trainer.py 15.3 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# coding:utf-8
# Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import pickle
import time
from collections import defaultdict
W
wuzewu 已提交
20
from typing import Any, Callable, Generic, List
W
wuzewu 已提交
21

22
import paddle
W
wuzewu 已提交
23 24
from visualdl import LogWriter

W
wuzewu 已提交
25
from paddlehub.utils.log import logger
W
wuzewu 已提交
26 27 28 29 30
from paddlehub.utils.utils import Timer


class Trainer(object):
    '''
W
wuzewu 已提交
31 32 33 34
    Model trainer

    Args:
        model(paddle.nn.Layer) : Model to train or evaluate.
W
wuzewu 已提交
35
        optimizer(paddle.optimizer.Optimizer) : Optimizer for loss.
W
wuzewu 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49
        use_vdl(bool) : Whether to use visualdl to record training data.
        checkpoint_dir(str) : Directory where the checkpoint is saved, and the trainer will restore the
            state and model parameters from the checkpoint.
        compare_metrics(callable) : The method of comparing the model metrics. If not specified, the main
            metric return by `validation_step` will be used for comparison by default, the larger the
            value, the better the effect. This method will affect the saving of the best model. If the
            default behavior does not meet your requirements, please pass in a custom method.

            Example:
                .. code-block:: python

                    def compare_metrics(old_metric: dict, new_metric: dict):
                        mainkey = list(new_metric.keys())[0]
                        return old_metric[mainkey] < new_metric[mainkey]
W
wuzewu 已提交
50 51 52
    '''

    def __init__(self,
53
                 model: paddle.nn.Layer,
W
wuzewu 已提交
54
                 optimizer: paddle.optimizer.Optimizer,
W
wuzewu 已提交
55 56 57
                 use_vdl: bool = True,
                 checkpoint_dir: str = None,
                 compare_metrics: Callable = None):
W
wuzewu 已提交
58 59
        self.nranks = paddle.distributed.get_world_size()
        self.local_rank = paddle.distributed.get_rank()
W
wuzewu 已提交
60
        self.model = model
W
wuzewu 已提交
61
        self.optimizer = optimizer
W
wuzewu 已提交
62 63
        self.checkpoint_dir = checkpoint_dir if checkpoint_dir else 'ckpt_{}'.format(time.time())

W
wuzewu 已提交
64 65 66
        if not isinstance(self.model, paddle.nn.Layer):
            raise TypeError('The model {} is not a `paddle.nn.Layer` object.'.format(self.model.__name__))

W
wuzewu 已提交
67 68 69 70 71 72 73 74 75 76 77 78
        if self.local_rank == 0 and not os.path.exists(self.checkpoint_dir):
            os.makedirs(self.checkpoint_dir)

        self.use_vdl = use_vdl
        if self.local_rank == 0 and self.use_vdl:
            vdl_dir = os.path.join(self.checkpoint_dir, 'visualization')
            self.log_writer = LogWriter(vdl_dir)

        self.current_epoch = 0
        self.best_metrics = defaultdict(int)

        if self.nranks > 1:
W
wuzewu 已提交
79 80 81
            paddle.distributed.init_parallel_env()
            strategy = paddle.distributed.prepare_context()
            self.model = paddle.DataParallel(self.model, strategy)
W
wuzewu 已提交
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
        self.compare_metrics = self._compare_metrics if not compare_metrics else compare_metrics
        self._load_checkpoint()

    def _load_checkpoint(self):
        '''Load checkpoint and state dict'''
        max_epoch = -1

        for file in os.listdir(self.checkpoint_dir):
            if not file.startswith('epoch_'):
                continue

            _epoch = file.split('_')[-1]
            if not _epoch.isdigit():
                continue

            max_epoch = max(max_epoch, int(_epoch))

        if max_epoch == -1:
            if self.local_rank == 0:
                logger.warning('PaddleHub model checkpoint not found, start from scratch...')
            return

        # load best metrics
        self._load_metrics()

        self.current_epoch = max_epoch
        metric_msg = ['{}={:.4f}'.format(metric, value) for metric, value in self.best_metrics.items()]
        metric_msg = ' '.join(metric_msg)
        if self.local_rank == 0:
            logger.info('PaddleHub model checkpoint loaded. current_epoch={} [{}]'.format(
                self.current_epoch, metric_msg))

W
wuzewu 已提交
114
        # load model checkpoint
115
        model_params_path = os.path.join(self.checkpoint_dir, 'epoch_{}'.format(self.current_epoch), 'model.pdparams')
W
wuzewu 已提交
116
        state_dict = paddle.load(model_params_path)
117
        self.model.set_state_dict(state_dict)
W
wuzewu 已提交
118

W
wuzewu 已提交
119
        # load optimizer checkpoint
W
wuzewu 已提交
120
        optim_params_path = os.path.join(self.checkpoint_dir, 'epoch_{}'.format(self.current_epoch), 'model.pdopt')
W
wuzewu 已提交
121
        state_dict = paddle.load(optim_params_path)
122
        self.optimizer.set_state_dict(state_dict)
W
wuzewu 已提交
123

W
wuzewu 已提交
124 125
    def _save_checkpoint(self):
        '''Save model checkpoint and state dict'''
W
wuzewu 已提交
126
        model_path = os.path.join(self.checkpoint_dir, 'epoch_{}'.format(self.current_epoch))
W
wuzewu 已提交
127 128 129 130 131
        logger.info('Saving model checkpoint to {}'.format(model_path))
        self.save_model(model_path)

    def save_model(self, save_dir: str):
        '''Save model'''
W
wuzewu 已提交
132 133 134
        model_params_path = os.path.join(save_dir, 'model.pdparams')
        optim_params_path = os.path.join(save_dir, 'model.pdopt')
        paddle.save(self.model.state_dict(), model_params_path)
135
        paddle.save(self.optimizer.state_dict(), optim_params_path)
W
wuzewu 已提交
136 137 138 139 140 141 142 143 144 145

    def _save_metrics(self):
        with open(os.path.join(self.checkpoint_dir, 'metrics.pkl'), 'wb') as file:
            pickle.dump(self.best_metrics, file)

    def _load_metrics(self):
        with open(os.path.join(self.checkpoint_dir, 'metrics.pkl'), 'rb') as file:
            self.best_metrics = pickle.load(file)

    def train(self,
146
              train_dataset: paddle.io.Dataset,
W
wuzewu 已提交
147 148 149
              epochs: int = 1,
              batch_size: int = 1,
              num_workers: int = 0,
150
              eval_dataset: paddle.io.Dataset = None,
W
wuzewu 已提交
151 152 153 154 155 156
              log_interval: int = 10,
              save_interval: int = 10):
        '''
        Train a model with specific config.

        Args:
157
            train_dataset(paddle.io.Dataset) : Dataset to train the model
W
wuzewu 已提交
158 159 160
            epochs(int) : Number of training loops, default is 1.
            batch_size(int) : Batch size of per step, default is 1.
            num_workers(int) : Number of subprocess to load data, default is 0.
W
wuzewu 已提交
161 162
            eval_dataset(paddle.io.Dataset) : The validation dataset, deafult is None. If set, the Trainer will
                execute evaluate function every `save_interval` epochs.
W
wuzewu 已提交
163 164 165
            log_interval(int) : Log the train infomation every `log_interval` steps.
            save_interval(int) : Save the checkpoint every `save_interval` epochs.
        '''
166 167 168
        batch_sampler = paddle.io.DistributedBatchSampler(
            train_dataset, batch_size=batch_size, shuffle=True, drop_last=False)
        loader = paddle.io.DataLoader(
W
wuzewu 已提交
169 170 171 172 173
            train_dataset,
            batch_sampler=batch_sampler,
            num_workers=num_workers,
            return_list=True,
            use_buffer_reader=True)
W
wuzewu 已提交
174

175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
        steps_per_epoch = len(batch_sampler)
        timer = Timer(steps_per_epoch * epochs)
        timer.start()

        for i in range(epochs):
            self.current_epoch += 1
            avg_loss = 0
            avg_metrics = defaultdict(int)
            self.model.train()

            for batch_idx, batch in enumerate(loader):
                loss, metrics = self.training_step(batch, batch_idx)
                self.optimizer_step(self.current_epoch, batch_idx, self.optimizer, loss)
                self.optimizer_zero_grad(self.current_epoch, batch_idx, self.optimizer)

                # calculate metrics and loss
                avg_loss += loss.numpy()[0]
                for metric, value in metrics.items():
                    avg_metrics[metric] += value.numpy()[0]

                timer.count()

                if (batch_idx + 1) % log_interval == 0 and self.local_rank == 0:
W
wuzewu 已提交
198
                    lr = self.optimizer.get_lr()
199 200 201 202 203 204 205
                    avg_loss /= log_interval
                    if self.use_vdl:
                        self.log_writer.add_scalar(tag='TRAIN/loss', step=timer.current_step, value=avg_loss)

                    print_msg = 'Epoch={}/{}, Step={}/{}'.format(self.current_epoch, epochs, batch_idx + 1,
                                                                 steps_per_epoch)
                    print_msg += ' loss={:.4f}'.format(avg_loss)
W
wuzewu 已提交
206

207 208 209 210 211 212 213 214
                    for metric, value in avg_metrics.items():
                        value /= log_interval
                        if self.use_vdl:
                            self.log_writer.add_scalar(
                                tag='TRAIN/{}'.format(metric), step=timer.current_step, value=value)
                        print_msg += ' {}={:.4f}'.format(metric, value)

                    print_msg += ' lr={:.6f} step/sec={:.2f} | ETA {}'.format(lr, timer.timing, timer.eta)
W
wuzewu 已提交
215

216
                    logger.train(print_msg)
W
wuzewu 已提交
217

218 219
                    avg_loss = 0
                    avg_metrics = defaultdict(int)
W
wuzewu 已提交
220

221 222 223 224 225 226 227 228
                if self.current_epoch % save_interval == 0 and batch_idx + 1 == steps_per_epoch and self.local_rank == 0:
                    if eval_dataset:
                        result = self.evaluate(eval_dataset, batch_size, num_workers)
                        eval_loss = result.get('loss', None)
                        eval_metrics = result.get('metrics', {})
                        if self.use_vdl:
                            if eval_loss:
                                self.log_writer.add_scalar(tag='EVAL/loss', step=timer.current_step, value=eval_loss)
W
wuzewu 已提交
229

230 231 232
                            for metric, value in eval_metrics.items():
                                self.log_writer.add_scalar(
                                    tag='EVAL/{}'.format(metric), step=timer.current_step, value=value)
W
wuzewu 已提交
233

234 235 236 237 238
                        if not self.best_metrics or self.compare_metrics(self.best_metrics, eval_metrics):
                            self.best_metrics = eval_metrics
                            best_model_path = os.path.join(self.checkpoint_dir, 'best_model')
                            self.save_model(best_model_path)
                            self._save_metrics()
W
wuzewu 已提交
239

240 241 242 243 244
                            metric_msg = [
                                '{}={:.4f}'.format(metric, value) for metric, value in self.best_metrics.items()
                            ]
                            metric_msg = ' '.join(metric_msg)
                            logger.eval('Saving best model to {} [best {}]'.format(best_model_path, metric_msg))
W
wuzewu 已提交
245

246
                    self._save_checkpoint()
W
wuzewu 已提交
247

248
    def evaluate(self, eval_dataset: paddle.io.Dataset, batch_size: int = 1, num_workers: int = 0):
W
wuzewu 已提交
249 250 251 252
        '''
        Run evaluation and returns metrics.

        Args:
253
            eval_dataset(paddle.io.Dataset) : The validation dataset
W
wuzewu 已提交
254 255 256
            batch_size(int) : Batch size of per step, default is 1.
            num_workers(int) : Number of subprocess to load data, default is 0.
        '''
257 258
        batch_sampler = paddle.io.DistributedBatchSampler(
            eval_dataset, batch_size=batch_size, shuffle=False, drop_last=False)
W
wuzewu 已提交
259

260
        loader = paddle.io.DataLoader(
W
wuzewu 已提交
261
            eval_dataset, batch_sampler=batch_sampler, num_workers=num_workers, return_list=True)
W
wuzewu 已提交
262

263 264 265 266
        self.model.eval()
        avg_loss = num_samples = 0
        sum_metrics = defaultdict(int)
        avg_metrics = defaultdict(int)
W
wuzewu 已提交
267

W
wuzewu 已提交
268
        with logger.processing('Evaluation on validation dataset'):
269 270 271 272 273 274
            for batch_idx, batch in enumerate(loader):
                result = self.validation_step(batch, batch_idx)
                loss = result.get('loss', None)
                metrics = result.get('metrics', {})
                bs = batch[0].shape[0]
                num_samples += bs
W
wuzewu 已提交
275

276 277
                if loss:
                    avg_loss += loss.numpy()[0] * bs
W
wuzewu 已提交
278

279 280
                for metric, value in metrics.items():
                    sum_metrics[metric] += value.numpy()[0] * bs
W
wuzewu 已提交
281

282 283 284 285 286
        # print avg metrics and loss
        print_msg = '[Evaluation result]'
        if loss:
            avg_loss /= num_samples
            print_msg += ' avg_loss={:.4f}'.format(avg_loss)
W
wuzewu 已提交
287

288 289 290 291 292 293 294 295 296
        for metric, value in sum_metrics.items():
            avg_metrics[metric] = value / num_samples
            print_msg += ' avg_{}={:.4f}'.format(metric, avg_metrics[metric])

        logger.eval(print_msg)

        if loss:
            return {'loss': avg_loss, 'metrics': avg_metrics}
        return {'metrics': avg_metrics}
W
wuzewu 已提交
297

W
wuzewu 已提交
298 299 300 301 302 303 304 305
    def training_step(self, batch: List[paddle.Tensor], batch_idx: int):
        '''
        One step for training, which should be called as forward computation.

        Args:
            batch(list[paddle.Tensor]) : The one batch data
            batch_idx(int) : The index of batch.
        '''
W
wuzewu 已提交
306 307 308 309 310 311 312
        if self.nranks > 1:
            result = self.model._layers.training_step(batch, batch_idx)
        else:
            result = self.model.training_step(batch, batch_idx)

        # process result
        if not isinstance(result, dict):
W
wuzewu 已提交
313
            raise RuntimeError('The return value of `trainning_step` in {} is not a dict'.format(self.model.__class__))
W
wuzewu 已提交
314 315 316

        loss = result.get('loss', None)
        if not loss:
W
wuzewu 已提交
317 318
            raise RuntimeError('Cannot find loss attribute in the return value of `trainning_step` of {}'.format(
                self.model.__class__))
W
wuzewu 已提交
319 320 321 322

        metrics = result.get('metrics', {})

        # back prop
W
wuzewu 已提交
323
        loss.backward()
W
wuzewu 已提交
324 325 326 327

        return loss, metrics

    def validation_step(self, batch: Any, batch_idx: int):
W
wuzewu 已提交
328 329 330 331 332 333 334
        '''
        One step for validation, which should be called as forward computation.

        Args:
            batch(list[paddle.Tensor]) : The one batch data
            batch_idx(int) : The index of batch.
        '''
W
wuzewu 已提交
335 336 337 338 339 340
        if self.nranks > 1:
            result = self.model._layers.validation_step(batch, batch_idx)
        else:
            result = self.model.validation_step(batch, batch_idx)
        return result

W
wuzewu 已提交
341
    def optimizer_step(self, epoch_idx: int, batch_idx: int, optimizer: paddle.optimizer.Optimizer,
342
                       loss: paddle.Tensor):
W
wuzewu 已提交
343 344 345 346 347 348 349 350 351
        '''
        One step for optimize.

        Args:
            epoch_idx(int) : The index of epoch.
            batch_idx(int) : The index of batch.
            optimizer(paddle.optimizer.Optimizer) : Optimizer used.
            loss(paddle.Tensor) : Loss tensor.
        '''
W
wuzewu 已提交
352
        self.optimizer.step()
353
        self.learning_rate_step(epoch_idx, batch_idx, self.optimizer._learning_rate, loss)
W
wuzewu 已提交
354 355

    def learning_rate_step(self, epoch_idx: int, batch_idx: int, learning_rate: Generic, loss: paddle.Tensor):
W
wuzewu 已提交
356
        if isinstance(learning_rate, paddle.optimizer.lr.LRScheduler):
W
wuzewu 已提交
357
            learning_rate.step()
W
wuzewu 已提交
358

W
wuzewu 已提交
359 360 361 362 363 364 365 366 367 368
    def optimizer_zero_grad(self, epoch_idx: int, batch_idx: int, optimizer: paddle.optimizer.Optimizer):
        '''
        One step for clear gradients.

        Args:
            epoch_idx(int) : The index of epoch.
            batch_idx(int) : The index of batch.
            optimizer(paddle.optimizer.Optimizer) : Optimizer used.
            loss(paddle.Tensor) : Loss tensor.
        '''
W
wuzewu 已提交
369 370 371 372 373 374
        self.model.clear_gradients()

    def _compare_metrics(self, old_metric: dict, new_metric: dict):
        '''Compare the whether the new metric value is better than the old one'''
        mainkey = list(new_metric.keys())[0]
        return old_metric[mainkey] < new_metric[mainkey]