trainer.py 16.8 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import pickle
import time
from collections import defaultdict
W
wuzewu 已提交
19
from typing import Any, Callable, Generic, List
W
wuzewu 已提交
20

S
Steffy-zxf 已提交
21
import numpy as np
22
import paddle
W
wuzewu 已提交
23 24
from visualdl import LogWriter

W
wuzewu 已提交
25
from paddlehub.utils.log import logger
W
wuzewu 已提交
26 27 28 29 30
from paddlehub.utils.utils import Timer


class Trainer(object):
    '''
W
wuzewu 已提交
31 32 33 34
    Model trainer

    Args:
        model(paddle.nn.Layer) : Model to train or evaluate.
W
wuzewu 已提交
35
        optimizer(paddle.optimizer.Optimizer) : Optimizer for loss.
36
        use_gpu(bool) : Whether to use gpu to run.
W
wuzewu 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50
        use_vdl(bool) : Whether to use visualdl to record training data.
        checkpoint_dir(str) : Directory where the checkpoint is saved, and the trainer will restore the
            state and model parameters from the checkpoint.
        compare_metrics(callable) : The method of comparing the model metrics. If not specified, the main
            metric return by `validation_step` will be used for comparison by default, the larger the
            value, the better the effect. This method will affect the saving of the best model. If the
            default behavior does not meet your requirements, please pass in a custom method.

            Example:
                .. code-block:: python

                    def compare_metrics(old_metric: dict, new_metric: dict):
                        mainkey = list(new_metric.keys())[0]
                        return old_metric[mainkey] < new_metric[mainkey]
W
wuzewu 已提交
51 52 53
    '''

    def __init__(self,
54
                 model: paddle.nn.Layer,
W
wuzewu 已提交
55
                 optimizer: paddle.optimizer.Optimizer,
56
                 use_gpu: bool = False,
W
wuzewu 已提交
57 58
                 use_vdl: bool = True,
                 checkpoint_dir: str = None,
59 60 61
                 compare_metrics: Callable = None,
                 **kwargs):
        paddle.set_device('gpu') if use_gpu else paddle.set_device('cpu')
W
wuzewu 已提交
62 63
        self.nranks = paddle.distributed.get_world_size()
        self.local_rank = paddle.distributed.get_rank()
W
wuzewu 已提交
64
        self.model = model
W
wuzewu 已提交
65
        self.optimizer = optimizer
W
wuzewu 已提交
66 67
        self.checkpoint_dir = checkpoint_dir if checkpoint_dir else 'ckpt_{}'.format(time.time())

W
wuzewu 已提交
68 69 70
        if not isinstance(self.model, paddle.nn.Layer):
            raise TypeError('The model {} is not a `paddle.nn.Layer` object.'.format(self.model.__name__))

W
wuzewu 已提交
71 72 73 74 75 76 77 78 79 80 81 82
        if self.local_rank == 0 and not os.path.exists(self.checkpoint_dir):
            os.makedirs(self.checkpoint_dir)

        self.use_vdl = use_vdl
        if self.local_rank == 0 and self.use_vdl:
            vdl_dir = os.path.join(self.checkpoint_dir, 'visualization')
            self.log_writer = LogWriter(vdl_dir)

        self.current_epoch = 0
        self.best_metrics = defaultdict(int)

        if self.nranks > 1:
W
wuzewu 已提交
83
            paddle.distributed.init_parallel_env()
H
haoyuying 已提交
84
            self.model = paddle.DataParallel(self.model)
W
wuzewu 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
        self.compare_metrics = self._compare_metrics if not compare_metrics else compare_metrics
        self._load_checkpoint()

    def _load_checkpoint(self):
        '''Load checkpoint and state dict'''
        max_epoch = -1

        for file in os.listdir(self.checkpoint_dir):
            if not file.startswith('epoch_'):
                continue

            _epoch = file.split('_')[-1]
            if not _epoch.isdigit():
                continue

            max_epoch = max(max_epoch, int(_epoch))

        if max_epoch == -1:
            if self.local_rank == 0:
                logger.warning('PaddleHub model checkpoint not found, start from scratch...')
            return

        # load best metrics
        self._load_metrics()

        self.current_epoch = max_epoch
        metric_msg = ['{}={:.4f}'.format(metric, value) for metric, value in self.best_metrics.items()]
        metric_msg = ' '.join(metric_msg)
        if self.local_rank == 0:
            logger.info('PaddleHub model checkpoint loaded. current_epoch={} [{}]'.format(
                self.current_epoch, metric_msg))

oqqZun1's avatar
oqqZun1 已提交
117 118 119 120 121
        model_path = os.path.join(self.checkpoint_dir, 'epoch_{}'.format(self.current_epoch))
        self.load_model(model_path)

    def load_model(self, load_dir: str):
        """load model"""
W
wuzewu 已提交
122
        # load model checkpoint
oqqZun1's avatar
oqqZun1 已提交
123
        model_params_path = os.path.join(load_dir, 'model.pdparams')
W
wuzewu 已提交
124
        state_dict = paddle.load(model_params_path)
125
        self.model.set_state_dict(state_dict)
W
wuzewu 已提交
126

W
wuzewu 已提交
127
        # load optimizer checkpoint
oqqZun1's avatar
oqqZun1 已提交
128
        optim_params_path = os.path.join(load_dir, 'model.pdopt')
W
wuzewu 已提交
129
        state_dict = paddle.load(optim_params_path)
130
        self.optimizer.set_state_dict(state_dict)
W
wuzewu 已提交
131

W
wuzewu 已提交
132 133
    def _save_checkpoint(self):
        '''Save model checkpoint and state dict'''
W
wuzewu 已提交
134
        model_path = os.path.join(self.checkpoint_dir, 'epoch_{}'.format(self.current_epoch))
W
wuzewu 已提交
135 136 137 138 139
        logger.info('Saving model checkpoint to {}'.format(model_path))
        self.save_model(model_path)

    def save_model(self, save_dir: str):
        '''Save model'''
W
wuzewu 已提交
140 141 142
        model_params_path = os.path.join(save_dir, 'model.pdparams')
        optim_params_path = os.path.join(save_dir, 'model.pdopt')
        paddle.save(self.model.state_dict(), model_params_path)
143
        paddle.save(self.optimizer.state_dict(), optim_params_path)
W
wuzewu 已提交
144 145 146 147 148 149

    def _save_metrics(self):
        with open(os.path.join(self.checkpoint_dir, 'metrics.pkl'), 'wb') as file:
            pickle.dump(self.best_metrics, file)

    def _load_metrics(self):
150 151 152 153 154
        metrics_file = os.path.join(self.checkpoint_dir, 'metrics.pkl')
        if not os.path.exists(metrics_file):
            return

        with open(metrics_file, 'rb') as file:
W
wuzewu 已提交
155 156 157
            self.best_metrics = pickle.load(file)

    def train(self,
158
              train_dataset: paddle.io.Dataset,
W
wuzewu 已提交
159 160 161
              epochs: int = 1,
              batch_size: int = 1,
              num_workers: int = 0,
162
              eval_dataset: paddle.io.Dataset = None,
W
wuzewu 已提交
163
              log_interval: int = 10,
164 165
              save_interval: int = 10,
              collate_fn: Callable = None):
W
wuzewu 已提交
166 167 168 169
        '''
        Train a model with specific config.

        Args:
170
            train_dataset(paddle.io.Dataset) : Dataset to train the model
W
wuzewu 已提交
171 172 173
            epochs(int) : Number of training loops, default is 1.
            batch_size(int) : Batch size of per step, default is 1.
            num_workers(int) : Number of subprocess to load data, default is 0.
W
wuzewu 已提交
174 175
            eval_dataset(paddle.io.Dataset) : The validation dataset, deafult is None. If set, the Trainer will
                execute evaluate function every `save_interval` epochs.
W
wuzewu 已提交
176 177
            log_interval(int) : Log the train infomation every `log_interval` steps.
            save_interval(int) : Save the checkpoint every `save_interval` epochs.
178 179
            collate_fn(callable): function to generate mini-batch data by merging the sample list.
                None for only stack each fields of sample in axis 0(same as :attr::`np.stack(..., axis=0)`). Default None
W
wuzewu 已提交
180
        '''
181 182 183
        if eval_dataset is not None and not hasattr(self.model, 'validation_step'):
            raise NotImplementedError('The specified finetuning model does not support evaluation.')

184 185 186
        batch_sampler = paddle.io.DistributedBatchSampler(
            train_dataset, batch_size=batch_size, shuffle=True, drop_last=False)
        loader = paddle.io.DataLoader(
W
wuzewu 已提交
187 188 189 190
            train_dataset,
            batch_sampler=batch_sampler,
            num_workers=num_workers,
            return_list=True,
191 192
            use_buffer_reader=True,
            collate_fn=collate_fn)
W
wuzewu 已提交
193

194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
        steps_per_epoch = len(batch_sampler)
        timer = Timer(steps_per_epoch * epochs)
        timer.start()

        for i in range(epochs):
            self.current_epoch += 1
            avg_loss = 0
            avg_metrics = defaultdict(int)
            self.model.train()

            for batch_idx, batch in enumerate(loader):
                loss, metrics = self.training_step(batch, batch_idx)
                self.optimizer_step(self.current_epoch, batch_idx, self.optimizer, loss)
                self.optimizer_zero_grad(self.current_epoch, batch_idx, self.optimizer)

                # calculate metrics and loss
                avg_loss += loss.numpy()[0]
                for metric, value in metrics.items():
212 213 214
                    if isinstance(value, paddle.Tensor):
                        value = value.numpy()
                    avg_metrics[metric] += value
215 216 217 218

                timer.count()

                if (batch_idx + 1) % log_interval == 0 and self.local_rank == 0:
W
wuzewu 已提交
219
                    lr = self.optimizer.get_lr()
220 221 222 223 224 225 226
                    avg_loss /= log_interval
                    if self.use_vdl:
                        self.log_writer.add_scalar(tag='TRAIN/loss', step=timer.current_step, value=avg_loss)

                    print_msg = 'Epoch={}/{}, Step={}/{}'.format(self.current_epoch, epochs, batch_idx + 1,
                                                                 steps_per_epoch)
                    print_msg += ' loss={:.4f}'.format(avg_loss)
W
wuzewu 已提交
227

228 229 230 231 232
                    for metric, value in avg_metrics.items():
                        value /= log_interval
                        if self.use_vdl:
                            self.log_writer.add_scalar(
                                tag='TRAIN/{}'.format(metric), step=timer.current_step, value=value)
S
Steffy-zxf 已提交
233 234
                        if isinstance(value, np.ndarray):
                            value = value.item()
235 236 237
                        print_msg += ' {}={:.4f}'.format(metric, value)

                    print_msg += ' lr={:.6f} step/sec={:.2f} | ETA {}'.format(lr, timer.timing, timer.eta)
W
wuzewu 已提交
238

239
                    logger.train(print_msg)
W
wuzewu 已提交
240

241 242
                    avg_loss = 0
                    avg_metrics = defaultdict(int)
W
wuzewu 已提交
243

244 245
                if self.current_epoch % save_interval == 0 and batch_idx + 1 == steps_per_epoch and self.local_rank == 0:
                    if eval_dataset:
246
                        result = self.evaluate(eval_dataset, batch_size, num_workers, collate_fn=collate_fn)
247 248 249 250 251
                        eval_loss = result.get('loss', None)
                        eval_metrics = result.get('metrics', {})
                        if self.use_vdl:
                            if eval_loss:
                                self.log_writer.add_scalar(tag='EVAL/loss', step=timer.current_step, value=eval_loss)
W
wuzewu 已提交
252

253 254 255
                            for metric, value in eval_metrics.items():
                                self.log_writer.add_scalar(
                                    tag='EVAL/{}'.format(metric), step=timer.current_step, value=value)
W
wuzewu 已提交
256

257 258 259 260 261
                        if not self.best_metrics or self.compare_metrics(self.best_metrics, eval_metrics):
                            self.best_metrics = eval_metrics
                            best_model_path = os.path.join(self.checkpoint_dir, 'best_model')
                            self.save_model(best_model_path)
                            self._save_metrics()
W
wuzewu 已提交
262

263 264 265 266 267
                            metric_msg = [
                                '{}={:.4f}'.format(metric, value) for metric, value in self.best_metrics.items()
                            ]
                            metric_msg = ' '.join(metric_msg)
                            logger.eval('Saving best model to {} [best {}]'.format(best_model_path, metric_msg))
W
wuzewu 已提交
268

269
                    self._save_checkpoint()
W
wuzewu 已提交
270

271 272 273 274 275
    def evaluate(self,
                 eval_dataset: paddle.io.Dataset,
                 batch_size: int = 1,
                 num_workers: int = 0,
                 collate_fn: Callable = None):
W
wuzewu 已提交
276 277 278 279
        '''
        Run evaluation and returns metrics.

        Args:
280
            eval_dataset(paddle.io.Dataset) : The validation dataset
W
wuzewu 已提交
281 282
            batch_size(int) : Batch size of per step, default is 1.
            num_workers(int) : Number of subprocess to load data, default is 0.
283 284
            collate_fn(callable): function to generate mini-batch data by merging the sample list.
                None for only stack each fields of sample in axis 0(same as :attr::`np.stack(..., axis=0)`). Default None
W
wuzewu 已提交
285
        '''
286 287 288 289 290 291 292 293 294 295 296 297 298 299
        if self.local_rank == 0:
            batch_sampler = paddle.io.BatchSampler(eval_dataset, batch_size=batch_size, shuffle=False, drop_last=False)

            loader = paddle.io.DataLoader(
                eval_dataset,
                batch_sampler=batch_sampler,
                num_workers=num_workers,
                return_list=True,
                collate_fn=collate_fn)

            self.model.eval()
            avg_loss = num_samples = 0
            sum_metrics = defaultdict(int)
            avg_metrics = defaultdict(int)
W
wuzewu 已提交
300

301 302 303
            with logger.processing('Evaluation on validation dataset'):
                for batch_idx, batch in enumerate(loader):
                    result = self.validation_step(batch, batch_idx)
W
wuzewu 已提交
304

305 306 307 308
                    loss = result.get('loss', None)
                    metrics = result.get('metrics', {})
                    bs = batch[0].shape[0]
                    num_samples += bs
W
wuzewu 已提交
309

310 311
                    if loss:
                        avg_loss += loss.numpy()[0] * bs
W
wuzewu 已提交
312

313 314
                    for metric, value in metrics.items():
                        sum_metrics[metric] += value * bs
W
wuzewu 已提交
315

316 317 318 319 320
            # print avg metrics and loss
            print_msg = '[Evaluation result]'
            if loss:
                avg_loss /= num_samples
                print_msg += ' avg_loss={:.4f}'.format(avg_loss)
W
wuzewu 已提交
321

322
            for metric, value in sum_metrics.items():
323
                avg_metrics[metric] = float(value) / num_samples
324
                print_msg += ' avg_{}={:.4f}'.format(metric, avg_metrics[metric])
325

326
            logger.eval(print_msg)
327

328 329 330
            if loss:
                return {'loss': avg_loss, 'metrics': avg_metrics}
            return {'metrics': avg_metrics}
W
wuzewu 已提交
331

W
wuzewu 已提交
332 333 334 335 336 337 338 339
    def training_step(self, batch: List[paddle.Tensor], batch_idx: int):
        '''
        One step for training, which should be called as forward computation.

        Args:
            batch(list[paddle.Tensor]) : The one batch data
            batch_idx(int) : The index of batch.
        '''
W
wuzewu 已提交
340 341 342 343 344 345 346
        if self.nranks > 1:
            result = self.model._layers.training_step(batch, batch_idx)
        else:
            result = self.model.training_step(batch, batch_idx)

        # process result
        if not isinstance(result, dict):
W
wuzewu 已提交
347
            raise RuntimeError('The return value of `trainning_step` in {} is not a dict'.format(self.model.__class__))
W
wuzewu 已提交
348 349

        loss = result.get('loss', None)
350
        if loss is None:
W
wuzewu 已提交
351 352
            raise RuntimeError('Cannot find loss attribute in the return value of `trainning_step` of {}'.format(
                self.model.__class__))
W
wuzewu 已提交
353 354 355 356

        metrics = result.get('metrics', {})

        # back prop
W
wuzewu 已提交
357
        loss.backward()
W
wuzewu 已提交
358 359 360 361

        return loss, metrics

    def validation_step(self, batch: Any, batch_idx: int):
W
wuzewu 已提交
362 363 364 365 366 367 368
        '''
        One step for validation, which should be called as forward computation.

        Args:
            batch(list[paddle.Tensor]) : The one batch data
            batch_idx(int) : The index of batch.
        '''
W
wuzewu 已提交
369
        if self.nranks > 1:
W
wuzewu 已提交
370
            result = self.model._layers.validation_step(batch, batch_idx)
W
wuzewu 已提交
371 372 373 374
        else:
            result = self.model.validation_step(batch, batch_idx)
        return result

W
wuzewu 已提交
375
    def optimizer_step(self, epoch_idx: int, batch_idx: int, optimizer: paddle.optimizer.Optimizer,
376
                       loss: paddle.Tensor):
W
wuzewu 已提交
377 378 379 380 381 382 383 384 385
        '''
        One step for optimize.

        Args:
            epoch_idx(int) : The index of epoch.
            batch_idx(int) : The index of batch.
            optimizer(paddle.optimizer.Optimizer) : Optimizer used.
            loss(paddle.Tensor) : Loss tensor.
        '''
W
wuzewu 已提交
386
        self.optimizer.step()
387
        self.learning_rate_step(epoch_idx, batch_idx, self.optimizer._learning_rate, loss)
W
wuzewu 已提交
388 389

    def learning_rate_step(self, epoch_idx: int, batch_idx: int, learning_rate: Generic, loss: paddle.Tensor):
W
wuzewu 已提交
390
        if isinstance(learning_rate, paddle.optimizer.lr.LRScheduler):
W
wuzewu 已提交
391
            learning_rate.step()
W
wuzewu 已提交
392

W
wuzewu 已提交
393 394 395 396 397 398 399 400 401 402
    def optimizer_zero_grad(self, epoch_idx: int, batch_idx: int, optimizer: paddle.optimizer.Optimizer):
        '''
        One step for clear gradients.

        Args:
            epoch_idx(int) : The index of epoch.
            batch_idx(int) : The index of batch.
            optimizer(paddle.optimizer.Optimizer) : Optimizer used.
            loss(paddle.Tensor) : Loss tensor.
        '''
W
wuzewu 已提交
403 404 405 406 407 408
        self.model.clear_gradients()

    def _compare_metrics(self, old_metric: dict, new_metric: dict):
        '''Compare the whether the new metric value is better than the old one'''
        mainkey = list(new_metric.keys())[0]
        return old_metric[mainkey] < new_metric[mainkey]