trainer.py 15.4 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# coding:utf-8
# Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import pickle
import time
from collections import defaultdict
W
wuzewu 已提交
20
from typing import Any, Callable, Generic, List
W
wuzewu 已提交
21

22
import paddle
W
wuzewu 已提交
23 24
from visualdl import LogWriter

W
wuzewu 已提交
25
from paddlehub.utils.log import logger
W
wuzewu 已提交
26 27 28 29 30
from paddlehub.utils.utils import Timer


class Trainer(object):
    '''
W
wuzewu 已提交
31 32 33 34
    Model trainer

    Args:
        model(paddle.nn.Layer) : Model to train or evaluate.
W
wuzewu 已提交
35
        optimizer(paddle.optimizer.Optimizer) : Optimizer for loss.
W
wuzewu 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49
        use_vdl(bool) : Whether to use visualdl to record training data.
        checkpoint_dir(str) : Directory where the checkpoint is saved, and the trainer will restore the
            state and model parameters from the checkpoint.
        compare_metrics(callable) : The method of comparing the model metrics. If not specified, the main
            metric return by `validation_step` will be used for comparison by default, the larger the
            value, the better the effect. This method will affect the saving of the best model. If the
            default behavior does not meet your requirements, please pass in a custom method.

            Example:
                .. code-block:: python

                    def compare_metrics(old_metric: dict, new_metric: dict):
                        mainkey = list(new_metric.keys())[0]
                        return old_metric[mainkey] < new_metric[mainkey]
W
wuzewu 已提交
50 51 52
    '''

    def __init__(self,
53
                 model: paddle.nn.Layer,
W
wuzewu 已提交
54
                 optimizer: paddle.optimizer.Optimizer,
W
wuzewu 已提交
55 56 57
                 use_vdl: bool = True,
                 checkpoint_dir: str = None,
                 compare_metrics: Callable = None):
W
wuzewu 已提交
58 59
        self.nranks = paddle.distributed.get_world_size()
        self.local_rank = paddle.distributed.get_rank()
W
wuzewu 已提交
60
        self.model = model
W
wuzewu 已提交
61
        self.optimizer = optimizer
W
wuzewu 已提交
62 63
        self.checkpoint_dir = checkpoint_dir if checkpoint_dir else 'ckpt_{}'.format(time.time())

W
wuzewu 已提交
64 65 66
        if not isinstance(self.model, paddle.nn.Layer):
            raise TypeError('The model {} is not a `paddle.nn.Layer` object.'.format(self.model.__name__))

W
wuzewu 已提交
67 68 69 70 71 72 73 74 75 76 77 78
        if self.local_rank == 0 and not os.path.exists(self.checkpoint_dir):
            os.makedirs(self.checkpoint_dir)

        self.use_vdl = use_vdl
        if self.local_rank == 0 and self.use_vdl:
            vdl_dir = os.path.join(self.checkpoint_dir, 'visualization')
            self.log_writer = LogWriter(vdl_dir)

        self.current_epoch = 0
        self.best_metrics = defaultdict(int)

        if self.nranks > 1:
W
wuzewu 已提交
79 80 81
            paddle.distributed.init_parallel_env()
            strategy = paddle.distributed.prepare_context()
            self.model = paddle.DataParallel(self.model, strategy)
W
wuzewu 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
        self.compare_metrics = self._compare_metrics if not compare_metrics else compare_metrics
        self._load_checkpoint()

    def _load_checkpoint(self):
        '''Load checkpoint and state dict'''
        max_epoch = -1

        for file in os.listdir(self.checkpoint_dir):
            if not file.startswith('epoch_'):
                continue

            _epoch = file.split('_')[-1]
            if not _epoch.isdigit():
                continue

            max_epoch = max(max_epoch, int(_epoch))

        if max_epoch == -1:
            if self.local_rank == 0:
                logger.warning('PaddleHub model checkpoint not found, start from scratch...')
            return

        # load best metrics
        self._load_metrics()

        self.current_epoch = max_epoch
        metric_msg = ['{}={:.4f}'.format(metric, value) for metric, value in self.best_metrics.items()]
        metric_msg = ' '.join(metric_msg)
        if self.local_rank == 0:
            logger.info('PaddleHub model checkpoint loaded. current_epoch={} [{}]'.format(
                self.current_epoch, metric_msg))

oqqZun1's avatar
oqqZun1 已提交
114 115 116 117 118
        model_path = os.path.join(self.checkpoint_dir, 'epoch_{}'.format(self.current_epoch))
        self.load_model(model_path)

    def load_model(self, load_dir: str):
        """load model"""
W
wuzewu 已提交
119
        # load model checkpoint
oqqZun1's avatar
oqqZun1 已提交
120
        model_params_path = os.path.join(load_dir, 'model.pdparams')
W
wuzewu 已提交
121
        state_dict = paddle.load(model_params_path)
122
        self.model.set_state_dict(state_dict)
W
wuzewu 已提交
123

W
wuzewu 已提交
124
        # load optimizer checkpoint
oqqZun1's avatar
oqqZun1 已提交
125
        optim_params_path = os.path.join(load_dir, 'model.pdopt')
W
wuzewu 已提交
126
        state_dict = paddle.load(optim_params_path)
127
        self.optimizer.set_state_dict(state_dict)
W
wuzewu 已提交
128

W
wuzewu 已提交
129 130
    def _save_checkpoint(self):
        '''Save model checkpoint and state dict'''
W
wuzewu 已提交
131
        model_path = os.path.join(self.checkpoint_dir, 'epoch_{}'.format(self.current_epoch))
W
wuzewu 已提交
132 133 134 135 136
        logger.info('Saving model checkpoint to {}'.format(model_path))
        self.save_model(model_path)

    def save_model(self, save_dir: str):
        '''Save model'''
W
wuzewu 已提交
137 138 139
        model_params_path = os.path.join(save_dir, 'model.pdparams')
        optim_params_path = os.path.join(save_dir, 'model.pdopt')
        paddle.save(self.model.state_dict(), model_params_path)
140
        paddle.save(self.optimizer.state_dict(), optim_params_path)
W
wuzewu 已提交
141 142 143 144 145 146 147 148 149 150

    def _save_metrics(self):
        with open(os.path.join(self.checkpoint_dir, 'metrics.pkl'), 'wb') as file:
            pickle.dump(self.best_metrics, file)

    def _load_metrics(self):
        with open(os.path.join(self.checkpoint_dir, 'metrics.pkl'), 'rb') as file:
            self.best_metrics = pickle.load(file)

    def train(self,
151
              train_dataset: paddle.io.Dataset,
W
wuzewu 已提交
152 153 154
              epochs: int = 1,
              batch_size: int = 1,
              num_workers: int = 0,
155
              eval_dataset: paddle.io.Dataset = None,
W
wuzewu 已提交
156 157 158 159 160 161
              log_interval: int = 10,
              save_interval: int = 10):
        '''
        Train a model with specific config.

        Args:
162
            train_dataset(paddle.io.Dataset) : Dataset to train the model
W
wuzewu 已提交
163 164 165
            epochs(int) : Number of training loops, default is 1.
            batch_size(int) : Batch size of per step, default is 1.
            num_workers(int) : Number of subprocess to load data, default is 0.
W
wuzewu 已提交
166 167
            eval_dataset(paddle.io.Dataset) : The validation dataset, deafult is None. If set, the Trainer will
                execute evaluate function every `save_interval` epochs.
W
wuzewu 已提交
168 169 170
            log_interval(int) : Log the train infomation every `log_interval` steps.
            save_interval(int) : Save the checkpoint every `save_interval` epochs.
        '''
171 172 173
        batch_sampler = paddle.io.DistributedBatchSampler(
            train_dataset, batch_size=batch_size, shuffle=True, drop_last=False)
        loader = paddle.io.DataLoader(
W
wuzewu 已提交
174 175 176 177 178
            train_dataset,
            batch_sampler=batch_sampler,
            num_workers=num_workers,
            return_list=True,
            use_buffer_reader=True)
W
wuzewu 已提交
179

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
        steps_per_epoch = len(batch_sampler)
        timer = Timer(steps_per_epoch * epochs)
        timer.start()

        for i in range(epochs):
            self.current_epoch += 1
            avg_loss = 0
            avg_metrics = defaultdict(int)
            self.model.train()

            for batch_idx, batch in enumerate(loader):
                loss, metrics = self.training_step(batch, batch_idx)
                self.optimizer_step(self.current_epoch, batch_idx, self.optimizer, loss)
                self.optimizer_zero_grad(self.current_epoch, batch_idx, self.optimizer)

                # calculate metrics and loss
                avg_loss += loss.numpy()[0]
                for metric, value in metrics.items():
                    avg_metrics[metric] += value.numpy()[0]

                timer.count()

                if (batch_idx + 1) % log_interval == 0 and self.local_rank == 0:
W
wuzewu 已提交
203
                    lr = self.optimizer.get_lr()
204 205 206 207 208 209 210
                    avg_loss /= log_interval
                    if self.use_vdl:
                        self.log_writer.add_scalar(tag='TRAIN/loss', step=timer.current_step, value=avg_loss)

                    print_msg = 'Epoch={}/{}, Step={}/{}'.format(self.current_epoch, epochs, batch_idx + 1,
                                                                 steps_per_epoch)
                    print_msg += ' loss={:.4f}'.format(avg_loss)
W
wuzewu 已提交
211

212 213 214 215 216 217 218 219
                    for metric, value in avg_metrics.items():
                        value /= log_interval
                        if self.use_vdl:
                            self.log_writer.add_scalar(
                                tag='TRAIN/{}'.format(metric), step=timer.current_step, value=value)
                        print_msg += ' {}={:.4f}'.format(metric, value)

                    print_msg += ' lr={:.6f} step/sec={:.2f} | ETA {}'.format(lr, timer.timing, timer.eta)
W
wuzewu 已提交
220

221
                    logger.train(print_msg)
W
wuzewu 已提交
222

223 224
                    avg_loss = 0
                    avg_metrics = defaultdict(int)
W
wuzewu 已提交
225

226 227 228 229 230 231 232 233
                if self.current_epoch % save_interval == 0 and batch_idx + 1 == steps_per_epoch and self.local_rank == 0:
                    if eval_dataset:
                        result = self.evaluate(eval_dataset, batch_size, num_workers)
                        eval_loss = result.get('loss', None)
                        eval_metrics = result.get('metrics', {})
                        if self.use_vdl:
                            if eval_loss:
                                self.log_writer.add_scalar(tag='EVAL/loss', step=timer.current_step, value=eval_loss)
W
wuzewu 已提交
234

235 236 237
                            for metric, value in eval_metrics.items():
                                self.log_writer.add_scalar(
                                    tag='EVAL/{}'.format(metric), step=timer.current_step, value=value)
W
wuzewu 已提交
238

239 240 241 242 243
                        if not self.best_metrics or self.compare_metrics(self.best_metrics, eval_metrics):
                            self.best_metrics = eval_metrics
                            best_model_path = os.path.join(self.checkpoint_dir, 'best_model')
                            self.save_model(best_model_path)
                            self._save_metrics()
W
wuzewu 已提交
244

245 246 247 248 249
                            metric_msg = [
                                '{}={:.4f}'.format(metric, value) for metric, value in self.best_metrics.items()
                            ]
                            metric_msg = ' '.join(metric_msg)
                            logger.eval('Saving best model to {} [best {}]'.format(best_model_path, metric_msg))
W
wuzewu 已提交
250

251
                    self._save_checkpoint()
W
wuzewu 已提交
252

253
    def evaluate(self, eval_dataset: paddle.io.Dataset, batch_size: int = 1, num_workers: int = 0):
W
wuzewu 已提交
254 255 256 257
        '''
        Run evaluation and returns metrics.

        Args:
258
            eval_dataset(paddle.io.Dataset) : The validation dataset
W
wuzewu 已提交
259 260 261
            batch_size(int) : Batch size of per step, default is 1.
            num_workers(int) : Number of subprocess to load data, default is 0.
        '''
262 263
        batch_sampler = paddle.io.DistributedBatchSampler(
            eval_dataset, batch_size=batch_size, shuffle=False, drop_last=False)
W
wuzewu 已提交
264

265
        loader = paddle.io.DataLoader(
W
wuzewu 已提交
266
            eval_dataset, batch_sampler=batch_sampler, num_workers=num_workers, return_list=True)
W
wuzewu 已提交
267

268 269 270 271
        self.model.eval()
        avg_loss = num_samples = 0
        sum_metrics = defaultdict(int)
        avg_metrics = defaultdict(int)
W
wuzewu 已提交
272

W
wuzewu 已提交
273
        with logger.processing('Evaluation on validation dataset'):
274 275 276 277 278 279
            for batch_idx, batch in enumerate(loader):
                result = self.validation_step(batch, batch_idx)
                loss = result.get('loss', None)
                metrics = result.get('metrics', {})
                bs = batch[0].shape[0]
                num_samples += bs
W
wuzewu 已提交
280

281 282
                if loss:
                    avg_loss += loss.numpy()[0] * bs
W
wuzewu 已提交
283

284 285
                for metric, value in metrics.items():
                    sum_metrics[metric] += value.numpy()[0] * bs
W
wuzewu 已提交
286

287 288 289 290 291
        # print avg metrics and loss
        print_msg = '[Evaluation result]'
        if loss:
            avg_loss /= num_samples
            print_msg += ' avg_loss={:.4f}'.format(avg_loss)
W
wuzewu 已提交
292

293 294 295 296 297 298 299 300 301
        for metric, value in sum_metrics.items():
            avg_metrics[metric] = value / num_samples
            print_msg += ' avg_{}={:.4f}'.format(metric, avg_metrics[metric])

        logger.eval(print_msg)

        if loss:
            return {'loss': avg_loss, 'metrics': avg_metrics}
        return {'metrics': avg_metrics}
W
wuzewu 已提交
302

W
wuzewu 已提交
303 304 305 306 307 308 309 310
    def training_step(self, batch: List[paddle.Tensor], batch_idx: int):
        '''
        One step for training, which should be called as forward computation.

        Args:
            batch(list[paddle.Tensor]) : The one batch data
            batch_idx(int) : The index of batch.
        '''
W
wuzewu 已提交
311 312 313 314 315 316 317
        if self.nranks > 1:
            result = self.model._layers.training_step(batch, batch_idx)
        else:
            result = self.model.training_step(batch, batch_idx)

        # process result
        if not isinstance(result, dict):
W
wuzewu 已提交
318
            raise RuntimeError('The return value of `trainning_step` in {} is not a dict'.format(self.model.__class__))
W
wuzewu 已提交
319 320 321

        loss = result.get('loss', None)
        if not loss:
W
wuzewu 已提交
322 323
            raise RuntimeError('Cannot find loss attribute in the return value of `trainning_step` of {}'.format(
                self.model.__class__))
W
wuzewu 已提交
324 325 326 327

        metrics = result.get('metrics', {})

        # back prop
W
wuzewu 已提交
328
        loss.backward()
W
wuzewu 已提交
329 330 331 332

        return loss, metrics

    def validation_step(self, batch: Any, batch_idx: int):
W
wuzewu 已提交
333 334 335 336 337 338 339
        '''
        One step for validation, which should be called as forward computation.

        Args:
            batch(list[paddle.Tensor]) : The one batch data
            batch_idx(int) : The index of batch.
        '''
W
wuzewu 已提交
340 341 342 343 344 345
        if self.nranks > 1:
            result = self.model._layers.validation_step(batch, batch_idx)
        else:
            result = self.model.validation_step(batch, batch_idx)
        return result

W
wuzewu 已提交
346
    def optimizer_step(self, epoch_idx: int, batch_idx: int, optimizer: paddle.optimizer.Optimizer,
347
                       loss: paddle.Tensor):
W
wuzewu 已提交
348 349 350 351 352 353 354 355 356
        '''
        One step for optimize.

        Args:
            epoch_idx(int) : The index of epoch.
            batch_idx(int) : The index of batch.
            optimizer(paddle.optimizer.Optimizer) : Optimizer used.
            loss(paddle.Tensor) : Loss tensor.
        '''
W
wuzewu 已提交
357
        self.optimizer.step()
358
        self.learning_rate_step(epoch_idx, batch_idx, self.optimizer._learning_rate, loss)
W
wuzewu 已提交
359 360

    def learning_rate_step(self, epoch_idx: int, batch_idx: int, learning_rate: Generic, loss: paddle.Tensor):
W
wuzewu 已提交
361
        if isinstance(learning_rate, paddle.optimizer.lr.LRScheduler):
W
wuzewu 已提交
362
            learning_rate.step()
W
wuzewu 已提交
363

W
wuzewu 已提交
364 365 366 367 368 369 370 371 372 373
    def optimizer_zero_grad(self, epoch_idx: int, batch_idx: int, optimizer: paddle.optimizer.Optimizer):
        '''
        One step for clear gradients.

        Args:
            epoch_idx(int) : The index of epoch.
            batch_idx(int) : The index of batch.
            optimizer(paddle.optimizer.Optimizer) : Optimizer used.
            loss(paddle.Tensor) : Loss tensor.
        '''
W
wuzewu 已提交
374 375 376 377 378 379
        self.model.clear_gradients()

    def _compare_metrics(self, old_metric: dict, new_metric: dict):
        '''Compare the whether the new metric value is better than the old one'''
        mainkey = list(new_metric.keys())[0]
        return old_metric[mainkey] < new_metric[mainkey]