trainer.py 12.9 KB
Newer Older
W
wuzewu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
# coding:utf-8
# Copyright (c) 2020  PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import pickle
import time
from collections import defaultdict
from typing import Any, Callable

import paddle.fluid as fluid
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import ParallelEnv
from paddle.fluid.io import DataLoader
from paddle.incubate.hapi.distributed import DistributedBatchSampler
from visualdl import LogWriter

from paddlehub.utils.log import logger
from paddlehub.utils.utils import Timer


class Trainer(object):
    '''
    Trainer
    '''

    def __init__(self,
                 model: fluid.dygraph.Layer,
                 strategy: fluid.optimizer.Optimizer,
                 use_vdl: bool = True,
                 checkpoint_dir: str = None,
                 compare_metrics: Callable = None):
        self.nranks = ParallelEnv().nranks
        self.local_rank = ParallelEnv().local_rank
        self.model = model
        self.optimizer = strategy
        self.checkpoint_dir = checkpoint_dir if checkpoint_dir else 'ckpt_{}'.format(time.time())

        if self.local_rank == 0 and not os.path.exists(self.checkpoint_dir):
            os.makedirs(self.checkpoint_dir)

        self.use_vdl = use_vdl
        if self.local_rank == 0 and self.use_vdl:
            vdl_dir = os.path.join(self.checkpoint_dir, 'visualization')
            self.log_writer = LogWriter(vdl_dir)

        self.current_epoch = 0
        self.best_metrics = defaultdict(int)

        if self.nranks > 1:
            context = fluid.dygraph.prepare_context()
            self.model = fluid.dygraph.DataParallel(self.model, context)
        self.compare_metrics = self._compare_metrics if not compare_metrics else compare_metrics

        self._load_checkpoint()

    def _load_checkpoint(self):
        '''Load checkpoint and state dict'''
        max_epoch = -1

        for file in os.listdir(self.checkpoint_dir):
            if not file.startswith('epoch_'):
                continue

            _epoch = file.split('_')[-1]
            if not _epoch.isdigit():
                continue

            max_epoch = max(max_epoch, int(_epoch))

        if max_epoch == -1:
            if self.local_rank == 0:
                logger.warning('PaddleHub model checkpoint not found, start from scratch...')
            return

        # load best metrics
        self._load_metrics()

        self.current_epoch = max_epoch
        metric_msg = ['{}={:.4f}'.format(metric, value) for metric, value in self.best_metrics.items()]
        metric_msg = ' '.join(metric_msg)
        if self.local_rank == 0:
            logger.info('PaddleHub model checkpoint loaded. current_epoch={} [{}]'.format(
                self.current_epoch, metric_msg))

        # load model from checkpoint
        model_path = os.path.join(self.checkpoint_dir, '{}_{}'.format('epoch', self.current_epoch), 'model')
        state_dict, _ = fluid.load_dygraph(model_path)
        self.model.set_dict(state_dict)

    def _save_checkpoint(self):
        '''Save model checkpoint and state dict'''
        model_path = os.path.join(self.checkpoint_dir, '{}_{}'.format('epoch', self.current_epoch), 'model')
        logger.info('Saving model checkpoint to {}'.format(model_path))
        self.save_model(model_path)

    def save_model(self, save_dir: str):
        '''Save model'''
        fluid.save_dygraph(self.model.state_dict(), save_dir)

    def _save_metrics(self):
        with open(os.path.join(self.checkpoint_dir, 'metrics.pkl'), 'wb') as file:
            pickle.dump(self.best_metrics, file)

    def _load_metrics(self):
        with open(os.path.join(self.checkpoint_dir, 'metrics.pkl'), 'rb') as file:
            self.best_metrics = pickle.load(file)

    def train(self,
              train_dataset: fluid.io.Dataset,
              epochs: int = 1,
              batch_size: int = 1,
              num_workers: int = 0,
              eval_dataset: fluid.io.Dataset = None,
              log_interval: int = 10,
              save_interval: int = 10):
        '''
        Train a model with specific config.

        Args:
            train_dataset(fluid.io.Dataset) : Dataset to train the model
            epochs(int) : Number of training loops, default is 1.
            batch_size(int) : Batch size of per step, default is 1.
            num_workers(int) : Number of subprocess to load data, default is 0.
            eval_dataset(fluid.io.Dataset) : The validation dataset, deafult is None. If set, the Trainer will execute evaluate function every `save_interval` epochs.
            log_interval(int) : Log the train infomation every `log_interval` steps.
            save_interval(int) : Save the checkpoint every `save_interval` epochs.
        '''
        use_gpu = True
        place = fluid.CUDAPlace(ParallelEnv().dev_id) if use_gpu else fluid.CPUPlace()
        with fluid.dygraph.guard(place):
            batch_sampler = DistributedBatchSampler(train_dataset, batch_size=batch_size, shuffle=True, drop_last=False)
            loader = DataLoader(
                train_dataset, batch_sampler=batch_sampler, places=place, num_workers=num_workers, return_list=True)

            steps_per_epoch = len(batch_sampler)
            timer = Timer(steps_per_epoch * epochs)
            timer.start()

            for i in range(epochs):
                self.current_epoch += 1
                avg_loss = 0
                avg_metrics = defaultdict(int)
                self.model.train()

                for batch_idx, batch in enumerate(loader):
                    loss, metrics = self.training_step(batch, batch_idx)
                    self.optimizer_step(self.current_epoch, batch_idx, self.optimizer, loss)
                    self.optimizer_zero_grad(self.current_epoch, batch_idx, self.optimizer)

                    # calculate metrics and loss
                    avg_loss += loss.numpy()[0]
                    for metric, value in metrics.items():
                        avg_metrics[metric] += value.numpy()[0]

                    timer.count()

                    if (batch_idx + 1) % log_interval == 0 and self.local_rank == 0:
                        lr = self.optimizer.current_step_lr()
                        avg_loss /= log_interval
                        if self.use_vdl:
                            self.log_writer.add_scalar(tag='TRAIN/loss', step=timer.current_step, value=avg_loss)

                        print_msg = 'Epoch={}/{}, Step={}/{}'.format(self.current_epoch, epochs, batch_idx + 1,
                                                                     steps_per_epoch)
                        print_msg += ' loss={:.4f}'.format(avg_loss)

                        for metric, value in avg_metrics.items():
                            value /= log_interval
                            if self.use_vdl:
                                self.log_writer.add_scalar(
                                    tag='TRAIN/{}'.format(metric), step=timer.current_step, value=value)
                            print_msg += ' {}={:.4f}'.format(metric, value)

                        print_msg += ' lr={:.6f} step/sec={:.2f} | ETA {}'.format(lr, timer.timing, timer.eta)

                        logger.train(print_msg)

                        avg_loss = 0
                        avg_metrics = defaultdict(int)

                    if self.current_epoch % save_interval == 0 and batch_idx + 1 == steps_per_epoch and self.local_rank == 0:
                        if eval_dataset:
                            result = self.evaluate(eval_dataset, batch_size, num_workers)
                            eval_loss = result.get('loss', None)
                            eval_metrics = result.get('metrics', {})
                            if self.use_vdl:
                                if eval_loss:
                                    self.log_writer.add_scalar(
                                        tag='EVAL/loss', step=timer.current_step, value=eval_loss)

                                for metric, value in eval_metrics.items():
                                    self.log_writer.add_scalar(
                                        tag='EVAL/{}'.format(metric), step=timer.current_step, value=value)

                            if not self.best_metrics or self.compare_metrics(self.best_metrics, eval_metrics):
                                self.best_metrics = eval_metrics
                                best_model_path = os.path.join(self.checkpoint_dir, 'best_model')
                                self.save_model(best_model_path)
                                self._save_metrics()

                                metric_msg = [
                                    '{}={:.4f}'.format(metric, value) for metric, value in self.best_metrics.items()
                                ]
                                metric_msg = ' '.join(metric_msg)
                                logger.eval('Saving best model to {} [best {}]'.format(best_model_path, metric_msg))

                        self._save_checkpoint()

    def evaluate(self, eval_dataset: fluid.io.Dataset, batch_size: int = 1, num_workers: int = 0):
        '''
        Run evaluation and returns metrics.

        Args:
            eval_dataset(fluid.io.Dataset) : The validation dataset
            batch_size(int) : Batch size of per step, default is 1.
            num_workers(int) : Number of subprocess to load data, default is 0.
        '''
        use_gpu = True
        place = fluid.CUDAPlace(ParallelEnv().dev_id) if use_gpu else fluid.CPUPlace()
        with fluid.dygraph.guard(place):
            batch_sampler = DistributedBatchSampler(eval_dataset, batch_size=batch_size, shuffle=False, drop_last=False)

            loader = DataLoader(
                eval_dataset, batch_sampler=batch_sampler, places=place, num_workers=num_workers, return_list=True)

            self.model.eval()
            avg_loss = num_samples = 0
            sum_metrics = defaultdict(int)
            avg_metrics = defaultdict(int)

            for batch_idx, batch in enumerate(loader):
                result = self.validation_step(batch, batch_idx)
                loss = result.get('loss', None)
                metrics = result.get('metrics', {})
                bs = batch[0].shape[0]
                num_samples += bs

                if loss:
                    avg_loss += loss.numpy()[0] * bs

                for metric, value in metrics.items():
                    sum_metrics[metric] += value.numpy()[0] * bs

            # print avg metrics and loss
            print_msg = '[Evaluation result]'
            if loss:
                avg_loss /= num_samples
                print_msg += ' avg_loss={:.4f}'.format(avg_loss)

            for metric, value in sum_metrics.items():
                avg_metrics[metric] = value / num_samples
                print_msg += ' avg_{}={:.4f}'.format(metric, avg_metrics[metric])

            logger.eval(print_msg)

            if loss:
                return {'loss': avg_loss, 'metrics': avg_metrics}
            return {'metrics': avg_metrics}

    def training_step(self, batch: Any, batch_idx: int):
        if self.nranks > 1:
            result = self.model._layers.training_step(batch, batch_idx)
        else:
            result = self.model.training_step(batch, batch_idx)

        # process result
        if not isinstance(result, dict):
            raise RuntimeError()

        loss = result.get('loss', None)
        if not loss:
            raise RuntimeError()

        metrics = result.get('metrics', {})

        # back prop
        if self.nranks > 1:
            self.model.scale_loss(loss)
            loss.backward()
            self.model.apply_collective_grads()
        else:
            loss.backward()

        return loss, metrics

    def validation_step(self, batch: Any, batch_idx: int):
        if self.nranks > 1:
            result = self.model._layers.validation_step(batch, batch_idx)
        else:
            result = self.model.validation_step(batch, batch_idx)
        return result

    def optimizer_step(self, current_epoch: int, batch_idx: int, optimizer: fluid.optimizer.Optimizer,
                       loss: fluid.core.VarBase):
        self.optimizer.minimize(loss)

    def optimizer_zero_grad(self, current_epoch: int, batch_idx: int, optimizer: fluid.optimizer.Optimizer):
        self.model.clear_gradients()

    def _compare_metrics(self, old_metric: dict, new_metric: dict):
        '''Compare the whether the new metric value is better than the old one'''
        mainkey = list(new_metric.keys())[0]
        return old_metric[mainkey] < new_metric[mainkey]