.format(metric, value)

                    print_msg += ' lr={:.6f} step/sec={:.2f} | ETA {}'.format(lr, timer.timing, timer.eta)
W
wuzewu 已提交
245

246
                    logger.train(print_msg)
W
wuzewu 已提交
247

248 249
                    avg_loss = 0
                    avg_metrics = defaultdict(int)
W
wuzewu 已提交
250

251 252
                if self.current_epoch % save_interval == 0 and batch_idx + 1 == steps_per_epoch and self.local_rank == 0:
                    if eval_dataset:
253
                        result = self.evaluate(eval_dataset, batch_size, num_workers, collate_fn=collate_fn)
254 255 256 257 258
                        eval_loss = result.get('loss', None)
                        eval_metrics = result.get('metrics', {})
                        if self.use_vdl:
                            if eval_loss:
                                self.log_writer.add_scalar(tag='EVAL/loss', step=timer.current_step, value=eval_loss)
W
wuzewu 已提交
259

260 261 262
                            for metric, value in eval_metrics.items():
                                self.log_writer.add_scalar(
                                    tag='EVAL/{}'.format(metric), step=timer.current_step, value=value)
W
wuzewu 已提交
263

264 265 266 267 268
                        if not self.best_metrics or self.compare_metrics(self.best_metrics, eval_metrics):
                            self.best_metrics = eval_metrics
                            best_model_path = os.path.join(self.checkpoint_dir, 'best_model')
                            self.save_model(best_model_path)
                            self._save_metrics()
W
wuzewu 已提交
269

270 271 272 273 274
                            metric_msg = [
                                '{}={:.4f}'.format(metric, value) for metric, value in self.best_metrics.items()
                            ]
                            metric_msg = ' '.join(metric_msg)
                            logger.eval('Saving best model to {} [best {}]'.format(best_model_path, metric_msg))
W
wuzewu 已提交
275

276
                    self._save_checkpoint()
W
wuzewu 已提交
277

278 279 280 281 282
    def evaluate(self,
                 eval_dataset: paddle.io.Dataset,
                 batch_size: int = 1,
                 num_workers: int = 0,
                 collate_fn: Callable = None):
W
wuzewu 已提交
283 284 285 286
        '''
        Run evaluation and returns metrics.

        Args:
287
            eval_dataset(paddle.io.Dataset) : The validation dataset
W
wuzewu 已提交
288 289
            batch_size(int) : Batch size of per step, default is 1.
            num_workers(int) : Number of subprocess to load data, default is 0.
290 291
            collate_fn(callable): function to generate mini-batch data by merging the sample list.
                None for only stack each fields of sample in axis 0(same as :attr::`np.stack(..., axis=0)`). Default None
W
wuzewu 已提交
292
        '''
293 294 295 296 297 298 299 300 301 302 303 304 305 306
        if self.local_rank == 0:
            batch_sampler = paddle.io.BatchSampler(eval_dataset, batch_size=batch_size, shuffle=False, drop_last=False)

            loader = paddle.io.DataLoader(
                eval_dataset,
                batch_sampler=batch_sampler,
                num_workers=num_workers,
                return_list=True,
                collate_fn=collate_fn)

            self.model.eval()
            avg_loss = num_samples = 0
            sum_metrics = defaultdict(int)
            avg_metrics = defaultdict(int)
W
wuzewu 已提交
307

308 309 310
            with logger.processing('Evaluation on validation dataset'):
                for batch_idx, batch in enumerate(loader):
                    result = self.validation_step(batch, batch_idx)
W
wuzewu 已提交
311

312 313 314 315
                    loss = result.get('loss', None)
                    metrics = result.get('metrics', {})
                    bs = batch[0].shape[0]
                    num_samples += bs
W
wuzewu 已提交
316

317 318
                    if loss:
                        avg_loss += loss.numpy()[0] * bs
W
wuzewu 已提交
319

320 321
                    for metric, value in metrics.items():
                        sum_metrics[metric] += value * bs
W
wuzewu 已提交
322

323 324 325 326 327
            # print avg metrics and loss
            print_msg = '[Evaluation result]'
            if loss:
                avg_loss /= num_samples
                print_msg += ' avg_loss={:.4f}'.format(avg_loss)
W
wuzewu 已提交
328

329
            for metric, value in sum_metrics.items():
330
                avg_metrics[metric] = float(value) / num_samples
331
                print_msg += ' avg_{}={:.4f}'.format(metric, avg_metrics[metric])
332

333
            logger.eval(print_msg)
334

335 336 337
            if loss:
                return {'loss': avg_loss, 'metrics': avg_metrics}
            return {'metrics': avg_metrics}
W
wuzewu 已提交
338

W
wuzewu 已提交
339 340 341 342 343 344 345 346
    def training_step(self, batch: List[paddle.Tensor], batch_idx: int):
        '''
        One step for training, which should be called as forward computation.

        Args:
            batch(list[paddle.Tensor]) : The one batch data
            batch_idx(int) : The index of batch.
        '''
W
wuzewu 已提交
347 348 349 350 351 352 353
        if self.nranks > 1:
            result = self.model._layers.training_step(batch, batch_idx)
        else:
            result = self.model.training_step(batch, batch_idx)

        # process result
        if not isinstance(result, dict):
W
wuzewu 已提交
354
            raise RuntimeError('The return value of `trainning_step` in {} is not a dict'.format(self.model.__class__))
W
wuzewu 已提交
355 356

        loss = result.get('loss', None)
357
        if loss is None:
W
wuzewu 已提交
358 359
            raise RuntimeError('Cannot find loss attribute in the return value of `trainning_step` of {}'.format(
                self.model.__class__))
W
wuzewu 已提交
360 361 362 363

        metrics = result.get('metrics', {})

        # back prop
W
wuzewu 已提交
364
        loss.backward()
W
wuzewu 已提交
365 366 367 368

        return loss, metrics

    def validation_step(self, batch: Any, batch_idx: int):
W
wuzewu 已提交
369 370 371 372 373 374 375
        '''
        One step for validation, which should be called as forward computation.

        Args:
            batch(list[paddle.Tensor]) : The one batch data
            batch_idx(int) : The index of batch.
        '''
W
wuzewu 已提交
376
        if self.nranks > 1:
W
wuzewu 已提交
377
            result = self.model._layers.validation_step(batch, batch_idx)
W
wuzewu 已提交
378 379 380 381
        else:
            result = self.model.validation_step(batch, batch_idx)
        return result

W
wuzewu 已提交
382
    def optimizer_step(self, epoch_idx: int, batch_idx: int, optimizer: paddle.optimizer.Optimizer,
383
                       loss: paddle.Tensor):
W
wuzewu 已提交
384 385 386 387 388 389 390 391 392
        '''
        One step for optimize.

        Args:
            epoch_idx(int) : The index of epoch.
            batch_idx(int) : The index of batch.
            optimizer(paddle.optimizer.Optimizer) : Optimizer used.
            loss(paddle.Tensor) : Loss tensor.
        '''
W
wuzewu 已提交
393
        self.optimizer.step()
394
        self.learning_rate_step(epoch_idx, batch_idx, self.optimizer._learning_rate, loss)
W
wuzewu 已提交
395 396

    def learning_rate_step(self, epoch_idx: int, batch_idx: int, learning_rate: Generic, loss: paddle.Tensor):
W
wuzewu 已提交
397
        if isinstance(learning_rate, paddle.optimizer.lr.LRScheduler):
W
wuzewu 已提交
398
            learning_rate.step()
W
wuzewu 已提交
399

W
wuzewu 已提交
400 401 402 403 404 405 406 407 408 409
    def optimizer_zero_grad(self, epoch_idx: int, batch_idx: int, optimizer: paddle.optimizer.Optimizer):
        '''
        One step for clear gradients.

        Args:
            epoch_idx(int) : The index of epoch.
            batch_idx(int) : The index of batch.
            optimizer(paddle.optimizer.Optimizer) : Optimizer used.
            loss(paddle.Tensor) : Loss tensor.
        '''
W
wuzewu 已提交
410 411 412 413 414 415
        self.model.clear_gradients()

    def _compare_metrics(self, old_metric: dict, new_metric: dict):
        '''Compare the whether the new metric value is better than the old one'''
        mainkey = list(new_metric.keys())[0]
        return old_metric[mainkey] < new_metric[mainkey]