base_task.py 34.4 KB
Newer Older
K
kinghuin 已提交
1 2
# coding:utf-8
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
Z
Zeyu Chen 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16 17 18 19
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Z
Zeyu Chen 已提交
20
import os
W
wuzewu 已提交
21
import contextlib
22
import time
W
wuzewu 已提交
23
import copy
24
import logging
K
kinghuin 已提交
25 26
import inspect
from functools import partial
K
kinghuin 已提交
27
from collections import OrderedDict
K
kinghuin 已提交
28 29 30 31 32
import six
if six.PY2:
    from inspect import getargspec as get_args
else:
    from inspect import getfullargspec as get_args
S
Steffy-zxf 已提交
33
import numpy as np
W
wuzewu 已提交
34
import paddle.fluid as fluid
K
kinghuin 已提交
35
from tb_paddle import SummaryWriter
W
wuzewu 已提交
36 37

import paddlehub as hub
S
Steffy-zxf 已提交
38
from paddlehub.common.paddle_helper import dtype_map, clone_program
W
wuzewu 已提交
39
from paddlehub.common.utils import mkdir, to_list
W
wuzewu 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
from paddlehub.common.logger import logger
from paddlehub.finetune.checkpoint import load_checkpoint, save_checkpoint
from paddlehub.finetune.config import RunConfig


class RunState(object):
    def __init__(self, length):
        self.run_time_begin = time.time()
        self.run_step = 0
        self.run_examples = 0
        self.run_results = [0] * length
        self.run_time_used = 0
        self.run_speed = 0.0

    def __add__(self, other):
        self.run_step += other.run_step
        self.run_examples += other.run_examples
        for index in range(len(self.run_results)):
            self.run_results[index] += other.run_results[index]
        return self

    def update(self):
        self.run_time_used = time.time() - self.run_time_begin
        self.run_speed = self.run_step / self.run_time_used
        return self


W
wuzewu 已提交
67 68 69 70 71 72 73 74 75 76
class RunEnv(object):
    def __init__(self):
        self.current_epoch = 0
        self.current_step = 0
        self.main_program = None
        self.start_program = None
        self.main_program_compiled = None
        self.py_reader = None
        self.reader = None
        self.loss = None
W
wuzewu 已提交
77
        self.labels = None
W
wuzewu 已提交
78 79 80 81 82 83 84 85 86 87 88
        self.metrics = None
        self.is_inititalized = False
        self.UNG = copy.deepcopy(fluid.unique_name.generator)

    def __setattr__(self, key, value):
        self.__dict__[key] = value

    def __getattr__(self, key):
        return self.__dict__[key]


K
kinghuin 已提交
89 90 91
class TaskHooks():
    def __init__(self):
        self._registered_hooks = {
K
kinghuin 已提交
92 93 94 95 96 97 98 99 100 101 102 103
            "build_env_start_event": OrderedDict(),
            "build_env_end_event": OrderedDict(),
            "finetune_start_event": OrderedDict(),
            "finetune_end_event": OrderedDict(),
            "predict_start_event": OrderedDict(),
            "predict_end_event": OrderedDict(),
            "eval_start_event": OrderedDict(),
            "eval_end_event": OrderedDict(),
            "log_interval_event": OrderedDict(),
            "save_ckpt_interval_event": OrderedDict(),
            "eval_interval_event": OrderedDict(),
            "run_step_event": OrderedDict(),
K
kinghuin 已提交
104 105
        }
        self._hook_params_num = {
K
kinghuin 已提交
106 107 108 109 110 111 112 113 114 115 116 117
            "build_env_start_event": 1,
            "build_env_end_event": 1,
            "finetune_start_event": 1,
            "finetune_end_event": 2,
            "predict_start_event": 1,
            "predict_end_event": 2,
            "eval_start_event": 1,
            "eval_end_event": 2,
            "log_interval_event": 2,
            "save_ckpt_interval_event": 1,
            "eval_interval_event": 1,
            "run_step_event": 2,
K
kinghuin 已提交
118 119 120 121 122 123
        }

    def add(self, hook_type, name=None, func=None):
        if not func or not callable(func):
            raise TypeError(
                "The hook function is empty or it is not a function")
K
kinghuin 已提交
124
        if name == None:
K
kinghuin 已提交
125 126 127
            name = "hook_%s" % id(func)

        # check validity
K
kinghuin 已提交
128 129
        if not isinstance(name, str) or name.strip() == "":
            raise TypeError("The hook name must be a non-empty string")
K
kinghuin 已提交
130 131 132 133 134 135 136
        if hook_type not in self._registered_hooks:
            raise ValueError("hook_type: %s does not exist" % (hook_type))
        if name in self._registered_hooks[hook_type]:
            raise ValueError(
                "name: %s has existed in hook_type:%s, use modify method to modify it"
                % (name, hook_type))
        else:
K
kinghuin 已提交
137
            args_num = len(get_args(func).args)
K
kinghuin 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
            if args_num != self._hook_params_num[hook_type]:
                raise ValueError(
                    "The number of parameters to the hook hook_type:%s should be %i"
                    % (hook_type, self._hook_params_num[hook_type]))
            self._registered_hooks[hook_type][name] = func

    def delete(self, hook_type, name):
        if self.exist(hook_type, name):
            del self._registered_hooks[hook_type][name]
        else:
            raise ValueError(
                "No hook_type: %s exists or name: %s does not exist in hook_type: %s"
                % (hook_type, name, hook_type))

    def modify(self, hook_type, name, func):
        if not (isinstance(name, str) and callable(func)):
            raise TypeError(
                "The hook name must be a string, and the hook function must be a function"
            )
        if self.exist(hook_type, name):
            self._registered_hooks[hook_type][name] = func
        else:
            raise ValueError(
                "No hook_type: %s exists or name: %s does not exist in hook_type: %s"
                % (hook_type, name, hook_type))

    def exist(self, hook_type, name):
        if hook_type not in self._registered_hooks \
                or name not in self._registered_hooks[hook_type]:
            return False
        else:
            return True

K
kinghuin 已提交
171
    def info(self, show_default=False):
K
kinghuin 已提交
172 173 174 175 176
        # formatted output the source code
        ret = ""
        for hook_type, hooks in self._registered_hooks.items():
            already_print_type = False
            for name, func in hooks.items():
K
kinghuin 已提交
177
                if name == "default" and not show_default:
K
kinghuin 已提交
178 179 180 181 182 183 184 185 186 187 188 189
                    continue
                if not already_print_type:
                    ret += "hook_type: %s{\n" % hook_type
                    already_print_type = True
                source = inspect.getsource(func)
                ret += " name: %s{\n" % name
                for line in source.split("\n"):
                    ret += "  %s\n" % line
                ret += " }\n"
            if already_print_type:
                ret += "}\n"
        if not ret:
K
kinghuin 已提交
190
            ret = "Not any customized hooks have been defined, you can set show_default=True to see the default hooks information"
K
kinghuin 已提交
191 192 193 194 195 196 197 198 199
        return ret

    def __getitem__(self, hook_type):
        return self._registered_hooks[hook_type]

    def __repr__(self):
        return self.info(only_customized=False)


K
kinghuin 已提交
200
class BaseTask(object):
W
wuzewu 已提交
201
    def __init__(self,
W
wuzewu 已提交
202 203 204 205
                 feed_list,
                 data_reader,
                 main_program=None,
                 startup_program=None,
K
kinghuin 已提交
206 207
                 config=None,
                 metrics_choices="default"):
W
wuzewu 已提交
208 209 210 211

        # base item
        self._base_data_reader = data_reader
        self._base_feed_list = feed_list
K
kinghuin 已提交
212 213 214 215 216 217 218 219 220 221 222 223

        # metrics item
        self.best_score = -999
        if metrics_choices == "default":
            metrics_choices = ["acc"]
        elif metrics_choices == None:
            metrics_choices = []
        if isinstance(metrics_choices, list):
            self.metrics_choices = metrics_choices
        else:
            self.metrics_choices = [metrics_choices]

W
wuzewu 已提交
224
        if main_program is None:
S
Steffy-zxf 已提交
225 226 227
            self._base_main_program = clone_program(
                fluid.default_main_program(), for_test=False)

W
wuzewu 已提交
228
        else:
S
Steffy-zxf 已提交
229 230
            self._base_main_program = clone_program(
                main_program, for_test=False)
W
wuzewu 已提交
231
        if startup_program is None:
S
Steffy-zxf 已提交
232 233
            self._base_startup_program = clone_program(
                fluid.default_startup_program(), for_test=False)
W
wuzewu 已提交
234
        else:
S
Steffy-zxf 已提交
235 236
            self._base_startup_program = clone_program(
                startup_program, for_test=False)
W
wuzewu 已提交
237
        self.is_checkpoint_loaded = False
S
Steffy-zxf 已提交
238
        self._base_compiled_program = None
W
wuzewu 已提交
239 240

        # run config
W
wuzewu 已提交
241
        self.config = config if config else RunConfig()
242 243 244
        self.place = self.places[0]
        self.device_count = len(self.places)

W
wuzewu 已提交
245 246 247 248 249 250 251 252
        if self.config.use_data_parallel:
            if not self.config.use_pyreader and self.config.batch_size < self.device_count:
                logger.warning(
                    "Batch size({}) is less than the count of devices({}), which is not allowed in current Paddle versions"
                    .format(self.config.batch_size, self.device_count))
                logger.warning("Batch size automatically adjusted to {}".format(
                    self.device_count))
                self.config._batch_size = self.device_count
253

W
wuzewu 已提交
254
        self.exe = fluid.Executor(place=self.place)
W
wuzewu 已提交
255 256 257 258 259
        self.build_strategy = fluid.BuildStrategy()

        # run environment
        self._phases = []
        self._envs = {}
W
wuzewu 已提交
260
        self._predict_data = None
261
        self._tb_writer = None
W
wuzewu 已提交
262

K
kinghuin 已提交
263 264 265 266
        # event hooks
        self._hooks = TaskHooks()
        for hook_type, event_hooks in self._hooks._registered_hooks.items():
            self._hooks.add(hook_type, "default",
K
kinghuin 已提交
267 268
                            eval("self._default_%s" % hook_type))
            setattr(BaseTask, "_%s" % hook_type,
K
kinghuin 已提交
269 270
                    self.create_event_function(hook_type))

K
kinghuin 已提交
271 272 273
        # accelerate predict
        self.is_best_model_loaded = False

W
wuzewu 已提交
274 275
        # set default phase
        self.enter_phase("train")
W
wuzewu 已提交
276 277 278

    @contextlib.contextmanager
    def phase_guard(self, phase):
W
wuzewu 已提交
279 280 281 282 283
        self.enter_phase(phase)
        yield
        self.exit_phase()

    def enter_phase(self, phase):
W
wuzewu 已提交
284 285
        if phase not in ["train", "val", "dev", "test", "predict", "inference"]:
            raise RuntimeError()
K
kinghuin 已提交
286 287 288 289
        if phase in ["val", "dev"]:
            phase = "dev"
        elif phase in ["predict", "inference"]:
            phase = "predict"
W
wuzewu 已提交
290
        self._phases.append(phase)
W
wuzewu 已提交
291 292

    def exit_phase(self):
W
wuzewu 已提交
293 294
        self._phases = self._phases[:-1]

W
wuzewu 已提交
295 296 297 298
    def init_if_necessary(self):
        if not self.is_checkpoint_loaded:
            if not self.load_checkpoint():
                self.exe.run(self._base_startup_program)
K
kinghuin 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
            self.is_checkpoint_loaded = True
            self.is_best_model_loaded = False

    def init_if_load_best_model(self):
        if not self.is_best_model_loaded:
            best_model_path = os.path.join(self.config.checkpoint_dir,
                                           "best_model")
            logger.info("Load the best model from %s" % best_model_path)
            if os.path.exists(best_model_path):
                self.load_parameters(best_model_path)
                self.is_checkpoint_loaded = False
                self.is_best_model_loaded = True
            else:
                self.init_if_necessary()
        else:
            logger.info("The best model has been loaded")
W
wuzewu 已提交
315

W
wuzewu 已提交
316 317 318 319 320 321
    def _build_env(self):
        if self.env.is_inititalized:
            return

        self._build_env_start_event()
        self.env.is_inititalized = True
S
Steffy-zxf 已提交
322 323 324
        self.env.main_program = clone_program(
            self._base_main_program, for_test=False)

W
wuzewu 已提交
325 326 327 328
        self.env.startup_program = fluid.Program()
        with fluid.program_guard(self.env.main_program,
                                 self._base_startup_program):
            with fluid.unique_name.guard(self.env.UNG):
329
                self.env.outputs = self._build_net()
W
wuzewu 已提交
330
                if self.is_train_phase or self.is_test_phase:
W
wuzewu 已提交
331
                    self.env.labels = self._add_label()
W
wuzewu 已提交
332 333
                    self.env.loss = self._add_loss()
                    self.env.metrics = self._add_metrics()
W
wuzewu 已提交
334

W
wuzewu 已提交
335
        if self.is_predict_phase or self.is_test_phase:
S
Steffy-zxf 已提交
336 337
            self.env.main_program = clone_program(
                self.env.main_program, for_test=True)
W
wuzewu 已提交
338 339 340
            hub.common.paddle_helper.set_op_attr(
                self.env.main_program, is_test=True)

W
wuzewu 已提交
341 342 343 344 345 346 347 348 349 350 351 352
        if self.config.use_pyreader:
            t_program = fluid.Program()
            with fluid.program_guard(t_program, self.env.startup_program):
                self.env.py_reader = fluid.layers.py_reader(
                    capacity=64,
                    shapes=[var.shape for var in self.feed_var_list],
                    dtypes=[dtype_map[var.dtype] for var in self.feed_var_list],
                    lod_levels=[var.lod_level for var in self.feed_var_list],
                    use_double_buffer=False)

                feed_var_list = self.feed_var_list
                py_vars = fluid.layers.read_file(self.env.py_reader)
W
wuzewu 已提交
353
                py_vars = to_list(py_vars)
W
wuzewu 已提交
354 355 356 357 358 359 360 361 362 363 364 365
                input_dict = {
                    feed_var_list[index].name: py_var
                    for index, py_var in enumerate(py_vars)
                }

                hub.connect_program(
                    pre_program=t_program,
                    next_program=self.env.main_program,
                    input_dict=input_dict,
                    need_log=False)

            self.env.main_program = t_program
W
wuzewu 已提交
366 367 368 369 370 371 372 373 374
            if not self.is_predict_phase:
                self.env.loss = self.env.main_program.global_block().vars[
                    self.env.loss.name]
                metrics_name = [var.name for var in self.env.metrics]
                self.env.metrics = [
                    self.env.main_program.global_block().vars[name]
                    for name in metrics_name
                ]

375 376 377 378 379
            outputs_name = [var.name for var in self.env.outputs]
            self.env.outputs = [
                self.env.main_program.global_block().vars[name]
                for name in outputs_name
            ]
W
wuzewu 已提交
380 381 382 383 384 385 386 387 388 389

        if self.config.enable_memory_optim:
            for var_name in self.fetch_list:
                var = self.env.main_program.global_block().vars[var_name]
                var.persistable = True

        if self.is_train_phase:
            with fluid.program_guard(self.env.main_program,
                                     self._base_startup_program):
                with fluid.unique_name.guard(self.env.UNG):
K
kinghuin 已提交
390 391 392
                    self.scheduled_lr, self.max_train_steps = self.config.strategy.execute(
                        self.loss, self._base_data_reader, self.config,
                        self.device_count)
W
wuzewu 已提交
393 394 395 396 397 398

        if self.is_train_phase:
            loss_name = self.env.loss.name
        else:
            loss_name = None

K
kinghuin 已提交
399
        share_vars_from = self._base_compiled_program
W
wuzewu 已提交
400

W
wuzewu 已提交
401
        if not self.config.use_data_parallel:
W
wuzewu 已提交
402
            self.env.main_program_compiled = None
W
wuzewu 已提交
403 404 405 406 407 408
        else:
            self.env.main_program_compiled = fluid.CompiledProgram(
                self.env.main_program).with_data_parallel(
                    loss_name=loss_name,
                    share_vars_from=share_vars_from,
                    build_strategy=self.build_strategy)
W
wuzewu 已提交
409 410 411 412

        self.exe.run(self.env.startup_program)
        self._build_env_end_event()

413 414 415
    @property
    def places(self):
        if self.config.use_cuda:
W
wuzewu 已提交
416 417 418 419 420 421 422
            _places = fluid.framework.cuda_places()
        else:
            _places = fluid.framework.cpu_places()

        if not self.config.use_data_parallel:
            return [_places[0]]
        return _places
423

S
Steffy-zxf 已提交
424 425 426 427
    @property
    def return_numpy(self):
        return True

W
wuzewu 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
    @property
    def is_train_phase(self):
        return self.phase in ["train"]

    @property
    def is_test_phase(self):
        return self.phase in ["val", "dev", "test"]

    @property
    def is_predict_phase(self):
        return self.phase in ["predict", "inference"]

    @property
    def phase(self):
        return self._phases[-1]

    @property
    def env(self):
        phase = self.phase
        if phase in ["val", "dev", "test"]:
K
kinghuin 已提交
448
            phase = "dev"
W
wuzewu 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
        if not phase in self._envs:
            self._envs[phase] = RunEnv()
        return self._envs[phase]

    @property
    def py_reader(self):
        if not self.env.is_inititalized:
            self._build_env()
        return self.env.py_reader

    @property
    def current_step(self):
        if not self.env.is_inititalized:
            self._build_env()
        return self.env.current_step

    @property
    def current_epoch(self):
        if not self.env.is_inititalized:
            self._build_env()
        return self.env.current_epoch

    @property
Z
Zeyu Chen 已提交
472
    def main_program(self):
W
wuzewu 已提交
473 474 475
        if not self.env.is_inititalized:
            self._build_env()
        return self.env.main_program
Z
Zeyu Chen 已提交
476

W
wuzewu 已提交
477
    @property
Z
Zeyu Chen 已提交
478
    def startup_program(self):
W
wuzewu 已提交
479 480 481 482 483 484 485 486 487 488
        if not self.env.is_inititalized:
            self._build_env()
        return self.env.startup_program

    @property
    def main_program_compiled(self):
        if not self.env.is_inititalized:
            self._build_env()
        return self.env.main_program_compiled

W
wuzewu 已提交
489 490 491
    @property
    def main_program_to_be_run(self):
        if self.config.use_data_parallel:
K
kinghuin 已提交
492 493
            if self._base_compiled_program is None:
                self._base_compiled_program = self.env.main_program_compiled
W
wuzewu 已提交
494 495 496
            return self.main_program_compiled
        return self.main_program

W
wuzewu 已提交
497 498
    @property
    def reader(self):
W
wuzewu 已提交
499 500 501 502
        if self.is_predict_phase:
            data = self._predict_data
        else:
            data = None
W
wuzewu 已提交
503
        self.env.reader = self._base_data_reader.data_generator(
W
wuzewu 已提交
504
            batch_size=self.config.batch_size, phase=self.phase, data=data)
W
wuzewu 已提交
505 506 507 508 509 510 511 512 513 514 515 516
        return self.env.reader

    @property
    def loss(self):
        if self.is_predict_phase:
            raise RuntimeError()

        if not self.env.is_inititalized:
            self._build_env()
        return self.env.loss

    @property
W
wuzewu 已提交
517
    def labels(self):
W
wuzewu 已提交
518 519 520 521 522
        if self.is_predict_phase:
            raise RuntimeError()

        if not self.env.is_inititalized:
            self._build_env()
W
wuzewu 已提交
523
        return self.env.labels
W
wuzewu 已提交
524 525

    @property
526
    def outputs(self):
W
wuzewu 已提交
527 528
        if not self.env.is_inititalized:
            self._build_env()
529
        return self.env.outputs
W
wuzewu 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547

    @property
    def metrics(self):
        if self.is_predict_phase:
            raise RuntimeError()

        if not self.env.is_inititalized:
            self._build_env()
        return self.env.metrics

    @property
    def unique_name_generator(self):
        return self.env.UNG

    @property
    def feed_list(self):
        feed_list = [varname for varname in self._base_feed_list]
        if self.is_train_phase or self.is_test_phase:
W
wuzewu 已提交
548
            feed_list += [label.name for label in self.labels]
W
wuzewu 已提交
549 550 551 552 553 554 555 556 557 558 559
        return feed_list

    @property
    def feed_var_list(self):
        vars = self.main_program.global_block().vars
        return [vars[varname] for varname in self.feed_list]

    @property
    def fetch_list(self):
        if self.is_train_phase or self.is_test_phase:
            return [metric.name for metric in self.metrics] + [self.loss.name]
560
        return [output.name for output in self.outputs]
W
wuzewu 已提交
561

W
wuzewu 已提交
562 563 564 565 566
    @property
    def fetch_var_list(self):
        vars = self.main_program.global_block().vars
        return [vars[varname] for varname in self.fetch_list]

567 568 569 570 571 572 573 574 575
    @property
    def tb_writer(self):
        if not os.path.exists(self.config.checkpoint_dir):
            mkdir(self.config.checkpoint_dir)
        tb_log_dir = os.path.join(self.config.checkpoint_dir, "visualization")
        if not self._tb_writer:
            self._tb_writer = SummaryWriter(tb_log_dir)
        return self._tb_writer

K
kinghuin 已提交
576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593
    def create_event_function(self, hook_type):
        def hook_function(self, *args):
            for name, func in self._hooks[hook_type].items():
                if inspect.ismethod(func):
                    func(*args)
                else:
                    partial(func, self)(*args)

        return hook_function

    @property
    def hooks(self):
        return self._hooks

    def hooks_info(self, only_customized=True):
        return self._hooks.info(only_customized)

    def add_hook(self, hook_type, name=None, func=None):
K
kinghuin 已提交
594 595
        if name == None:
            name = "hook_%s" % id(func)
K
kinghuin 已提交
596
        self._hooks.add(hook_type, name=name, func=func)
K
kinghuin 已提交
597
        logger.info("Add hook %s:%s successfully" % (hook_type, name))
K
kinghuin 已提交
598 599 600

    def delete_hook(self, hook_type, name):
        self._hooks.delete(hook_type, name)
K
kinghuin 已提交
601
        logger.info("Delete hook %s:%s successfully" % (hook_type, name))
K
kinghuin 已提交
602 603 604

    def modify_hook(self, hook_type, name, func):
        self._hooks.modify(hook_type, name, func)
K
kinghuin 已提交
605
        logger.info("Modify hook %s:%s successfully" % (hook_type, name))
K
kinghuin 已提交
606 607

    def _default_build_env_start_event(self):
W
wuzewu 已提交
608 609
        pass

K
kinghuin 已提交
610
    def _default_build_env_end_event(self):
K
kinghuin 已提交
611 612
        if not self.is_predict_phase:
            self.env.score_scalar = {}
W
wuzewu 已提交
613

K
kinghuin 已提交
614 615
    def _default_finetune_start_event(self):
        logger.info("PaddleHub finetune start")
W
wuzewu 已提交
616

K
kinghuin 已提交
617
    def _default_finetune_end_event(self, run_states):
W
wuzewu 已提交
618 619
        logger.info("PaddleHub finetune finished.")

K
kinghuin 已提交
620
    def _default_predict_start_event(self):
W
wuzewu 已提交
621 622
        logger.info("PaddleHub predict start")

K
kinghuin 已提交
623
    def _default_predict_end_event(self, run_states):
W
wuzewu 已提交
624 625
        logger.info("PaddleHub predict finished.")

K
kinghuin 已提交
626 627
    def _default_eval_start_event(self):
        logger.info("Evaluation on {} dataset start".format(self.phase))
W
wuzewu 已提交
628

K
kinghuin 已提交
629
    def _default_eval_end_event(self, run_states):
K
kinghuin 已提交
630
        eval_scores, eval_loss, run_speed = self._calculate_metrics(run_states)
K
kinghuin 已提交
631
        if 'train' in self._envs:
K
kinghuin 已提交
632
            self.tb_writer.add_scalar(
K
kinghuin 已提交
633 634
                tag="Loss_{}".format(self.phase),
                scalar_value=eval_loss,
635
                global_step=self._envs['train'].current_step)
K
kinghuin 已提交
636

K
kinghuin 已提交
637 638 639 640 641 642 643
        log_scores = ""
        for metric in eval_scores:
            if 'train' in self._envs:
                self.tb_writer.add_scalar(
                    tag="{}_{}".format(metric, self.phase),
                    scalar_value=eval_scores[metric],
                    global_step=self._envs['train'].current_step)
K
kinghuin 已提交
644
            log_scores += "%s=%.5f " % (metric, eval_scores[metric])
645
        logger.eval(
K
kinghuin 已提交
646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
            "[%s dataset evaluation result] loss=%.5f %s[step/sec: %.2f]" %
            (self.phase, eval_loss, log_scores, run_speed))

        eval_scores_items = eval_scores.items()
        if len(eval_scores_items):
            # The first metric will be chose to eval
            main_metric, main_value = list(eval_scores_items)[0]
        else:
            logger.warning(
                "None of metrics has been implemented, loss will be used to evaluate."
            )
            # The larger, the better
            main_metric, main_value = "negative loss", -eval_loss
        if self.phase in ["dev", "val"] and main_value > self.best_score:
            self.best_score = main_value
            model_saved_dir = os.path.join(self.config.checkpoint_dir,
                                           "best_model")
663
            logger.eval("best model saved to %s [best %s=%.5f]" %
K
kinghuin 已提交
664
                        (model_saved_dir, main_metric, main_value))
S
Steffy-zxf 已提交
665
            self.save_inference_model(dirname=model_saved_dir)
W
wuzewu 已提交
666

K
kinghuin 已提交
667
    def _default_log_interval_event(self, run_states):
K
kinghuin 已提交
668 669
        scores, avg_loss, run_speed = self._calculate_metrics(run_states)
        self.tb_writer.add_scalar(
K
kinghuin 已提交
670
            tag="Loss_{}".format(self.phase),
K
kinghuin 已提交
671
            scalar_value=avg_loss,
672
            global_step=self._envs['train'].current_step)
K
kinghuin 已提交
673 674 675
        log_scores = ""
        for metric in scores:
            self.tb_writer.add_scalar(
K
kinghuin 已提交
676
                tag="{}_{}".format(metric, self.phase),
K
kinghuin 已提交
677
                scalar_value=scores[metric],
678
                global_step=self._envs['train'].current_step)
K
kinghuin 已提交
679
            log_scores += "%s=%.5f " % (metric, scores[metric])
680 681 682
        logger.train("step %d / %d: loss=%.5f %s[step/sec: %.2f]" %
                     (self.current_step, self.max_train_steps, avg_loss,
                      log_scores, run_speed))
W
wuzewu 已提交
683

K
kinghuin 已提交
684
    def _default_save_ckpt_interval_event(self):
W
wuzewu 已提交
685
        self.save_checkpoint()
W
wuzewu 已提交
686

K
kinghuin 已提交
687
    def _default_eval_interval_event(self):
W
wuzewu 已提交
688 689
        self.eval(phase="dev")

K
kinghuin 已提交
690 691
    def _default_run_step_event(self, run_state):
        pass
W
wuzewu 已提交
692 693 694 695 696 697 698 699 700 701 702

    def _build_net(self):
        raise NotImplementedError

    def _add_loss(self):
        raise NotImplementedError

    def _add_label(self):
        raise NotImplementedError

    def _add_metrics(self):
K
kinghuin 已提交
703 704
        # Some metrics like acc, auc can be calculated by fluid.layers
        # The others can be calculated in _calculate_metrics function
W
wuzewu 已提交
705 706
        raise NotImplementedError

W
wuzewu 已提交
707
    def _calculate_metrics(self, run_states):
K
kinghuin 已提交
708 709 710
        # NOTE: if you want to customize the metrics
        # you should make sure that the first parameter returned is a dict
        # The first key will be used as main metrics to update the best model
W
wuzewu 已提交
711 712
        raise NotImplementedError

W
wuzewu 已提交
713 714
    # NOTE: current saved checkpoint machanism is not completed,
    # it can't restore dataset training status
W
wuzewu 已提交
715
    def save_checkpoint(self):
S
Steffy-zxf 已提交
716 717 718 719
        model_saved_dir = os.path.join(self.config.checkpoint_dir,
                                       "step_%d" % self.current_step)
        logger.info("Saving model checkpoint to {}".format(model_saved_dir))
        self.save_inference_model(dirname=model_saved_dir)
W
wuzewu 已提交
720 721 722 723
        save_checkpoint(
            checkpoint_dir=self.config.checkpoint_dir,
            current_epoch=self.current_epoch,
            global_step=self.current_step,
K
kinghuin 已提交
724
            best_score=self.best_score,
W
wuzewu 已提交
725 726 727
            exe=self.exe,
            main_program=self.main_program)

W
wuzewu 已提交
728
    def load_checkpoint(self):
K
kinghuin 已提交
729
        is_load_successful, self.env.current_epoch, self.env.current_step, self.best_score = load_checkpoint(
W
wuzewu 已提交
730 731
            self.config.checkpoint_dir,
            self.exe,
W
wuzewu 已提交
732
            main_program=self.main_program)
W
wuzewu 已提交
733

W
wuzewu 已提交
734 735 736 737 738 739 740 741 742 743 744 745 746
        return is_load_successful

    def load_parameters(self, dirname):
        def if_exist(var):
            path = os.path.join(dirname, var.name)
            return os.path.exists(path)

        fluid.io.load_vars(
            self.exe, dirname, self.main_program, predicate=if_exist)

    def save_parameters(self, dirname):
        fluid.io.save_params(
            self.exe, dirname=dirname, main_program=self.main_program)
S
Steffy-zxf 已提交
747

W
wuzewu 已提交
748 749 750 751 752 753 754 755 756 757 758 759 760 761
    def save_inference_model(self,
                             dirname,
                             model_filename=None,
                             params_filename=None):
        with self.phase_guard("predict"):
            fluid.io.save_inference_model(
                dirname=dirname,
                executor=self.exe,
                feeded_var_names=self.feed_list,
                target_vars=self.fetch_var_list,
                main_program=self.main_program,
                model_filename=model_filename,
                params_filename=params_filename)

W
wuzewu 已提交
762
    def finetune_and_eval(self):
763
        return self.finetune(do_eval=True)
W
wuzewu 已提交
764 765

    def finetune(self, do_eval=False):
766

W
wuzewu 已提交
767 768 769 770 771 772
        # Start to finetune
        with self.phase_guard(phase="train"):
            self.init_if_necessary()
            self._finetune_start_event()
            run_states = []
            if self.current_epoch <= self.config.num_epoch:
W
wuzewu 已提交
773
                while self.current_epoch <= self.config.num_epoch:
K
kinghuin 已提交
774
                    self.config.strategy.step()
W
wuzewu 已提交
775 776
                    run_states = self._run(do_eval=do_eval)
                    self.env.current_epoch += 1
W
wuzewu 已提交
777

W
wuzewu 已提交
778
                # Final evaluation
779 780 781
                if self._base_data_reader.get_dev_examples() != []:
                    self.eval(phase="dev")
                if self._base_data_reader.get_test_examples() != []:
K
kinghuin 已提交
782
                    self.eval(phase="test", load_best_model=True)
783 784
                # Save checkpoint after finetune
                self.save_checkpoint()
W
wuzewu 已提交
785

W
wuzewu 已提交
786
            self._finetune_end_event(run_states)
787
            return run_states
W
wuzewu 已提交
788

K
kinghuin 已提交
789 790 791 792
    def eval(self, phase="dev", load_best_model=False):
        # Warning: DO NOT use eval(load_best_model=True) in finetune_and_eval
        # It will cause trainer unable to continue training from checkpoint after eval
        # More important, The model should evaluate current performance during training.
W
wuzewu 已提交
793
        with self.phase_guard(phase=phase):
K
kinghuin 已提交
794 795 796 797
            if load_best_model:
                self.init_if_load_best_model()
            else:
                self.init_if_necessary()
W
wuzewu 已提交
798 799 800
            self._eval_start_event()
            run_states = self._run()
            self._eval_end_event(run_states)
801
            return run_states
W
wuzewu 已提交
802

K
kinghuin 已提交
803
    def predict(self, data, load_best_model=True, return_result=False):
W
wuzewu 已提交
804
        with self.phase_guard(phase="predict"):
W
wuzewu 已提交
805
            if load_best_model:
K
kinghuin 已提交
806 807 808
                self.init_if_load_best_model()
            else:
                self.init_if_necessary()
W
wuzewu 已提交
809
            self._predict_data = data
W
wuzewu 已提交
810
            self._predict_start_event()
W
wuzewu 已提交
811
            run_states = self._run()
W
wuzewu 已提交
812
            self._predict_end_event(run_states)
W
wuzewu 已提交
813
            self._predict_data = None
K
kinghuin 已提交
814 815
            if return_result:
                return self._postprocessing(run_states)
816
        return run_states
W
wuzewu 已提交
817

K
kinghuin 已提交
818 819 820 821 822 823 824
    def _postprocessing(self, run_states):
        results = []
        for batch_state in run_states:
            batch_result = batch_state.run_results[0]
            results += [result[0] for result in batch_result]
        return results

W
wuzewu 已提交
825 826 827 828 829 830 831 832 833 834 835
    def _run(self, do_eval=False):
        with fluid.program_guard(self.main_program, self.startup_program):
            if self.config.use_pyreader:
                return self._run_with_py_reader(do_eval=do_eval)
            return self._run_with_data_feeder(do_eval=do_eval)

    def _run_with_data_feeder(self, do_eval=False):

        data_feeder = fluid.DataFeeder(
            feed_list=self.feed_list, place=self.place)

W
wuzewu 已提交
836 837 838
        global_run_states = []
        period_run_states = []

K
kinghuin 已提交
839
        parallel_batch = []
W
wuzewu 已提交
840
        for run_step, batch in enumerate(self.reader(), start=1):
K
kinghuin 已提交
841 842 843 844 845 846 847 848
            if self.config.use_data_parallel:
                parallel_batch += batch
                if len(parallel_batch) < self.device_count:
                    continue
                else:
                    batch = parallel_batch
                    parallel_batch = []

W
wuzewu 已提交
849
            step_run_state = RunState(len(self.fetch_list))
W
wuzewu 已提交
850 851 852
            step_run_state.run_step = 1
            num_batch_examples = len(batch)

S
Steffy-zxf 已提交
853 854 855 856 857 858 859 860 861 862 863 864
            if self.return_numpy:
                fetch_result = self.exe.run(
                    self.main_program_to_be_run,
                    feed=data_feeder.feed(batch),
                    fetch_list=self.fetch_list)
            else:
                fetch_result = self.exe.run(
                    self.main_program_to_be_run,
                    feed=data_feeder.feed(batch),
                    fetch_list=self.fetch_list,
                    return_numpy=False)
                fetch_result = [np.array(x) for x in fetch_result]
W
wuzewu 已提交
865 866 867 868 869 870

            for index, result in enumerate(fetch_result):
                step_run_state.run_results[index] = result
            step_run_state.run_examples += num_batch_examples
            step_run_state.update()
            period_run_states += [step_run_state]
S
Steffy-zxf 已提交
871
            self.env.current_step += 1
W
wuzewu 已提交
872
            if self.is_train_phase:
W
wuzewu 已提交
873 874 875 876 877 878 879 880 881 882 883
                if self.current_step % self.config.log_interval == 0:
                    self._log_interval_event(period_run_states)
                    global_run_states += period_run_states
                    period_run_states = []

                if self.config.save_ckpt_interval and self.current_step % self.config.save_ckpt_interval == 0:
                    self._save_ckpt_interval_event()

                if do_eval and self.current_step % self.config.eval_interval == 0:
                    self._eval_interval_event()

W
wuzewu 已提交
884
            self._run_step_event(step_run_state)
W
wuzewu 已提交
885 886 887 888

        global_run_states += period_run_states
        return global_run_states

W
wuzewu 已提交
889
    def _run_with_py_reader(self, do_eval=False):
W
wuzewu 已提交
890
        flag = False
W
wuzewu 已提交
891
        use_data_parallel_backup = self.config.use_data_parallel
W
wuzewu 已提交
892 893 894 895 896 897 898 899 900 901
        while True:
            global_run_states = []
            period_run_states = []
            self.py_reader.decorate_paddle_reader(self.reader)
            self.py_reader.start()
            try:
                while True:
                    num_batch_examples = self.config.batch_size * self.device_count
                    step_run_state = RunState(len(self.fetch_list))
                    step_run_state.run_step = 1
S
Steffy-zxf 已提交
902 903 904 905 906 907 908 909 910 911 912

                    if self.return_numpy:
                        fetch_result = self.exe.run(
                            self.main_program_to_be_run,
                            fetch_list=self.fetch_list)
                    else:
                        fetch_result = self.exe.run(
                            self.main_program_to_be_run,
                            fetch_list=self.fetch_list,
                            return_numpy=False)
                        fetch_result = [np.array(x) for x in fetch_result]
W
wuzewu 已提交
913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947

                    for index, result in enumerate(fetch_result):
                        step_run_state.run_results[index] = result
                    step_run_state.run_examples += num_batch_examples
                    step_run_state.update()
                    period_run_states += [step_run_state]
                    self.env.current_step += 1
                    if self.is_train_phase:
                        if self.current_step % self.config.log_interval == 0:
                            self._log_interval_event(period_run_states)
                            global_run_states += period_run_states
                            period_run_states = []

                        if self.config.save_ckpt_interval and self.current_step % self.config.save_ckpt_interval == 0:
                            self._save_ckpt_interval_event()

                        if do_eval and self.current_step % self.config.eval_interval == 0:
                            self._eval_interval_event()

                    self._run_step_event(step_run_state)
            except fluid.core.EOFException:
                global_run_states += period_run_states
                self.py_reader.reset()
                '''
                When opening use_data_parallel and use_pyreader, if the amount of data is too small,
                the reader will have thrown EOF Exception when not fetching to the running result.
                In this case, temporarily close the use_data_parallel to get the result.
                '''
                if flag:
                    self.config._use_data_parallel = use_data_parallel_backup
                elif len(global_run_states) == 0:
                    flag = True
                    self.config._use_data_parallel = False
                    continue
                break
W
wuzewu 已提交
948 949

        return global_run_states
950 951 952 953 954

    def __repr__(self):
        return "Task: %s with metrics_choices: %s, reader: %s, %s" % (
            self.__class__.__name__, self.metrics_choices,
            self._base_data_reader.__class__.__name__, self.config)