base_task.py 39.6 KB
Newer Older
K
kinghuin 已提交
1 2
# coding:utf-8
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
Z
Zeyu Chen 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16 17 18 19
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Z
Zeyu Chen 已提交
20
import os
W
wuzewu 已提交
21
import contextlib
22
import time
W
wuzewu 已提交
23
import copy
K
kinghuin 已提交
24 25
import inspect
from functools import partial
K
kinghuin 已提交
26
from collections import OrderedDict
K
kinghuin 已提交
27 28 29 30 31
import six
if six.PY2:
    from inspect import getargspec as get_args
else:
    from inspect import getfullargspec as get_args
S
Steffy-zxf 已提交
32
import numpy as np
33
import paddle
W
wuzewu 已提交
34
import paddle.fluid as fluid
K
kinghuin 已提交
35
from tb_paddle import SummaryWriter
W
wuzewu 已提交
36 37

import paddlehub as hub
S
Steffy-zxf 已提交
38
from paddlehub.common.paddle_helper import dtype_map, clone_program
39
from paddlehub.common.utils import mkdir, version_compare
40
from paddlehub.common.dir import tmp_dir
W
wuzewu 已提交
41 42 43 44 45 46
from paddlehub.common.logger import logger
from paddlehub.finetune.checkpoint import load_checkpoint, save_checkpoint
from paddlehub.finetune.config import RunConfig


class RunState(object):
47 48 49 50 51 52 53
    """
    RunState is used to save the result of every running step

    Args:
        length (int): the number of fetch result
    """

W
wuzewu 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
    def __init__(self, length):
        self.run_time_begin = time.time()
        self.run_step = 0
        self.run_examples = 0
        self.run_results = [0] * length
        self.run_time_used = 0
        self.run_speed = 0.0

    def __add__(self, other):
        self.run_step += other.run_step
        self.run_examples += other.run_examples
        for index in range(len(self.run_results)):
            self.run_results[index] += other.run_results[index]
        return self

    def update(self):
        self.run_time_used = time.time() - self.run_time_begin
        self.run_speed = self.run_step / self.run_time_used
        return self


W
wuzewu 已提交
75
class RunEnv(object):
76 77 78 79
    """
    RunEnv saves the running environment of the train/dev/predict phase, including program, reader, metrics and so on.
    """

W
wuzewu 已提交
80 81 82 83 84 85 86 87 88
    def __init__(self):
        self.current_epoch = 0
        self.current_step = 0
        self.main_program = None
        self.start_program = None
        self.main_program_compiled = None
        self.py_reader = None
        self.reader = None
        self.loss = None
W
wuzewu 已提交
89
        self.labels = None
W
wuzewu 已提交
90 91 92 93 94 95 96 97 98 99 100
        self.metrics = None
        self.is_inititalized = False
        self.UNG = copy.deepcopy(fluid.unique_name.generator)

    def __setattr__(self, key, value):
        self.__dict__[key] = value

    def __getattr__(self, key):
        return self.__dict__[key]


K
kinghuin 已提交
101
class TaskHooks():
102 103 104 105
    """
    TaskHooks can handle some tasks during the spectific event.
    """

K
kinghuin 已提交
106 107
    def __init__(self):
        self._registered_hooks = {
K
kinghuin 已提交
108 109 110 111 112 113 114 115 116 117 118 119
            "build_env_start_event": OrderedDict(),
            "build_env_end_event": OrderedDict(),
            "finetune_start_event": OrderedDict(),
            "finetune_end_event": OrderedDict(),
            "predict_start_event": OrderedDict(),
            "predict_end_event": OrderedDict(),
            "eval_start_event": OrderedDict(),
            "eval_end_event": OrderedDict(),
            "log_interval_event": OrderedDict(),
            "save_ckpt_interval_event": OrderedDict(),
            "eval_interval_event": OrderedDict(),
            "run_step_event": OrderedDict(),
K
kinghuin 已提交
120 121
        }
        self._hook_params_num = {
K
kinghuin 已提交
122 123 124 125 126 127 128 129 130 131 132 133
            "build_env_start_event": 1,
            "build_env_end_event": 1,
            "finetune_start_event": 1,
            "finetune_end_event": 2,
            "predict_start_event": 1,
            "predict_end_event": 2,
            "eval_start_event": 1,
            "eval_end_event": 2,
            "log_interval_event": 2,
            "save_ckpt_interval_event": 1,
            "eval_interval_event": 1,
            "run_step_event": 2,
K
kinghuin 已提交
134 135 136
        }

    def add(self, hook_type, name=None, func=None):
137 138 139 140 141 142 143 144
        """
        add the handler function to spectific event.

        Args:
            hook_type (str): the spectific event name
            name (str): the handler function name, default None
            func (func): the handler function, default None
        """
K
kinghuin 已提交
145 146 147
        if not func or not callable(func):
            raise TypeError(
                "The hook function is empty or it is not a function")
K
kinghuin 已提交
148
        if name == None:
K
kinghuin 已提交
149 150 151
            name = "hook_%s" % id(func)

        # check validity
K
kinghuin 已提交
152 153
        if not isinstance(name, str) or name.strip() == "":
            raise TypeError("The hook name must be a non-empty string")
K
kinghuin 已提交
154 155 156 157 158 159 160
        if hook_type not in self._registered_hooks:
            raise ValueError("hook_type: %s does not exist" % (hook_type))
        if name in self._registered_hooks[hook_type]:
            raise ValueError(
                "name: %s has existed in hook_type:%s, use modify method to modify it"
                % (name, hook_type))
        else:
K
kinghuin 已提交
161
            args_num = len(get_args(func).args)
K
kinghuin 已提交
162 163 164 165 166 167 168
            if args_num != self._hook_params_num[hook_type]:
                raise ValueError(
                    "The number of parameters to the hook hook_type:%s should be %i"
                    % (hook_type, self._hook_params_num[hook_type]))
            self._registered_hooks[hook_type][name] = func

    def delete(self, hook_type, name):
169 170 171 172 173 174 175
        """
        delete the handler function of spectific event.

        Args:
            hook_type (str): the spectific event name
            name (str): the handler function name
        """
K
kinghuin 已提交
176 177 178 179 180 181 182 183
        if self.exist(hook_type, name):
            del self._registered_hooks[hook_type][name]
        else:
            raise ValueError(
                "No hook_type: %s exists or name: %s does not exist in hook_type: %s"
                % (hook_type, name, hook_type))

    def modify(self, hook_type, name, func):
184 185 186 187 188 189 190 191
        """
        modify the handler function of spectific event.

        Args:
            hook_type (str): the spectific event name
            name (str): the handler function name
            func (func): the new handler function
        """
K
kinghuin 已提交
192 193 194 195 196 197 198 199 200 201 202 203
        if not (isinstance(name, str) and callable(func)):
            raise TypeError(
                "The hook name must be a string, and the hook function must be a function"
            )
        if self.exist(hook_type, name):
            self._registered_hooks[hook_type][name] = func
        else:
            raise ValueError(
                "No hook_type: %s exists or name: %s does not exist in hook_type: %s"
                % (hook_type, name, hook_type))

    def exist(self, hook_type, name):
204 205 206 207 208 209 210 211 212 213
        """
        check if the the handler function of spectific event is existing.

        Args:
            hook_type (str): the spectific event name
            name (str): the handler function name

        Returns:
            bool: True or False
        """
K
kinghuin 已提交
214 215 216 217 218 219
        if hook_type not in self._registered_hooks \
                or name not in self._registered_hooks[hook_type]:
            return False
        else:
            return True

K
kinghuin 已提交
220
    def info(self, show_default=False):
221 222 223 224 225 226 227 228 229
        """
        get the hooks information, including the source code.

        Args:
            show_default (bool): show the information of Paddlehub default hooks or not, default False

        Returns:
            str: the formatted string of the hooks information
        """
K
kinghuin 已提交
230 231 232 233 234
        # formatted output the source code
        ret = ""
        for hook_type, hooks in self._registered_hooks.items():
            already_print_type = False
            for name, func in hooks.items():
K
kinghuin 已提交
235
                if name == "default" and not show_default:
K
kinghuin 已提交
236 237 238 239 240 241 242 243 244 245 246 247
                    continue
                if not already_print_type:
                    ret += "hook_type: %s{\n" % hook_type
                    already_print_type = True
                source = inspect.getsource(func)
                ret += " name: %s{\n" % name
                for line in source.split("\n"):
                    ret += "  %s\n" % line
                ret += " }\n"
            if already_print_type:
                ret += "}\n"
        if not ret:
K
kinghuin 已提交
248
            ret = "Not any customized hooks have been defined, you can set show_default=True to see the default hooks information"
K
kinghuin 已提交
249 250 251 252 253 254
        return ret

    def __getitem__(self, hook_type):
        return self._registered_hooks[hook_type]

    def __repr__(self):
255
        return self.info(show_default=False)
K
kinghuin 已提交
256 257


K
kinghuin 已提交
258
class BaseTask(object):
259 260 261 262 263 264 265 266 267 268 269 270
    """
    BaseTask is the base class of all the task. It will complete the building of all the running environment.

    Args:
        feed_list (list): the inputs name
        data_reader (object): data reader for the task
        main_program (object): the customized main_program, default None
        startup_program (object): the customized startup_program, default None
        config (object): the config for the task, default None
        metrics_choices (list): metrics used to the task, default ["acc"]
    """

W
wuzewu 已提交
271
    def __init__(self,
W
wuzewu 已提交
272 273 274 275
                 feed_list,
                 data_reader,
                 main_program=None,
                 startup_program=None,
K
kinghuin 已提交
276 277
                 config=None,
                 metrics_choices="default"):
W
wuzewu 已提交
278 279 280
        # base item
        self._base_data_reader = data_reader
        self._base_feed_list = feed_list
K
kinghuin 已提交
281 282 283 284 285 286 287 288 289 290 291 292

        # metrics item
        self.best_score = -999
        if metrics_choices == "default":
            metrics_choices = ["acc"]
        elif metrics_choices == None:
            metrics_choices = []
        if isinstance(metrics_choices, list):
            self.metrics_choices = metrics_choices
        else:
            self.metrics_choices = [metrics_choices]

W
wuzewu 已提交
293
        if main_program is None:
S
Steffy-zxf 已提交
294 295 296
            self._base_main_program = clone_program(
                fluid.default_main_program(), for_test=False)

W
wuzewu 已提交
297
        else:
S
Steffy-zxf 已提交
298 299
            self._base_main_program = clone_program(
                main_program, for_test=False)
W
wuzewu 已提交
300
        if startup_program is None:
S
Steffy-zxf 已提交
301 302
            self._base_startup_program = clone_program(
                fluid.default_startup_program(), for_test=False)
W
wuzewu 已提交
303
        else:
S
Steffy-zxf 已提交
304 305
            self._base_startup_program = clone_program(
                startup_program, for_test=False)
W
wuzewu 已提交
306
        self.is_checkpoint_loaded = False
S
Steffy-zxf 已提交
307
        self._base_compiled_program = None
W
wuzewu 已提交
308 309

        # run config
W
wuzewu 已提交
310
        self.config = config if config else RunConfig()
311 312 313
        self.place = self.places[0]
        self.device_count = len(self.places)

W
wuzewu 已提交
314 315 316 317 318 319 320 321
        if self.config.use_data_parallel:
            if not self.config.use_pyreader and self.config.batch_size < self.device_count:
                logger.warning(
                    "Batch size({}) is less than the count of devices({}), which is not allowed in current Paddle versions"
                    .format(self.config.batch_size, self.device_count))
                logger.warning("Batch size automatically adjusted to {}".format(
                    self.device_count))
                self.config._batch_size = self.device_count
322

W
wuzewu 已提交
323
        self.exe = fluid.Executor(place=self.place)
W
wuzewu 已提交
324 325 326 327 328
        self.build_strategy = fluid.BuildStrategy()

        # run environment
        self._phases = []
        self._envs = {}
W
wuzewu 已提交
329
        self._predict_data = None
330
        self._tb_writer = None
W
wuzewu 已提交
331

K
kinghuin 已提交
332 333 334 335
        # event hooks
        self._hooks = TaskHooks()
        for hook_type, event_hooks in self._hooks._registered_hooks.items():
            self._hooks.add(hook_type, "default",
K
kinghuin 已提交
336 337
                            eval("self._default_%s" % hook_type))
            setattr(BaseTask, "_%s" % hook_type,
K
kinghuin 已提交
338 339
                    self.create_event_function(hook_type))

K
kinghuin 已提交
340 341
        # accelerate predict
        self.is_best_model_loaded = False
342
        self._predictor = None
K
kinghuin 已提交
343

W
wuzewu 已提交
344 345
        # set default phase
        self.enter_phase("train")
W
wuzewu 已提交
346

J
jayhenry 已提交
347 348 349 350
    @property
    def base_main_program(self):
        return self._base_main_program

W
wuzewu 已提交
351 352
    @contextlib.contextmanager
    def phase_guard(self, phase):
W
wuzewu 已提交
353 354 355 356 357
        self.enter_phase(phase)
        yield
        self.exit_phase()

    def enter_phase(self, phase):
W
wuzewu 已提交
358 359
        if phase not in ["train", "val", "dev", "test", "predict", "inference"]:
            raise RuntimeError()
K
kinghuin 已提交
360 361 362 363
        if phase in ["val", "dev"]:
            phase = "dev"
        elif phase in ["predict", "inference"]:
            phase = "predict"
W
wuzewu 已提交
364
        self._phases.append(phase)
W
wuzewu 已提交
365 366

    def exit_phase(self):
W
wuzewu 已提交
367 368
        self._phases = self._phases[:-1]

W
wuzewu 已提交
369 370 371 372
    def init_if_necessary(self):
        if not self.is_checkpoint_loaded:
            if not self.load_checkpoint():
                self.exe.run(self._base_startup_program)
K
kinghuin 已提交
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388
            self.is_checkpoint_loaded = True
            self.is_best_model_loaded = False

    def init_if_load_best_model(self):
        if not self.is_best_model_loaded:
            best_model_path = os.path.join(self.config.checkpoint_dir,
                                           "best_model")
            logger.info("Load the best model from %s" % best_model_path)
            if os.path.exists(best_model_path):
                self.load_parameters(best_model_path)
                self.is_checkpoint_loaded = False
                self.is_best_model_loaded = True
            else:
                self.init_if_necessary()
        else:
            logger.info("The best model has been loaded")
W
wuzewu 已提交
389

W
wuzewu 已提交
390
    def _build_env(self):
391 392 393
        """
        building the program and strategy for specific running phase.
        """
W
wuzewu 已提交
394 395 396 397 398
        if self.env.is_inititalized:
            return

        self._build_env_start_event()
        self.env.is_inititalized = True
S
Steffy-zxf 已提交
399
        self.env.main_program = clone_program(
J
jayhenry 已提交
400
            self.base_main_program, for_test=False)
S
Steffy-zxf 已提交
401

W
wuzewu 已提交
402 403 404 405
        self.env.startup_program = fluid.Program()
        with fluid.program_guard(self.env.main_program,
                                 self._base_startup_program):
            with fluid.unique_name.guard(self.env.UNG):
406
                self.env.outputs = self._build_net()
W
wuzewu 已提交
407
                if self.is_train_phase or self.is_test_phase:
W
wuzewu 已提交
408
                    self.env.labels = self._add_label()
W
wuzewu 已提交
409 410
                    self.env.loss = self._add_loss()
                    self.env.metrics = self._add_metrics()
W
wuzewu 已提交
411

W
wuzewu 已提交
412
        if self.is_predict_phase or self.is_test_phase:
J
jayhenry 已提交
413 414 415
            # Todo: paddle.fluid.core_avx.EnforceNotMet: Getting 'tensor_desc' is not supported by the type of var kCUDNNFwdAlgoCache. at
            # self.env.main_program = clone_program(
            #     self.env.main_program, for_test=True)
W
wuzewu 已提交
416 417 418
            hub.common.paddle_helper.set_op_attr(
                self.env.main_program, is_test=True)

W
wuzewu 已提交
419 420 421 422 423 424 425 426 427
        if self.config.enable_memory_optim:
            for var_name in self.fetch_list:
                var = self.env.main_program.global_block().vars[var_name]
                var.persistable = True

        if self.is_train_phase:
            with fluid.program_guard(self.env.main_program,
                                     self._base_startup_program):
                with fluid.unique_name.guard(self.env.UNG):
K
kinghuin 已提交
428 429 430
                    self.scheduled_lr, self.max_train_steps = self.config.strategy.execute(
                        self.loss, self._base_data_reader, self.config,
                        self.device_count)
W
wuzewu 已提交
431 432 433 434 435 436

        if self.is_train_phase:
            loss_name = self.env.loss.name
        else:
            loss_name = None

K
kinghuin 已提交
437
        share_vars_from = self._base_compiled_program
W
wuzewu 已提交
438

W
wuzewu 已提交
439
        if not self.config.use_data_parallel:
W
wuzewu 已提交
440
            self.env.main_program_compiled = None
W
wuzewu 已提交
441 442 443 444 445
        else:
            self.env.main_program_compiled = fluid.CompiledProgram(
                self.env.main_program).with_data_parallel(
                    loss_name=loss_name,
                    share_vars_from=share_vars_from,
446 447
                    build_strategy=self.build_strategy,
                    places=self.places)
W
wuzewu 已提交
448 449 450 451

        self.exe.run(self.env.startup_program)
        self._build_env_end_event()

452 453 454
    @property
    def places(self):
        if self.config.use_cuda:
W
wuzewu 已提交
455 456 457 458 459 460 461
            _places = fluid.framework.cuda_places()
        else:
            _places = fluid.framework.cpu_places()

        if not self.config.use_data_parallel:
            return [_places[0]]
        return _places
462

S
Steffy-zxf 已提交
463 464 465 466
    @property
    def return_numpy(self):
        return True

W
wuzewu 已提交
467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
    @property
    def is_train_phase(self):
        return self.phase in ["train"]

    @property
    def is_test_phase(self):
        return self.phase in ["val", "dev", "test"]

    @property
    def is_predict_phase(self):
        return self.phase in ["predict", "inference"]

    @property
    def phase(self):
        return self._phases[-1]

    @property
    def env(self):
        phase = self.phase
        if phase in ["val", "dev", "test"]:
K
kinghuin 已提交
487
            phase = "dev"
W
wuzewu 已提交
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510
        if not phase in self._envs:
            self._envs[phase] = RunEnv()
        return self._envs[phase]

    @property
    def py_reader(self):
        if not self.env.is_inititalized:
            self._build_env()
        return self.env.py_reader

    @property
    def current_step(self):
        if not self.env.is_inititalized:
            self._build_env()
        return self.env.current_step

    @property
    def current_epoch(self):
        if not self.env.is_inititalized:
            self._build_env()
        return self.env.current_epoch

    @property
Z
Zeyu Chen 已提交
511
    def main_program(self):
W
wuzewu 已提交
512 513 514
        if not self.env.is_inititalized:
            self._build_env()
        return self.env.main_program
Z
Zeyu Chen 已提交
515

W
wuzewu 已提交
516
    @property
Z
Zeyu Chen 已提交
517
    def startup_program(self):
W
wuzewu 已提交
518 519 520 521 522 523 524 525 526 527
        if not self.env.is_inititalized:
            self._build_env()
        return self.env.startup_program

    @property
    def main_program_compiled(self):
        if not self.env.is_inititalized:
            self._build_env()
        return self.env.main_program_compiled

W
wuzewu 已提交
528 529 530
    @property
    def main_program_to_be_run(self):
        if self.config.use_data_parallel:
K
kinghuin 已提交
531 532
            if self._base_compiled_program is None:
                self._base_compiled_program = self.env.main_program_compiled
W
wuzewu 已提交
533 534 535
            return self.main_program_compiled
        return self.main_program

W
wuzewu 已提交
536 537
    @property
    def reader(self):
W
wuzewu 已提交
538 539 540 541
        if self.is_predict_phase:
            data = self._predict_data
        else:
            data = None
W
wuzewu 已提交
542
        self.env.reader = self._base_data_reader.data_generator(
543 544 545 546
            batch_size=self.config.batch_size,
            phase=self.phase,
            data=data,
            return_list=not self.config.use_pyreader)
W
wuzewu 已提交
547 548 549 550 551 552 553 554 555 556 557 558
        return self.env.reader

    @property
    def loss(self):
        if self.is_predict_phase:
            raise RuntimeError()

        if not self.env.is_inititalized:
            self._build_env()
        return self.env.loss

    @property
W
wuzewu 已提交
559
    def labels(self):
W
wuzewu 已提交
560 561 562 563 564
        if self.is_predict_phase:
            raise RuntimeError()

        if not self.env.is_inititalized:
            self._build_env()
W
wuzewu 已提交
565
        return self.env.labels
W
wuzewu 已提交
566 567

    @property
568
    def outputs(self):
W
wuzewu 已提交
569 570
        if not self.env.is_inititalized:
            self._build_env()
571
        return self.env.outputs
W
wuzewu 已提交
572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589

    @property
    def metrics(self):
        if self.is_predict_phase:
            raise RuntimeError()

        if not self.env.is_inititalized:
            self._build_env()
        return self.env.metrics

    @property
    def unique_name_generator(self):
        return self.env.UNG

    @property
    def feed_list(self):
        feed_list = [varname for varname in self._base_feed_list]
        if self.is_train_phase or self.is_test_phase:
W
wuzewu 已提交
590
            feed_list += [label.name for label in self.labels]
W
wuzewu 已提交
591 592 593 594 595 596 597 598 599 600 601
        return feed_list

    @property
    def feed_var_list(self):
        vars = self.main_program.global_block().vars
        return [vars[varname] for varname in self.feed_list]

    @property
    def fetch_list(self):
        if self.is_train_phase or self.is_test_phase:
            return [metric.name for metric in self.metrics] + [self.loss.name]
602
        return [output.name for output in self.outputs]
W
wuzewu 已提交
603

W
wuzewu 已提交
604 605 606 607 608
    @property
    def fetch_var_list(self):
        vars = self.main_program.global_block().vars
        return [vars[varname] for varname in self.fetch_list]

609 610
    @property
    def tb_writer(self):
611 612 613
        """
        get tb_writer for visualization.
        """
614 615 616 617 618 619 620
        if not os.path.exists(self.config.checkpoint_dir):
            mkdir(self.config.checkpoint_dir)
        tb_log_dir = os.path.join(self.config.checkpoint_dir, "visualization")
        if not self._tb_writer:
            self._tb_writer = SummaryWriter(tb_log_dir)
        return self._tb_writer

K
kinghuin 已提交
621
    def create_event_function(self, hook_type):
622 623 624 625 626 627 628 629 630 631
        """
        create handlers for specific event.

        Args:
            hook_type (str): specific event name

        Returns:
            func: executable function, the class method will receive a parameter named self.
        """

K
kinghuin 已提交
632
        def hook_function(self, *args):
633
            # all the handler in self._hooks[hook_type] will be configured to executable
K
kinghuin 已提交
634 635 636 637 638 639 640 641 642 643 644 645
            for name, func in self._hooks[hook_type].items():
                if inspect.ismethod(func):
                    func(*args)
                else:
                    partial(func, self)(*args)

        return hook_function

    @property
    def hooks(self):
        return self._hooks

646 647 648 649 650 651 652 653 654 655 656
    def hooks_info(self, show_default=False):
        """
        get the hooks information, including the source code.

        Args:
            show_default (bool): show the information of Paddlehub default hooks or not, default False

        Returns:
            str: the formatted string of the hooks information
        """
        return self._hooks.info(show_default)
K
kinghuin 已提交
657 658

    def add_hook(self, hook_type, name=None, func=None):
659 660 661 662 663 664 665 666
        """
        add the handler function to spectific event.

        Args:
            hook_type (str): the spectific event name
            name (str): the handler function name, default None
            func (func): the handler function, default None
        """
K
kinghuin 已提交
667 668
        if name == None:
            name = "hook_%s" % id(func)
K
kinghuin 已提交
669
        self._hooks.add(hook_type, name=name, func=func)
K
kinghuin 已提交
670
        logger.info("Add hook %s:%s successfully" % (hook_type, name))
K
kinghuin 已提交
671 672

    def delete_hook(self, hook_type, name):
673 674 675 676 677 678 679
        """
        delete the handler function of spectific event.

        Args:
            hook_type (str): the spectific event name
            name (str): the handler function name
        """
K
kinghuin 已提交
680
        self._hooks.delete(hook_type, name)
K
kinghuin 已提交
681
        logger.info("Delete hook %s:%s successfully" % (hook_type, name))
K
kinghuin 已提交
682 683

    def modify_hook(self, hook_type, name, func):
684 685 686 687 688 689 690 691
        """
         modify the handler function of spectific event.

         Args:
             hook_type (str): the spectific event name
             name (str): the handler function name
             func (func): the new handler function
         """
K
kinghuin 已提交
692
        self._hooks.modify(hook_type, name, func)
K
kinghuin 已提交
693
        logger.info("Modify hook %s:%s successfully" % (hook_type, name))
K
kinghuin 已提交
694 695

    def _default_build_env_start_event(self):
W
wuzewu 已提交
696 697
        pass

K
kinghuin 已提交
698
    def _default_build_env_end_event(self):
K
kinghuin 已提交
699 700
        if not self.is_predict_phase:
            self.env.score_scalar = {}
W
wuzewu 已提交
701

K
kinghuin 已提交
702 703
    def _default_finetune_start_event(self):
        logger.info("PaddleHub finetune start")
W
wuzewu 已提交
704

K
kinghuin 已提交
705
    def _default_finetune_end_event(self, run_states):
W
wuzewu 已提交
706 707
        logger.info("PaddleHub finetune finished.")

K
kinghuin 已提交
708
    def _default_predict_start_event(self):
W
wuzewu 已提交
709 710
        logger.info("PaddleHub predict start")

K
kinghuin 已提交
711
    def _default_predict_end_event(self, run_states):
W
wuzewu 已提交
712 713
        logger.info("PaddleHub predict finished.")

K
kinghuin 已提交
714 715
    def _default_eval_start_event(self):
        logger.info("Evaluation on {} dataset start".format(self.phase))
W
wuzewu 已提交
716

K
kinghuin 已提交
717
    def _default_eval_end_event(self, run_states):
718 719 720 721 722 723
        """
        Paddlehub default handler for eval_end_event, it will complete visualization and metrics calculation

        Args:
            run_states (object): the results in eval phase
        """
K
kinghuin 已提交
724
        eval_scores, eval_loss, run_speed = self._calculate_metrics(run_states)
K
kinghuin 已提交
725
        if 'train' in self._envs:
K
kinghuin 已提交
726
            self.tb_writer.add_scalar(
K
kinghuin 已提交
727 728
                tag="Loss_{}".format(self.phase),
                scalar_value=eval_loss,
729
                global_step=self._envs['train'].current_step)
K
kinghuin 已提交
730

K
kinghuin 已提交
731 732 733 734 735 736 737
        log_scores = ""
        for metric in eval_scores:
            if 'train' in self._envs:
                self.tb_writer.add_scalar(
                    tag="{}_{}".format(metric, self.phase),
                    scalar_value=eval_scores[metric],
                    global_step=self._envs['train'].current_step)
K
kinghuin 已提交
738
            log_scores += "%s=%.5f " % (metric, eval_scores[metric])
739
        logger.eval(
K
kinghuin 已提交
740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
            "[%s dataset evaluation result] loss=%.5f %s[step/sec: %.2f]" %
            (self.phase, eval_loss, log_scores, run_speed))

        eval_scores_items = eval_scores.items()
        if len(eval_scores_items):
            # The first metric will be chose to eval
            main_metric, main_value = list(eval_scores_items)[0]
        else:
            logger.warning(
                "None of metrics has been implemented, loss will be used to evaluate."
            )
            # The larger, the better
            main_metric, main_value = "negative loss", -eval_loss
        if self.phase in ["dev", "val"] and main_value > self.best_score:
            self.best_score = main_value
            model_saved_dir = os.path.join(self.config.checkpoint_dir,
                                           "best_model")
757
            logger.eval("best model saved to %s [best %s=%.5f]" %
K
kinghuin 已提交
758
                        (model_saved_dir, main_metric, main_value))
S
Steffy-zxf 已提交
759
            self.save_inference_model(dirname=model_saved_dir)
W
wuzewu 已提交
760

K
kinghuin 已提交
761
    def _default_log_interval_event(self, run_states):
762 763 764 765 766 767
        """
        PaddleHub default handler for log_interval_event, it will complete visualization.

        Args:
            run_states (object): the results in train phase
        """
K
kinghuin 已提交
768 769
        scores, avg_loss, run_speed = self._calculate_metrics(run_states)
        self.tb_writer.add_scalar(
K
kinghuin 已提交
770
            tag="Loss_{}".format(self.phase),
K
kinghuin 已提交
771
            scalar_value=avg_loss,
772
            global_step=self._envs['train'].current_step)
K
kinghuin 已提交
773 774 775
        log_scores = ""
        for metric in scores:
            self.tb_writer.add_scalar(
K
kinghuin 已提交
776
                tag="{}_{}".format(metric, self.phase),
K
kinghuin 已提交
777
                scalar_value=scores[metric],
778
                global_step=self._envs['train'].current_step)
K
kinghuin 已提交
779
            log_scores += "%s=%.5f " % (metric, scores[metric])
780 781 782
        logger.train("step %d / %d: loss=%.5f %s[step/sec: %.2f]" %
                     (self.current_step, self.max_train_steps, avg_loss,
                      log_scores, run_speed))
W
wuzewu 已提交
783

K
kinghuin 已提交
784
    def _default_save_ckpt_interval_event(self):
W
wuzewu 已提交
785
        self.save_checkpoint()
W
wuzewu 已提交
786

K
kinghuin 已提交
787
    def _default_eval_interval_event(self):
W
wuzewu 已提交
788 789
        self.eval(phase="dev")

K
kinghuin 已提交
790 791
    def _default_run_step_event(self, run_state):
        pass
W
wuzewu 已提交
792 793 794 795 796 797 798 799 800 801 802

    def _build_net(self):
        raise NotImplementedError

    def _add_loss(self):
        raise NotImplementedError

    def _add_label(self):
        raise NotImplementedError

    def _add_metrics(self):
K
kinghuin 已提交
803 804
        # Some metrics like acc, auc can be calculated by fluid.layers
        # The others can be calculated in _calculate_metrics function
W
wuzewu 已提交
805 806
        raise NotImplementedError

W
wuzewu 已提交
807
    def _calculate_metrics(self, run_states):
K
kinghuin 已提交
808 809 810
        # NOTE: if you want to customize the metrics
        # you should make sure that the first parameter returned is a dict
        # The first key will be used as main metrics to update the best model
W
wuzewu 已提交
811 812
        raise NotImplementedError

W
wuzewu 已提交
813 814
    # NOTE: current saved checkpoint machanism is not completed,
    # it can't restore dataset training status
W
wuzewu 已提交
815
    def save_checkpoint(self):
S
Steffy-zxf 已提交
816 817 818
        """
        save the program of the last step in training
        """
S
Steffy-zxf 已提交
819 820
        model_saved_dir = os.path.join(self.config.checkpoint_dir,
                                       "step_%d" % self.current_step)
S
Steffy-zxf 已提交
821

S
Steffy-zxf 已提交
822
        logger.info("Saving model checkpoint to {}".format(model_saved_dir))
S
Steffy-zxf 已提交
823 824 825
        # to resume traning by loading ckpt, it must be save program (save_persistables)
        fluid.io.save_persistables(
            self.exe, dirname=model_saved_dir, main_program=self.main_program)
W
wuzewu 已提交
826 827 828 829
        save_checkpoint(
            checkpoint_dir=self.config.checkpoint_dir,
            current_epoch=self.current_epoch,
            global_step=self.current_step,
K
kinghuin 已提交
830
            best_score=self.best_score,
W
wuzewu 已提交
831 832 833
            exe=self.exe,
            main_program=self.main_program)

W
wuzewu 已提交
834
    def load_checkpoint(self):
K
kinghuin 已提交
835
        is_load_successful, self.env.current_epoch, self.env.current_step, self.best_score = load_checkpoint(
W
wuzewu 已提交
836 837
            self.config.checkpoint_dir,
            self.exe,
W
wuzewu 已提交
838
            main_program=self.main_program)
W
wuzewu 已提交
839

W
wuzewu 已提交
840 841 842 843 844 845 846 847 848 849 850 851 852
        return is_load_successful

    def load_parameters(self, dirname):
        def if_exist(var):
            path = os.path.join(dirname, var.name)
            return os.path.exists(path)

        fluid.io.load_vars(
            self.exe, dirname, self.main_program, predicate=if_exist)

    def save_parameters(self, dirname):
        fluid.io.save_params(
            self.exe, dirname=dirname, main_program=self.main_program)
S
Steffy-zxf 已提交
853

W
wuzewu 已提交
854 855 856 857 858 859 860 861 862 863 864 865 866 867
    def save_inference_model(self,
                             dirname,
                             model_filename=None,
                             params_filename=None):
        with self.phase_guard("predict"):
            fluid.io.save_inference_model(
                dirname=dirname,
                executor=self.exe,
                feeded_var_names=self.feed_list,
                target_vars=self.fetch_var_list,
                main_program=self.main_program,
                model_filename=model_filename,
                params_filename=params_filename)

W
wuzewu 已提交
868
    def finetune_and_eval(self):
869
        return self.finetune(do_eval=True)
W
wuzewu 已提交
870 871

    def finetune(self, do_eval=False):
872 873 874 875 876 877 878 879 880
        """
        train and finetune the module parameters.

        Args:
            do_eval (bool): do eval during train phase or not

        Returns:
            RunState: the running result of train phase
        """
881

W
wuzewu 已提交
882 883 884 885 886 887
        # Start to finetune
        with self.phase_guard(phase="train"):
            self.init_if_necessary()
            self._finetune_start_event()
            run_states = []
            if self.current_epoch <= self.config.num_epoch:
W
wuzewu 已提交
888
                while self.current_epoch <= self.config.num_epoch:
K
kinghuin 已提交
889
                    self.config.strategy.step()
W
wuzewu 已提交
890 891
                    run_states = self._run(do_eval=do_eval)
                    self.env.current_epoch += 1
W
wuzewu 已提交
892

W
wuzewu 已提交
893
                # Final evaluation
894
                if self._base_data_reader.get_dev_examples() != []:
895 896 897
                    # Warning: DO NOT use self.eval(phase="dev", load_best_model=True) during training.
                    # It will cause trainer unable to continue training from checkpoint after eval.
                    # More important, The model should evaluate current performance during training.
898 899
                    self.eval(phase="dev")
                if self._base_data_reader.get_test_examples() != []:
K
kinghuin 已提交
900
                    self.eval(phase="test", load_best_model=True)
901 902
                # Save checkpoint after finetune
                self.save_checkpoint()
W
wuzewu 已提交
903

W
wuzewu 已提交
904
            self._finetune_end_event(run_states)
905
            return run_states
W
wuzewu 已提交
906

K
kinghuin 已提交
907
    def eval(self, phase="dev", load_best_model=False):
908 909 910 911 912 913 914 915 916 917
        """
        evaluate the performance of current module.

        Args:
            phase (str): current run phase
            load_best_model (bool): load the best model or not

        Returns:
            RunState: the running result of eval phase
        """
K
kinghuin 已提交
918 919 920
        # Warning: DO NOT use eval(load_best_model=True) in finetune_and_eval
        # It will cause trainer unable to continue training from checkpoint after eval
        # More important, The model should evaluate current performance during training.
W
wuzewu 已提交
921
        with self.phase_guard(phase=phase):
K
kinghuin 已提交
922 923 924 925
            if load_best_model:
                self.init_if_load_best_model()
            else:
                self.init_if_necessary()
W
wuzewu 已提交
926 927 928
            self._eval_start_event()
            run_states = self._run()
            self._eval_end_event(run_states)
929
            return run_states
W
wuzewu 已提交
930

931 932 933 934 935 936 937 938 939 940
    def _create_predictor(self):
        """
        create high-performance predictor for predict.

        Returns:
            PaddlePredictor: the high-performance predictor
        """
        with tmp_dir() as _dir:
            self.save_inference_model(dirname=_dir)
            predictor_config = fluid.core.AnalysisConfig(_dir)
S
Steffy-zxf 已提交
941
            predictor_config.disable_glog_info()
942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991

            if self.config.use_cuda:
                predictor_config.enable_use_gpu(100, 0)
                predictor_config.switch_ir_optim(True)
            else:
                predictor_config.disable_gpu()
            predictor_config.enable_memory_optim()
            return fluid.core.create_paddle_predictor(predictor_config)

    def _run_with_predictor(self):
        """
        use high-performance predictor to make prediction.

        Returns:
            RunState: the running result of predict phase
        """

        if isinstance(self._base_data_reader, hub.reader.LACClassifyReader):
            raise Exception(
                "LACClassifyReader does not support predictor, please close accelerate_mode"
            )

        global_run_states = []
        period_run_states = []

        for run_step, batch in enumerate(self.reader(), start=1):
            step_run_state = RunState(len(self.fetch_list))
            step_run_state.run_step = 1
            num_batch_examples = len(batch)

            if not self.config.use_pyreader:
                # if use pyreader, the nlp_reader return [batch]
                batch = batch[0]

            batch = [fluid.core.PaddleTensor(data) for data in batch]
            fetch_result = self._predictor.run(batch)
            for index, result in enumerate(fetch_result):
                step_run_state.run_results[index] = result.as_ndarray()
            step_run_state.run_examples += num_batch_examples
            step_run_state.update()
            period_run_states += [step_run_state]
            self._run_step_event(step_run_state)

        global_run_states += period_run_states
        return global_run_states

    def predict(self,
                data,
                load_best_model=True,
                return_result=False,
992
                accelerate_mode=True):
993 994 995 996 997 998 999 1000 1001 1002 1003 1004
        """
        make prediction for the input data.

        Args:
            data (list): the data will be predicted.
            load_best_model (bool): load the best model or not
            return_result (bool): return a readable result or just the raw run result
            accelerate_mode (bool): use high-performance predictor or not

        Returns:
            RunState: the running result of predict phase
        """
1005 1006 1007 1008 1009
        if not version_compare(paddle.__version__, "1.6.2") and accelerate_mode:
            logger.warning(
                "Fail to open predict accelerate mode as it does not support paddle < 1.6.2. Please update PaddlePaddle."
            )
            accelerate_mode = False
1010 1011
        self.accelerate_mode = accelerate_mode

W
wuzewu 已提交
1012
        with self.phase_guard(phase="predict"):
1013 1014 1015
            self._predict_data = data
            self._predict_start_event()

W
wuzewu 已提交
1016
            if load_best_model:
K
kinghuin 已提交
1017 1018 1019
                self.init_if_load_best_model()
            else:
                self.init_if_necessary()
1020 1021 1022 1023 1024 1025 1026
            if not self.accelerate_mode:
                run_states = self._run()
            else:
                if not self._predictor:
                    self._predictor = self._create_predictor()
                run_states = self._run_with_predictor()

W
wuzewu 已提交
1027
            self._predict_end_event(run_states)
W
wuzewu 已提交
1028
            self._predict_data = None
K
kinghuin 已提交
1029 1030
            if return_result:
                return self._postprocessing(run_states)
1031
        return run_states
W
wuzewu 已提交
1032

K
kinghuin 已提交
1033
    def _postprocessing(self, run_states):
1034 1035 1036 1037 1038 1039 1040 1041 1042
        """
        postprocessing the run result, get readable result.

        Args:
            run_states (RunState): the raw run result to be processed

        Returns:
            list: readable result
        """
K
kinghuin 已提交
1043 1044 1045 1046 1047 1048
        results = []
        for batch_state in run_states:
            batch_result = batch_state.run_results[0]
            results += [result[0] for result in batch_result]
        return results

W
wuzewu 已提交
1049
    def _run(self, do_eval=False):
1050 1051
        """
        load data and run the program.
W
wuzewu 已提交
1052

1053 1054
        Args:
            do_eval (bool): do eval during train phase or not
W
wuzewu 已提交
1055

1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
        Returns:
            RunState: the running result of specific phase
        """
        with fluid.program_guard(self.main_program, self.startup_program):
            if self.config.use_pyreader:
                data_loader = fluid.io.DataLoader.from_generator(
                    feed_list=self.feed_var_list,
                    capacity=64,
                    use_double_buffer=True,
                    iterable=True)
J
jayhenry 已提交
1066 1067 1068
                data_reader = data_loader.set_sample_list_generator(self.reader, self.places[0])
                # data_reader = data_loader.set_batch_generator(
                #     self.reader, places=self.places)
1069 1070 1071 1072 1073 1074 1075
            else:
                data_feeder = fluid.DataFeeder(
                    feed_list=self.feed_list, place=self.place)
                data_reader = data_feeder.decorate_reader(
                    self.reader,
                    multi_devices=self.config.use_data_parallel,
                    drop_last=True)
W
wuzewu 已提交
1076

1077 1078
            global_run_states = []
            period_run_states = []
K
kinghuin 已提交
1079

1080 1081 1082 1083
            for run_step, batch in enumerate(data_reader(), start=1):
                step_run_state = RunState(len(self.fetch_list))
                step_run_state.run_step = 1
                num_batch_examples = len(batch)
W
wuzewu 已提交
1084

J
jayhenry 已提交
1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107
                if self.return_numpy == 2:
                    fetch_result = self.exe.run(
                        self.main_program_to_be_run,
                        feed=batch,
                        fetch_list=self.fetch_list,
                        return_numpy=False)
                    # fetch_result = [x if isinstance(x,fluid.LoDTensor) else np.array(x) for x in fetch_result]
                    fetch_result = [
                        x
                        if hasattr(x, 'recursive_sequence_lengths') else np.array(x)
                        for x in fetch_result
                    ]
                elif self.return_numpy:
                    fetch_result = self.exe.run(
                        self.main_program_to_be_run,
                        feed=batch,
                        fetch_list=self.fetch_list)
                else:
                    fetch_result = self.exe.run(
                        self.main_program_to_be_run,
                        feed=batch,
                        fetch_list=self.fetch_list,
                        return_numpy=False)
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131
                    fetch_result = [np.array(x) for x in fetch_result]

                for index, result in enumerate(fetch_result):
                    step_run_state.run_results[index] = result
                step_run_state.run_examples += num_batch_examples
                step_run_state.update()
                period_run_states += [step_run_state]
                self.env.current_step += 1
                if self.is_train_phase:
                    if self.current_step % self.config.log_interval == 0:
                        self._log_interval_event(period_run_states)
                        global_run_states += period_run_states
                        period_run_states = []

                    if self.config.save_ckpt_interval and self.current_step % self.config.save_ckpt_interval == 0:
                        self._save_ckpt_interval_event()

                    if do_eval and self.current_step % self.config.eval_interval == 0:
                        self._eval_interval_event()

                self._run_step_event(step_run_state)

            global_run_states += period_run_states
            return global_run_states
1132 1133 1134 1135 1136

    def __repr__(self):
        return "Task: %s with metrics_choices: %s, reader: %s, %s" % (
            self.__class__.__name__, self.metrics_choices,
            self._base_data_reader.__class__.__name__, self.config)