base_task.py 38.5 KB
Newer Older
K
kinghuin 已提交
1 2
# coding:utf-8
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
Z
Zeyu Chen 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16 17 18 19
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Z
Zeyu Chen 已提交
20
import os
W
wuzewu 已提交
21
import contextlib
22
import time
W
wuzewu 已提交
23
import copy
K
kinghuin 已提交
24 25
import inspect
from functools import partial
K
kinghuin 已提交
26
from collections import OrderedDict
K
kinghuin 已提交
27 28 29 30 31
import six
if six.PY2:
    from inspect import getargspec as get_args
else:
    from inspect import getfullargspec as get_args
S
Steffy-zxf 已提交
32
import numpy as np
33
import paddle
W
wuzewu 已提交
34
import paddle.fluid as fluid
35
from visualdl import LogWriter
W
wuzewu 已提交
36 37

import paddlehub as hub
S
Steffy-zxf 已提交
38
from paddlehub.common.paddle_helper import dtype_map, clone_program
K
kinghuin 已提交
39
from paddlehub.common.utils import mkdir
40
from paddlehub.common.dir import tmp_dir
W
wuzewu 已提交
41 42 43 44 45 46
from paddlehub.common.logger import logger
from paddlehub.finetune.checkpoint import load_checkpoint, save_checkpoint
from paddlehub.finetune.config import RunConfig


class RunState(object):
47 48 49 50 51 52 53
    """
    RunState is used to save the result of every running step

    Args:
        length (int): the number of fetch result
    """

W
wuzewu 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    def __init__(self, length):
        self.run_time_begin = time.time()
        self.run_step = 0
        self.run_examples = 0
        self.run_results = [0] * length
        self.run_time_used = 0
        self.run_speed = 0.0

    def __add__(self, other):
        self.run_step += other.run_step
        self.run_examples += other.run_examples
        for index in range(len(self.run_results)):
            self.run_results[index] += other.run_results[index]
        return self

    def update(self):
        self.run_time_used = time.time() - self.run_time_begin
        self.run_speed = self.run_step / self.run_time_used
        return self


W
wuzewu 已提交
75
class RunEnv(object):
76 77 78 79
    """
    RunEnv saves the running environment of the train/dev/predict phase, including program, reader, metrics and so on.
    """

W
wuzewu 已提交
80 81 82 83 84 85 86 87 88
    def __init__(self):
        self.current_epoch = 0
        self.current_step = 0
        self.main_program = None
        self.start_program = None
        self.main_program_compiled = None
        self.py_reader = None
        self.reader = None
        self.loss = None
W
wuzewu 已提交
89
        self.labels = None
W
wuzewu 已提交
90 91 92 93 94 95 96 97 98 99 100
        self.metrics = None
        self.is_inititalized = False
        self.UNG = copy.deepcopy(fluid.unique_name.generator)

    def __setattr__(self, key, value):
        self.__dict__[key] = value

    def __getattr__(self, key):
        return self.__dict__[key]


K
kinghuin 已提交
101
class TaskHooks():
102 103 104 105
    """
    TaskHooks can handle some tasks during the spectific event.
    """

K
kinghuin 已提交
106 107
    def __init__(self):
        self._registered_hooks = {
K
kinghuin 已提交
108 109 110 111 112 113 114 115 116 117 118 119
            "build_env_start_event": OrderedDict(),
            "build_env_end_event": OrderedDict(),
            "finetune_start_event": OrderedDict(),
            "finetune_end_event": OrderedDict(),
            "predict_start_event": OrderedDict(),
            "predict_end_event": OrderedDict(),
            "eval_start_event": OrderedDict(),
            "eval_end_event": OrderedDict(),
            "log_interval_event": OrderedDict(),
            "save_ckpt_interval_event": OrderedDict(),
            "eval_interval_event": OrderedDict(),
            "run_step_event": OrderedDict(),
K
kinghuin 已提交
120 121
        }
        self._hook_params_num = {
K
kinghuin 已提交
122 123 124 125 126 127 128 129 130 131 132 133
            "build_env_start_event": 1,
            "build_env_end_event": 1,
            "finetune_start_event": 1,
            "finetune_end_event": 2,
            "predict_start_event": 1,
            "predict_end_event": 2,
            "eval_start_event": 1,
            "eval_end_event": 2,
            "log_interval_event": 2,
            "save_ckpt_interval_event": 1,
            "eval_interval_event": 1,
            "run_step_event": 2,
K
kinghuin 已提交
134 135 136
        }

    def add(self, hook_type, name=None, func=None):
137 138 139 140 141 142 143 144
        """
        add the handler function to spectific event.

        Args:
            hook_type (str): the spectific event name
            name (str): the handler function name, default None
            func (func): the handler function, default None
        """
K
kinghuin 已提交
145 146 147
        if not func or not callable(func):
            raise TypeError(
                "The hook function is empty or it is not a function")
K
kinghuin 已提交
148
        if name == None:
K
kinghuin 已提交
149 150 151
            name = "hook_%s" % id(func)

        # check validity
K
kinghuin 已提交
152 153
        if not isinstance(name, str) or name.strip() == "":
            raise TypeError("The hook name must be a non-empty string")
K
kinghuin 已提交
154 155 156 157 158 159 160
        if hook_type not in self._registered_hooks:
            raise ValueError("hook_type: %s does not exist" % (hook_type))
        if name in self._registered_hooks[hook_type]:
            raise ValueError(
                "name: %s has existed in hook_type:%s, use modify method to modify it"
                % (name, hook_type))
        else:
K
kinghuin 已提交
161
            args_num = len(get_args(func).args)
K
kinghuin 已提交
162 163 164 165 166 167 168
            if args_num != self._hook_params_num[hook_type]:
                raise ValueError(
                    "The number of parameters to the hook hook_type:%s should be %i"
                    % (hook_type, self._hook_params_num[hook_type]))
            self._registered_hooks[hook_type][name] = func

    def delete(self, hook_type, name):
169 170 171 172 173 174 175
        """
        delete the handler function of spectific event.

        Args:
            hook_type (str): the spectific event name
            name (str): the handler function name
        """
K
kinghuin 已提交
176 177 178 179 180 181 182 183
        if self.exist(hook_type, name):
            del self._registered_hooks[hook_type][name]
        else:
            raise ValueError(
                "No hook_type: %s exists or name: %s does not exist in hook_type: %s"
                % (hook_type, name, hook_type))

    def modify(self, hook_type, name, func):
184 185 186 187 188 189 190 191
        """
        modify the handler function of spectific event.

        Args:
            hook_type (str): the spectific event name
            name (str): the handler function name
            func (func): the new handler function
        """
K
kinghuin 已提交
192 193 194 195 196 197 198 199 200 201 202 203
        if not (isinstance(name, str) and callable(func)):
            raise TypeError(
                "The hook name must be a string, and the hook function must be a function"
            )
        if self.exist(hook_type, name):
            self._registered_hooks[hook_type][name] = func
        else:
            raise ValueError(
                "No hook_type: %s exists or name: %s does not exist in hook_type: %s"
                % (hook_type, name, hook_type))

    def exist(self, hook_type, name):
204 205 206 207 208 209 210 211 212 213
        """
        check if the the handler function of spectific event is existing.

        Args:
            hook_type (str): the spectific event name
            name (str): the handler function name

        Returns:
            bool: True or False
        """
K
kinghuin 已提交
214 215 216 217 218 219
        if hook_type not in self._registered_hooks \
                or name not in self._registered_hooks[hook_type]:
            return False
        else:
            return True

K
kinghuin 已提交
220
    def info(self, show_default=False):
221 222 223 224 225 226 227 228 229
        """
        get the hooks information, including the source code.

        Args:
            show_default (bool): show the information of Paddlehub default hooks or not, default False

        Returns:
            str: the formatted string of the hooks information
        """
K
kinghuin 已提交
230 231 232 233 234
        # formatted output the source code
        ret = ""
        for hook_type, hooks in self._registered_hooks.items():
            already_print_type = False
            for name, func in hooks.items():
K
kinghuin 已提交
235
                if name == "default" and not show_default:
K
kinghuin 已提交
236 237 238 239 240 241 242 243 244 245 246 247
                    continue
                if not already_print_type:
                    ret += "hook_type: %s{\n" % hook_type
                    already_print_type = True
                source = inspect.getsource(func)
                ret += " name: %s{\n" % name
                for line in source.split("\n"):
                    ret += "  %s\n" % line
                ret += " }\n"
            if already_print_type:
                ret += "}\n"
        if not ret:
K
kinghuin 已提交
248
            ret = "Not any customized hooks have been defined, you can set show_default=True to see the default hooks information"
K
kinghuin 已提交
249 250 251 252 253 254
        return ret

    def __getitem__(self, hook_type):
        return self._registered_hooks[hook_type]

    def __repr__(self):
255
        return self.info(show_default=False)
K
kinghuin 已提交
256 257


K
kinghuin 已提交
258
class BaseTask(object):
259 260 261 262 263 264 265 266 267 268 269 270
    """
    BaseTask is the base class of all the task. It will complete the building of all the running environment.

    Args:
        feed_list (list): the inputs name
        data_reader (object): data reader for the task
        main_program (object): the customized main_program, default None
        startup_program (object): the customized startup_program, default None
        config (object): the config for the task, default None
        metrics_choices (list): metrics used to the task, default ["acc"]
    """

W
wuzewu 已提交
271
    def __init__(self,
W
wuzewu 已提交
272 273 274 275
                 feed_list,
                 data_reader,
                 main_program=None,
                 startup_program=None,
K
kinghuin 已提交
276 277
                 config=None,
                 metrics_choices="default"):
W
wuzewu 已提交
278 279 280
        # base item
        self._base_data_reader = data_reader
        self._base_feed_list = feed_list
K
kinghuin 已提交
281 282 283 284 285 286 287 288 289 290 291 292

        # metrics item
        self.best_score = -999
        if metrics_choices == "default":
            metrics_choices = ["acc"]
        elif metrics_choices == None:
            metrics_choices = []
        if isinstance(metrics_choices, list):
            self.metrics_choices = metrics_choices
        else:
            self.metrics_choices = [metrics_choices]

W
wuzewu 已提交
293
        if main_program is None:
S
Steffy-zxf 已提交
294 295 296
            self._base_main_program = clone_program(
                fluid.default_main_program(), for_test=False)

W
wuzewu 已提交
297
        else:
S
Steffy-zxf 已提交
298 299
            self._base_main_program = clone_program(
                main_program, for_test=False)
W
wuzewu 已提交
300
        if startup_program is None:
S
Steffy-zxf 已提交
301 302
            self._base_startup_program = clone_program(
                fluid.default_startup_program(), for_test=False)
W
wuzewu 已提交
303
        else:
S
Steffy-zxf 已提交
304 305
            self._base_startup_program = clone_program(
                startup_program, for_test=False)
W
wuzewu 已提交
306
        self.is_checkpoint_loaded = False
S
Steffy-zxf 已提交
307
        self._base_compiled_program = None
W
wuzewu 已提交
308 309

        # run config
W
wuzewu 已提交
310
        self.config = config if config else RunConfig()
311 312 313
        self.place = self.places[0]
        self.device_count = len(self.places)

W
wuzewu 已提交
314 315 316 317 318 319 320 321
        if self.config.use_data_parallel:
            if not self.config.use_pyreader and self.config.batch_size < self.device_count:
                logger.warning(
                    "Batch size({}) is less than the count of devices({}), which is not allowed in current Paddle versions"
                    .format(self.config.batch_size, self.device_count))
                logger.warning("Batch size automatically adjusted to {}".format(
                    self.device_count))
                self.config._batch_size = self.device_count
322

W
wuzewu 已提交
323
        self.exe = fluid.Executor(place=self.place)
W
wuzewu 已提交
324 325 326 327 328
        self.build_strategy = fluid.BuildStrategy()

        # run environment
        self._phases = []
        self._envs = {}
W
wuzewu 已提交
329
        self._predict_data = None
330
        self._vdl_writer = None
W
wuzewu 已提交
331

K
kinghuin 已提交
332 333 334 335
        # event hooks
        self._hooks = TaskHooks()
        for hook_type, event_hooks in self._hooks._registered_hooks.items():
            self._hooks.add(hook_type, "default",
K
kinghuin 已提交
336 337
                            eval("self._default_%s" % hook_type))
            setattr(BaseTask, "_%s" % hook_type,
K
kinghuin 已提交
338 339
                    self.create_event_function(hook_type))

K
kinghuin 已提交
340 341
        # accelerate predict
        self.is_best_model_loaded = False
342
        self._predictor = None
K
kinghuin 已提交
343

W
wuzewu 已提交
344 345
        # set default phase
        self.enter_phase("train")
W
wuzewu 已提交
346 347 348

    @contextlib.contextmanager
    def phase_guard(self, phase):
W
wuzewu 已提交
349 350 351 352 353
        self.enter_phase(phase)
        yield
        self.exit_phase()

    def enter_phase(self, phase):
W
wuzewu 已提交
354 355
        if phase not in ["train", "val", "dev", "test", "predict", "inference"]:
            raise RuntimeError()
K
kinghuin 已提交
356 357 358 359
        if phase in ["val", "dev"]:
            phase = "dev"
        elif phase in ["predict", "inference"]:
            phase = "predict"
W
wuzewu 已提交
360
        self._phases.append(phase)
W
wuzewu 已提交
361 362

    def exit_phase(self):
W
wuzewu 已提交
363 364
        self._phases = self._phases[:-1]

W
wuzewu 已提交
365 366 367 368
    def init_if_necessary(self):
        if not self.is_checkpoint_loaded:
            if not self.load_checkpoint():
                self.exe.run(self._base_startup_program)
K
kinghuin 已提交
369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384
            self.is_checkpoint_loaded = True
            self.is_best_model_loaded = False

    def init_if_load_best_model(self):
        if not self.is_best_model_loaded:
            best_model_path = os.path.join(self.config.checkpoint_dir,
                                           "best_model")
            logger.info("Load the best model from %s" % best_model_path)
            if os.path.exists(best_model_path):
                self.load_parameters(best_model_path)
                self.is_checkpoint_loaded = False
                self.is_best_model_loaded = True
            else:
                self.init_if_necessary()
        else:
            logger.info("The best model has been loaded")
W
wuzewu 已提交
385

W
wuzewu 已提交
386
    def _build_env(self):
387 388 389
        """
        building the program and strategy for specific running phase.
        """
W
wuzewu 已提交
390 391 392 393 394
        if self.env.is_inititalized:
            return

        self._build_env_start_event()
        self.env.is_inititalized = True
S
Steffy-zxf 已提交
395
        self.env.main_program = clone_program(
396
            self._base_main_program, for_test=False)
S
Steffy-zxf 已提交
397

W
wuzewu 已提交
398 399 400 401
        self.env.startup_program = fluid.Program()
        with fluid.program_guard(self.env.main_program,
                                 self._base_startup_program):
            with fluid.unique_name.guard(self.env.UNG):
402
                self.env.outputs = self._build_net()
W
wuzewu 已提交
403
                if self.is_train_phase or self.is_test_phase:
W
wuzewu 已提交
404
                    self.env.labels = self._add_label()
W
wuzewu 已提交
405 406
                    self.env.loss = self._add_loss()
                    self.env.metrics = self._add_metrics()
W
wuzewu 已提交
407

W
wuzewu 已提交
408
        if self.is_predict_phase or self.is_test_phase:
W
wuzewu 已提交
409 410
            self.env.main_program = clone_program(
                self.env.main_program, for_test=True)
W
wuzewu 已提交
411 412 413
            hub.common.paddle_helper.set_op_attr(
                self.env.main_program, is_test=True)

W
wuzewu 已提交
414 415 416 417 418 419 420 421 422
        if self.config.enable_memory_optim:
            for var_name in self.fetch_list:
                var = self.env.main_program.global_block().vars[var_name]
                var.persistable = True

        if self.is_train_phase:
            with fluid.program_guard(self.env.main_program,
                                     self._base_startup_program):
                with fluid.unique_name.guard(self.env.UNG):
K
kinghuin 已提交
423 424 425
                    self.scheduled_lr, self.max_train_steps = self.config.strategy.execute(
                        self.loss, self._base_data_reader, self.config,
                        self.device_count)
W
wuzewu 已提交
426 427 428 429 430 431

        if self.is_train_phase:
            loss_name = self.env.loss.name
        else:
            loss_name = None

K
kinghuin 已提交
432
        share_vars_from = self._base_compiled_program
W
wuzewu 已提交
433

W
wuzewu 已提交
434
        if not self.config.use_data_parallel:
W
wuzewu 已提交
435
            self.env.main_program_compiled = None
W
wuzewu 已提交
436 437 438 439 440
        else:
            self.env.main_program_compiled = fluid.CompiledProgram(
                self.env.main_program).with_data_parallel(
                    loss_name=loss_name,
                    share_vars_from=share_vars_from,
441 442
                    build_strategy=self.build_strategy,
                    places=self.places)
W
wuzewu 已提交
443 444 445 446

        self.exe.run(self.env.startup_program)
        self._build_env_end_event()

447 448 449
    @property
    def places(self):
        if self.config.use_cuda:
W
wuzewu 已提交
450 451 452 453 454 455 456
            _places = fluid.framework.cuda_places()
        else:
            _places = fluid.framework.cpu_places()

        if not self.config.use_data_parallel:
            return [_places[0]]
        return _places
457

S
Steffy-zxf 已提交
458 459 460 461
    @property
    def return_numpy(self):
        return True

W
wuzewu 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481
    @property
    def is_train_phase(self):
        return self.phase in ["train"]

    @property
    def is_test_phase(self):
        return self.phase in ["val", "dev", "test"]

    @property
    def is_predict_phase(self):
        return self.phase in ["predict", "inference"]

    @property
    def phase(self):
        return self._phases[-1]

    @property
    def env(self):
        phase = self.phase
        if phase in ["val", "dev", "test"]:
K
kinghuin 已提交
482
            phase = "dev"
W
wuzewu 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
        if not phase in self._envs:
            self._envs[phase] = RunEnv()
        return self._envs[phase]

    @property
    def py_reader(self):
        if not self.env.is_inititalized:
            self._build_env()
        return self.env.py_reader

    @property
    def current_step(self):
        if not self.env.is_inititalized:
            self._build_env()
        return self.env.current_step

    @property
    def current_epoch(self):
        if not self.env.is_inititalized:
            self._build_env()
        return self.env.current_epoch

    @property
Z
Zeyu Chen 已提交
506
    def main_program(self):
W
wuzewu 已提交
507 508 509
        if not self.env.is_inititalized:
            self._build_env()
        return self.env.main_program
Z
Zeyu Chen 已提交
510

W
wuzewu 已提交
511
    @property
Z
Zeyu Chen 已提交
512
    def startup_program(self):
W
wuzewu 已提交
513 514 515 516 517 518 519 520 521 522
        if not self.env.is_inititalized:
            self._build_env()
        return self.env.startup_program

    @property
    def main_program_compiled(self):
        if not self.env.is_inititalized:
            self._build_env()
        return self.env.main_program_compiled

W
wuzewu 已提交
523 524 525
    @property
    def main_program_to_be_run(self):
        if self.config.use_data_parallel:
K
kinghuin 已提交
526 527
            if self._base_compiled_program is None:
                self._base_compiled_program = self.env.main_program_compiled
W
wuzewu 已提交
528 529 530
            return self.main_program_compiled
        return self.main_program

W
wuzewu 已提交
531 532
    @property
    def reader(self):
W
wuzewu 已提交
533 534 535 536
        if self.is_predict_phase:
            data = self._predict_data
        else:
            data = None
W
wuzewu 已提交
537
        self.env.reader = self._base_data_reader.data_generator(
538 539 540 541
            batch_size=self.config.batch_size,
            phase=self.phase,
            data=data,
            return_list=not self.config.use_pyreader)
W
wuzewu 已提交
542 543 544 545 546 547 548 549 550 551 552 553
        return self.env.reader

    @property
    def loss(self):
        if self.is_predict_phase:
            raise RuntimeError()

        if not self.env.is_inititalized:
            self._build_env()
        return self.env.loss

    @property
W
wuzewu 已提交
554
    def labels(self):
W
wuzewu 已提交
555 556 557 558 559
        if self.is_predict_phase:
            raise RuntimeError()

        if not self.env.is_inititalized:
            self._build_env()
W
wuzewu 已提交
560
        return self.env.labels
W
wuzewu 已提交
561 562

    @property
563
    def outputs(self):
W
wuzewu 已提交
564 565
        if not self.env.is_inititalized:
            self._build_env()
566
        return self.env.outputs
W
wuzewu 已提交
567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584

    @property
    def metrics(self):
        if self.is_predict_phase:
            raise RuntimeError()

        if not self.env.is_inititalized:
            self._build_env()
        return self.env.metrics

    @property
    def unique_name_generator(self):
        return self.env.UNG

    @property
    def feed_list(self):
        feed_list = [varname for varname in self._base_feed_list]
        if self.is_train_phase or self.is_test_phase:
W
wuzewu 已提交
585
            feed_list += [label.name for label in self.labels]
W
wuzewu 已提交
586 587 588 589 590 591 592 593 594 595 596
        return feed_list

    @property
    def feed_var_list(self):
        vars = self.main_program.global_block().vars
        return [vars[varname] for varname in self.feed_list]

    @property
    def fetch_list(self):
        if self.is_train_phase or self.is_test_phase:
            return [metric.name for metric in self.metrics] + [self.loss.name]
597
        return [output.name for output in self.outputs]
W
wuzewu 已提交
598

W
wuzewu 已提交
599 600 601 602 603
    @property
    def fetch_var_list(self):
        vars = self.main_program.global_block().vars
        return [vars[varname] for varname in self.fetch_list]

604
    @property
605
    def vdl_writer(self):
606
        """
607
        get vdl_writer for visualization.
608
        """
609 610 611
        if not os.path.exists(self.config.checkpoint_dir):
            mkdir(self.config.checkpoint_dir)
        tb_log_dir = os.path.join(self.config.checkpoint_dir, "visualization")
612 613 614
        if not self._vdl_writer:
            self._vdl_writer = LogWriter(tb_log_dir)
        return self._vdl_writer
615

K
kinghuin 已提交
616
    def create_event_function(self, hook_type):
617 618 619 620 621 622 623 624 625 626
        """
        create handlers for specific event.

        Args:
            hook_type (str): specific event name

        Returns:
            func: executable function, the class method will receive a parameter named self.
        """

K
kinghuin 已提交
627
        def hook_function(self, *args):
628
            # all the handler in self._hooks[hook_type] will be configured to executable
K
kinghuin 已提交
629 630 631 632 633 634 635 636 637 638 639 640
            for name, func in self._hooks[hook_type].items():
                if inspect.ismethod(func):
                    func(*args)
                else:
                    partial(func, self)(*args)

        return hook_function

    @property
    def hooks(self):
        return self._hooks

641 642 643 644 645 646 647 648 649 650 651
    def hooks_info(self, show_default=False):
        """
        get the hooks information, including the source code.

        Args:
            show_default (bool): show the information of Paddlehub default hooks or not, default False

        Returns:
            str: the formatted string of the hooks information
        """
        return self._hooks.info(show_default)
K
kinghuin 已提交
652 653

    def add_hook(self, hook_type, name=None, func=None):
654 655 656 657 658 659 660 661
        """
        add the handler function to spectific event.

        Args:
            hook_type (str): the spectific event name
            name (str): the handler function name, default None
            func (func): the handler function, default None
        """
K
kinghuin 已提交
662 663
        if name == None:
            name = "hook_%s" % id(func)
K
kinghuin 已提交
664
        self._hooks.add(hook_type, name=name, func=func)
K
kinghuin 已提交
665
        logger.info("Add hook %s:%s successfully" % (hook_type, name))
K
kinghuin 已提交
666 667

    def delete_hook(self, hook_type, name):
668 669 670 671 672 673 674
        """
        delete the handler function of spectific event.

        Args:
            hook_type (str): the spectific event name
            name (str): the handler function name
        """
K
kinghuin 已提交
675
        self._hooks.delete(hook_type, name)
K
kinghuin 已提交
676
        logger.info("Delete hook %s:%s successfully" % (hook_type, name))
K
kinghuin 已提交
677 678

    def modify_hook(self, hook_type, name, func):
679 680 681 682 683 684 685 686
        """
         modify the handler function of spectific event.

         Args:
             hook_type (str): the spectific event name
             name (str): the handler function name
             func (func): the new handler function
         """
K
kinghuin 已提交
687
        self._hooks.modify(hook_type, name, func)
K
kinghuin 已提交
688
        logger.info("Modify hook %s:%s successfully" % (hook_type, name))
K
kinghuin 已提交
689 690

    def _default_build_env_start_event(self):
W
wuzewu 已提交
691 692
        pass

K
kinghuin 已提交
693
    def _default_build_env_end_event(self):
K
kinghuin 已提交
694 695
        if not self.is_predict_phase:
            self.env.score_scalar = {}
W
wuzewu 已提交
696

K
kinghuin 已提交
697 698
    def _default_finetune_start_event(self):
        logger.info("PaddleHub finetune start")
W
wuzewu 已提交
699

K
kinghuin 已提交
700
    def _default_finetune_end_event(self, run_states):
W
wuzewu 已提交
701 702
        logger.info("PaddleHub finetune finished.")

K
kinghuin 已提交
703
    def _default_predict_start_event(self):
W
wuzewu 已提交
704 705
        logger.info("PaddleHub predict start")

K
kinghuin 已提交
706
    def _default_predict_end_event(self, run_states):
W
wuzewu 已提交
707 708
        logger.info("PaddleHub predict finished.")

K
kinghuin 已提交
709 710
    def _default_eval_start_event(self):
        logger.info("Evaluation on {} dataset start".format(self.phase))
W
wuzewu 已提交
711

K
kinghuin 已提交
712
    def _default_eval_end_event(self, run_states):
713 714 715 716 717 718
        """
        Paddlehub default handler for eval_end_event, it will complete visualization and metrics calculation

        Args:
            run_states (object): the results in eval phase
        """
K
kinghuin 已提交
719
        eval_scores, eval_loss, run_speed = self._calculate_metrics(run_states)
K
kinghuin 已提交
720
        if 'train' in self._envs:
721
            self.vdl_writer.add_scalar(
K
kinghuin 已提交
722
                tag="Loss_{}".format(self.phase),
723 724
                value=eval_loss,
                step=self._envs['train'].current_step)
K
kinghuin 已提交
725

K
kinghuin 已提交
726 727 728
        log_scores = ""
        for metric in eval_scores:
            if 'train' in self._envs:
729
                self.vdl_writer.add_scalar(
K
kinghuin 已提交
730
                    tag="{}_{}".format(metric, self.phase),
731 732 733
                    value=eval_scores[metric],
                    step=self._envs['train'].current_step)

K
kinghuin 已提交
734
            log_scores += "%s=%.5f " % (metric, eval_scores[metric])
735
        logger.eval(
K
kinghuin 已提交
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
            "[%s dataset evaluation result] loss=%.5f %s[step/sec: %.2f]" %
            (self.phase, eval_loss, log_scores, run_speed))

        eval_scores_items = eval_scores.items()
        if len(eval_scores_items):
            # The first metric will be chose to eval
            main_metric, main_value = list(eval_scores_items)[0]
        else:
            logger.warning(
                "None of metrics has been implemented, loss will be used to evaluate."
            )
            # The larger, the better
            main_metric, main_value = "negative loss", -eval_loss
        if self.phase in ["dev", "val"] and main_value > self.best_score:
            self.best_score = main_value
            model_saved_dir = os.path.join(self.config.checkpoint_dir,
                                           "best_model")
753
            logger.eval("best model saved to %s [best %s=%.5f]" %
K
kinghuin 已提交
754
                        (model_saved_dir, main_metric, main_value))
S
Steffy-zxf 已提交
755
            self.save_inference_model(dirname=model_saved_dir)
W
wuzewu 已提交
756

K
kinghuin 已提交
757
    def _default_log_interval_event(self, run_states):
758 759 760 761 762 763
        """
        PaddleHub default handler for log_interval_event, it will complete visualization.

        Args:
            run_states (object): the results in train phase
        """
K
kinghuin 已提交
764
        scores, avg_loss, run_speed = self._calculate_metrics(run_states)
765
        self.vdl_writer.add_scalar(
K
kinghuin 已提交
766
            tag="Loss_{}".format(self.phase),
767 768
            value=avg_loss,
            step=self._envs['train'].current_step)
K
kinghuin 已提交
769 770
        log_scores = ""
        for metric in scores:
771
            self.vdl_writer.add_scalar(
K
kinghuin 已提交
772
                tag="{}_{}".format(metric, self.phase),
773 774
                value=scores[metric],
                step=self._envs['train'].current_step)
K
kinghuin 已提交
775
            log_scores += "%s=%.5f " % (metric, scores[metric])
776 777 778
        logger.train("step %d / %d: loss=%.5f %s[step/sec: %.2f]" %
                     (self.current_step, self.max_train_steps, avg_loss,
                      log_scores, run_speed))
W
wuzewu 已提交
779

K
kinghuin 已提交
780
    def _default_save_ckpt_interval_event(self):
W
wuzewu 已提交
781
        self.save_checkpoint()
W
wuzewu 已提交
782

K
kinghuin 已提交
783
    def _default_eval_interval_event(self):
W
wuzewu 已提交
784 785
        self.eval(phase="dev")

K
kinghuin 已提交
786 787
    def _default_run_step_event(self, run_state):
        pass
W
wuzewu 已提交
788 789 790 791 792 793 794 795 796 797 798

    def _build_net(self):
        raise NotImplementedError

    def _add_loss(self):
        raise NotImplementedError

    def _add_label(self):
        raise NotImplementedError

    def _add_metrics(self):
K
kinghuin 已提交
799 800
        # Some metrics like acc, auc can be calculated by fluid.layers
        # The others can be calculated in _calculate_metrics function
W
wuzewu 已提交
801 802
        raise NotImplementedError

W
wuzewu 已提交
803
    def _calculate_metrics(self, run_states):
K
kinghuin 已提交
804 805 806
        # NOTE: if you want to customize the metrics
        # you should make sure that the first parameter returned is a dict
        # The first key will be used as main metrics to update the best model
W
wuzewu 已提交
807 808
        raise NotImplementedError

W
wuzewu 已提交
809 810
    # NOTE: current saved checkpoint machanism is not completed,
    # it can't restore dataset training status
W
wuzewu 已提交
811
    def save_checkpoint(self):
S
Steffy-zxf 已提交
812 813 814
        """
        save the program of the last step in training
        """
S
Steffy-zxf 已提交
815 816
        model_saved_dir = os.path.join(self.config.checkpoint_dir,
                                       "step_%d" % self.current_step)
S
Steffy-zxf 已提交
817

S
Steffy-zxf 已提交
818
        logger.info("Saving model checkpoint to {}".format(model_saved_dir))
S
Steffy-zxf 已提交
819 820 821
        # to resume traning by loading ckpt, it must be save program (save_persistables)
        fluid.io.save_persistables(
            self.exe, dirname=model_saved_dir, main_program=self.main_program)
W
wuzewu 已提交
822 823 824 825
        save_checkpoint(
            checkpoint_dir=self.config.checkpoint_dir,
            current_epoch=self.current_epoch,
            global_step=self.current_step,
K
kinghuin 已提交
826
            best_score=self.best_score,
W
wuzewu 已提交
827 828 829
            exe=self.exe,
            main_program=self.main_program)

W
wuzewu 已提交
830
    def load_checkpoint(self):
K
kinghuin 已提交
831
        is_load_successful, self.env.current_epoch, self.env.current_step, self.best_score = load_checkpoint(
W
wuzewu 已提交
832 833
            self.config.checkpoint_dir,
            self.exe,
W
wuzewu 已提交
834
            main_program=self.main_program)
K
kinghuin 已提交
835 836 837
        # Revise max_train_steps when incremental training
        self.max_train_steps = self.env.current_step + self.max_train_steps / self.config.num_epoch * (
            self.config.num_epoch - self.env.current_epoch + 1)
W
wuzewu 已提交
838 839 840 841 842 843 844 845 846 847 848 849 850
        return is_load_successful

    def load_parameters(self, dirname):
        def if_exist(var):
            path = os.path.join(dirname, var.name)
            return os.path.exists(path)

        fluid.io.load_vars(
            self.exe, dirname, self.main_program, predicate=if_exist)

    def save_parameters(self, dirname):
        fluid.io.save_params(
            self.exe, dirname=dirname, main_program=self.main_program)
S
Steffy-zxf 已提交
851

W
wuzewu 已提交
852 853 854 855 856 857 858 859 860 861 862 863 864 865
    def save_inference_model(self,
                             dirname,
                             model_filename=None,
                             params_filename=None):
        with self.phase_guard("predict"):
            fluid.io.save_inference_model(
                dirname=dirname,
                executor=self.exe,
                feeded_var_names=self.feed_list,
                target_vars=self.fetch_var_list,
                main_program=self.main_program,
                model_filename=model_filename,
                params_filename=params_filename)

W
wuzewu 已提交
866
    def finetune_and_eval(self):
867
        return self.finetune(do_eval=True)
W
wuzewu 已提交
868 869

    def finetune(self, do_eval=False):
870 871 872 873 874 875 876 877 878
        """
        train and finetune the module parameters.

        Args:
            do_eval (bool): do eval during train phase or not

        Returns:
            RunState: the running result of train phase
        """
879

W
wuzewu 已提交
880 881 882 883 884 885
        # Start to finetune
        with self.phase_guard(phase="train"):
            self.init_if_necessary()
            self._finetune_start_event()
            run_states = []
            if self.current_epoch <= self.config.num_epoch:
W
wuzewu 已提交
886
                while self.current_epoch <= self.config.num_epoch:
K
kinghuin 已提交
887
                    self.config.strategy.step()
W
wuzewu 已提交
888 889
                    run_states = self._run(do_eval=do_eval)
                    self.env.current_epoch += 1
W
wuzewu 已提交
890

W
wuzewu 已提交
891
                # Final evaluation
892
                if self._base_data_reader.get_dev_examples() != []:
893 894 895
                    # Warning: DO NOT use self.eval(phase="dev", load_best_model=True) during training.
                    # It will cause trainer unable to continue training from checkpoint after eval.
                    # More important, The model should evaluate current performance during training.
896 897
                    self.eval(phase="dev")
                if self._base_data_reader.get_test_examples() != []:
K
kinghuin 已提交
898
                    self.eval(phase="test", load_best_model=True)
899 900
                # Save checkpoint after finetune
                self.save_checkpoint()
W
wuzewu 已提交
901

W
wuzewu 已提交
902
            self._finetune_end_event(run_states)
903
            return run_states
W
wuzewu 已提交
904

K
kinghuin 已提交
905
    def eval(self, phase="dev", load_best_model=False):
906 907 908 909 910 911 912 913 914 915
        """
        evaluate the performance of current module.

        Args:
            phase (str): current run phase
            load_best_model (bool): load the best model or not

        Returns:
            RunState: the running result of eval phase
        """
K
kinghuin 已提交
916 917 918
        # Warning: DO NOT use eval(load_best_model=True) in finetune_and_eval
        # It will cause trainer unable to continue training from checkpoint after eval
        # More important, The model should evaluate current performance during training.
W
wuzewu 已提交
919
        with self.phase_guard(phase=phase):
K
kinghuin 已提交
920 921 922 923
            if load_best_model:
                self.init_if_load_best_model()
            else:
                self.init_if_necessary()
W
wuzewu 已提交
924 925 926
            self._eval_start_event()
            run_states = self._run()
            self._eval_end_event(run_states)
927
            return run_states
W
wuzewu 已提交
928

929 930 931 932 933 934 935 936 937 938
    def _create_predictor(self):
        """
        create high-performance predictor for predict.

        Returns:
            PaddlePredictor: the high-performance predictor
        """
        with tmp_dir() as _dir:
            self.save_inference_model(dirname=_dir)
            predictor_config = fluid.core.AnalysisConfig(_dir)
S
Steffy-zxf 已提交
939
            predictor_config.disable_glog_info()
940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983

            if self.config.use_cuda:
                predictor_config.enable_use_gpu(100, 0)
                predictor_config.switch_ir_optim(True)
            else:
                predictor_config.disable_gpu()
            predictor_config.enable_memory_optim()
            return fluid.core.create_paddle_predictor(predictor_config)

    def _run_with_predictor(self):
        """
        use high-performance predictor to make prediction.

        Returns:
            RunState: the running result of predict phase
        """
        global_run_states = []
        period_run_states = []

        for run_step, batch in enumerate(self.reader(), start=1):
            step_run_state = RunState(len(self.fetch_list))
            step_run_state.run_step = 1
            num_batch_examples = len(batch)

            if not self.config.use_pyreader:
                # if use pyreader, the nlp_reader return [batch]
                batch = batch[0]

            batch = [fluid.core.PaddleTensor(data) for data in batch]
            fetch_result = self._predictor.run(batch)
            for index, result in enumerate(fetch_result):
                step_run_state.run_results[index] = result.as_ndarray()
            step_run_state.run_examples += num_batch_examples
            step_run_state.update()
            period_run_states += [step_run_state]
            self._run_step_event(step_run_state)

        global_run_states += period_run_states
        return global_run_states

    def predict(self,
                data,
                load_best_model=True,
                return_result=False,
984
                accelerate_mode=True):
985 986 987 988 989 990 991
        """
        make prediction for the input data.

        Args:
            data (list): the data will be predicted.
            load_best_model (bool): load the best model or not
            return_result (bool): return a readable result or just the raw run result
K
kinghuin 已提交
992
            accelerate_mode (bool): use high-performance predictor or not
993 994 995 996

        Returns:
            RunState: the running result of predict phase
        """
K
kinghuin 已提交
997 998 999 1000 1001 1002
        if accelerate_mode and isinstance(self._base_data_reader,
                                          hub.reader.LACClassifyReader):
            logger.warning(
                "LACClassifyReader does not support predictor, the accelerate_mode is closed now."
            )
            accelerate_mode = False
1003 1004
        self.accelerate_mode = accelerate_mode

W
wuzewu 已提交
1005
        with self.phase_guard(phase="predict"):
1006 1007 1008
            self._predict_data = data
            self._predict_start_event()

W
wuzewu 已提交
1009
            if load_best_model:
K
kinghuin 已提交
1010 1011 1012
                self.init_if_load_best_model()
            else:
                self.init_if_necessary()
1013 1014 1015 1016 1017 1018 1019
            if not self.accelerate_mode:
                run_states = self._run()
            else:
                if not self._predictor:
                    self._predictor = self._create_predictor()
                run_states = self._run_with_predictor()

W
wuzewu 已提交
1020
            self._predict_end_event(run_states)
W
wuzewu 已提交
1021
            self._predict_data = None
K
kinghuin 已提交
1022 1023
            if return_result:
                return self._postprocessing(run_states)
1024
        return run_states
W
wuzewu 已提交
1025

K
kinghuin 已提交
1026
    def _postprocessing(self, run_states):
1027 1028 1029 1030 1031 1032 1033 1034 1035
        """
        postprocessing the run result, get readable result.

        Args:
            run_states (RunState): the raw run result to be processed

        Returns:
            list: readable result
        """
K
kinghuin 已提交
1036 1037 1038 1039 1040 1041
        results = []
        for batch_state in run_states:
            batch_result = batch_state.run_results[0]
            results += [result[0] for result in batch_result]
        return results

W
wuzewu 已提交
1042
    def _run(self, do_eval=False):
1043 1044
        """
        load data and run the program.
W
wuzewu 已提交
1045

1046 1047
        Args:
            do_eval (bool): do eval during train phase or not
W
wuzewu 已提交
1048

1049 1050 1051 1052 1053 1054 1055 1056 1057 1058
        Returns:
            RunState: the running result of specific phase
        """
        with fluid.program_guard(self.main_program, self.startup_program):
            if self.config.use_pyreader:
                data_loader = fluid.io.DataLoader.from_generator(
                    feed_list=self.feed_var_list,
                    capacity=64,
                    use_double_buffer=True,
                    iterable=True)
1059 1060
                data_reader = data_loader.set_batch_generator(
                    self.reader, places=self.places)
1061 1062 1063 1064 1065 1066 1067
            else:
                data_feeder = fluid.DataFeeder(
                    feed_list=self.feed_list, place=self.place)
                data_reader = data_feeder.decorate_reader(
                    self.reader,
                    multi_devices=self.config.use_data_parallel,
                    drop_last=True)
W
wuzewu 已提交
1068

1069 1070
            global_run_states = []
            period_run_states = []
K
kinghuin 已提交
1071

1072 1073 1074 1075
            for run_step, batch in enumerate(data_reader(), start=1):
                step_run_state = RunState(len(self.fetch_list))
                step_run_state.run_step = 1
                num_batch_examples = len(batch)
W
wuzewu 已提交
1076

1077 1078 1079 1080 1081 1082
                fetch_result = self.exe.run(
                    self.main_program_to_be_run,
                    feed=batch,
                    fetch_list=self.fetch_list,
                    return_numpy=self.return_numpy)
                if not self.return_numpy:
1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
                    fetch_result = [np.array(x) for x in fetch_result]

                for index, result in enumerate(fetch_result):
                    step_run_state.run_results[index] = result
                step_run_state.run_examples += num_batch_examples
                step_run_state.update()
                period_run_states += [step_run_state]
                self.env.current_step += 1
                if self.is_train_phase:
                    if self.current_step % self.config.log_interval == 0:
                        self._log_interval_event(period_run_states)
                        global_run_states += period_run_states
                        period_run_states = []

                    if self.config.save_ckpt_interval and self.current_step % self.config.save_ckpt_interval == 0:
                        self._save_ckpt_interval_event()

                    if do_eval and self.current_step % self.config.eval_interval == 0:
                        self._eval_interval_event()

                self._run_step_event(step_run_state)

            global_run_states += period_run_states
            return global_run_states
1107 1108 1109 1110 1111

    def __repr__(self):
        return "Task: %s with metrics_choices: %s, reader: %s, %s" % (
            self.__class__.__name__, self.metrics_choices,
            self._base_data_reader.__class__.__name__, self.config)