Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleHub
提交
fc6c613b
P
PaddleHub
项目概览
PaddlePaddle
/
PaddleHub
1 年多 前同步成功
通知
283
Star
12117
Fork
2091
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
200
列表
看板
标记
里程碑
合并请求
4
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleHub
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
200
Issue
200
列表
看板
标记
里程碑
合并请求
4
合并请求
4
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
fc6c613b
编写于
6月 17, 2019
作者:
S
Steffy-zxf
提交者:
wuzewu
6月 17, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix visualdl add record bug (#53)
* Fix visualdl add record bug
上级
5a44a789
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
51 addition
and
39 deletion
+51
-39
paddlehub/finetune/task.py
paddlehub/finetune/task.py
+51
-39
未找到文件。
paddlehub/finetune/task.py
浏览文件 @
fc6c613b
...
...
@@ -389,16 +389,21 @@ class BasicTask(object):
def
_build_env_end_event
(
self
):
pass
def
_calculate_metrics
(
self
,
run_states
):
raise
NotImplementedError
def
_eval_start_event
(
self
):
logger
.
info
(
"Evaluation on {} dataset start"
.
format
(
self
.
phase
))
def
_eval_end_event
(
self
,
run_state
):
def
_eval_end_event
(
self
,
run_states
):
run_speed
=
self
.
_calculate_metrics
(
run_states
)
logger
.
info
(
"[%s dataset evaluation result] [step/sec: %.2f]"
%
(
self
.
phase
,
run_s
tate
.
run_s
peed
))
(
self
.
phase
,
run_speed
))
def
_log_interval_event
(
self
,
run_state
):
logger
.
info
(
"step %d: [step/sec: %.2f]"
%
(
self
.
current_step
,
run_state
.
run_speed
))
def
_log_interval_event
(
self
,
run_states
):
run_speed
=
self
.
_calculate_metrics
(
run_states
)
logger
.
info
(
"step %d: [step/sec: %.2f]"
%
(
self
.
current_step
,
run_speed
))
def
_save_ckpt_interval_event
(
self
):
self
.
save_checkpoint
(
self
.
current_epoch
,
self
.
current_step
)
...
...
@@ -446,6 +451,9 @@ class BasicTask(object):
startup_program
=
self
.
_base_startup_program
,
load_best_model
=
load_best_model
)
if
self
.
is_predict_phase
or
self
.
is_test_phase
:
self
.
env
.
current_step
=
0
def
finetune_and_eval
(
self
):
self
.
finetune
(
do_eval
=
True
)
...
...
@@ -516,8 +524,8 @@ class BasicTask(object):
step_run_state
.
run_examples
+=
num_batch_examples
step_run_state
.
update
()
period_run_states
+=
[
step_run_state
]
self
.
env
.
current_step
+=
1
if
self
.
is_train_phase
:
self
.
env
.
current_step
+=
1
if
self
.
current_step
%
self
.
config
.
log_interval
==
0
:
self
.
_log_interval_event
(
period_run_states
)
global_run_states
+=
period_run_states
...
...
@@ -552,8 +560,8 @@ class BasicTask(object):
step_run_state
.
run_examples
+=
num_batch_examples
step_run_state
.
update
()
period_run_states
+=
[
step_run_state
]
self
.
env
.
current_step
+=
1
if
self
.
is_train_phase
:
self
.
env
.
current_step
+=
1
if
self
.
current_step
%
self
.
config
.
log_interval
==
0
:
self
.
_log_interval_event
(
period_run_states
)
global_run_states
+=
period_run_states
...
...
@@ -629,10 +637,11 @@ class ClassifierTask(BasicTask):
def
_build_env_end_event
(
self
):
with
self
.
log_writer
.
mode
(
self
.
phase
)
as
logw
:
self
.
env
.
loss_scalar
=
logw
.
scalar
(
tag
=
"Loss [{}]"
.
format
(
self
.
phase
))
self
.
env
.
acc_scalar
=
logw
.
scalar
(
tag
=
"Accuracy [{}]"
.
format
(
self
.
phase
))
if
not
self
.
is_predict_phase
:
self
.
env
.
loss_scalar
=
logw
.
scalar
(
tag
=
"Loss [{}]"
.
format
(
self
.
phase
))
self
.
env
.
acc_scalar
=
logw
.
scalar
(
tag
=
"Accuracy [{}]"
.
format
(
self
.
phase
))
def
_calculate_metrics
(
self
,
run_states
):
loss_sum
=
acc_sum
=
run_examples
=
0
...
...
@@ -664,9 +673,9 @@ class ClassifierTask(BasicTask):
logger
.
info
(
"[%s dataset evaluation result] loss=%.5f acc=%.5f [step/sec: %.2f]"
%
(
self
.
phase
,
eval_loss
,
eval_acc
,
run_speed
))
self
.
env
.
loss_scalar
.
add_record
(
self
.
current_step
,
eval_loss
)
self
.
env
.
acc_scalar
.
add_record
(
self
.
current_step
,
eval_acc
)
if
self
.
phase
in
[
"dev"
,
"val"
]
and
eval_acc
>
self
.
best_accuracy
:
self
.
env
.
loss_scalar
.
add_record
(
self
.
current_step
,
eval_loss
)
self
.
env
.
acc_scalar
.
add_record
(
self
.
current_step
,
eval_acc
)
self
.
best_accuracy
=
eval_acc
model_saved_dir
=
os
.
path
.
join
(
self
.
config
.
checkpoint_dir
,
"best_model"
)
...
...
@@ -796,13 +805,19 @@ class SequenceLabelTask(BasicTask):
def
_build_env_end_event
(
self
):
with
self
.
log_writer
.
mode
(
self
.
phase
)
as
logw
:
self
.
env
.
loss_scalar
=
logw
.
scalar
(
tag
=
"Loss [{}]"
.
format
(
self
.
phase
))
self
.
env
.
f1_scalar
=
logw
.
scalar
(
tag
=
"F1 [{}]"
.
format
(
self
.
phase
))
self
.
env
.
precision_scalar
=
logw
.
scalar
(
tag
=
"Precision [{}]"
.
format
(
self
.
phase
))
self
.
env
.
recall_scalar
=
logw
.
scalar
(
tag
=
"Recall [{}]"
.
format
(
self
.
phase
))
if
self
.
is_train_phase
:
self
.
env
.
loss_scalar
=
logw
.
scalar
(
tag
=
"Loss [{}]"
.
format
(
self
.
phase
))
if
self
.
phase
in
[
"dev"
,
"val"
]:
self
.
env
.
loss_scalar
=
logw
.
scalar
(
tag
=
"Loss [{}]"
.
format
(
self
.
phase
))
self
.
env
.
f1_scalar
=
logw
.
scalar
(
tag
=
"F1 [{}]"
.
format
(
self
.
phase
))
self
.
env
.
precision_scalar
=
logw
.
scalar
(
tag
=
"Precision [{}]"
.
format
(
self
.
phase
))
self
.
env
.
recall_scalar
=
logw
.
scalar
(
tag
=
"Recall [{}]"
.
format
(
self
.
phase
))
def
_calculate_metrics
(
self
,
run_states
):
total_infer
=
total_label
=
total_correct
=
loss_sum
=
0
...
...
@@ -838,6 +853,7 @@ class SequenceLabelTask(BasicTask):
def
_eval_end_event
(
self
,
run_states
):
precision
,
recall
,
f1
,
avg_loss
,
run_speed
=
self
.
_calculate_metrics
(
run_states
)
self
.
env
.
loss_scalar
.
add_record
(
self
.
current_step
,
avg_loss
)
self
.
env
.
f1_scalar
.
add_record
(
self
.
current_step
,
f1
)
self
.
env
.
precision_scalar
.
add_record
(
self
.
current_step
,
precision
)
self
.
env
.
recall_scalar
.
add_record
(
self
.
current_step
,
recall
)
...
...
@@ -951,14 +967,16 @@ class MultiLabelClassifierTask(ClassifierTask):
def
_build_env_end_event
(
self
):
with
self
.
log_writer
.
mode
(
self
.
phase
)
as
logw
:
self
.
env
.
loss_scalar
=
logw
.
scalar
(
tag
=
"Loss [{}]"
.
format
(
self
.
phase
))
self
.
env
.
auc_scalar_list
=
[]
for
i
in
range
(
self
.
num_classes
):
self
.
env
.
auc_scalar_list
.
append
(
logw
.
scalar
(
tag
=
"AUC_{} [{}]"
.
format
(
i
,
"train"
)))
self
.
env
.
avg_auc_scalar
=
logw
.
scalar
(
tag
=
"Average auc [{}]"
.
format
(
self
.
phase
))
if
not
self
.
is_predict_phase
:
self
.
env
.
loss_scalar
=
logw
.
scalar
(
tag
=
"Loss [{}]"
.
format
(
self
.
phase
))
if
self
.
is_train_phase
:
self
.
env
.
auc_scalar_list
=
[]
for
i
in
range
(
self
.
num_classes
):
self
.
env
.
auc_scalar_list
.
append
(
logw
.
scalar
(
tag
=
"AUC_{} [{}]"
.
format
(
i
,
"train"
)))
self
.
env
.
avg_auc_scalar
=
logw
.
scalar
(
tag
=
"Average auc [{}]"
.
format
(
self
.
phase
))
def
_calculate_metrics
(
self
,
run_states
):
loss_sum
=
acc_sum
=
run_examples
=
0
...
...
@@ -978,33 +996,27 @@ class MultiLabelClassifierTask(ClassifierTask):
def
_log_interval_event
(
self
,
run_states
):
avg_loss
,
auc_list
,
run_speed
=
self
.
_calculate_metrics
(
run_states
)
if
self
.
is_train_phase
:
for
index
,
auc_scalar
in
enumerate
(
self
.
env
.
auc_scalar_list
):
auc_scalar
.
add_record
(
self
.
current_step
,
auc_list
[
index
])
self
.
env
.
loss_scalar
.
add_record
(
self
.
current_step
,
avg_loss
)
avg_auc
=
np
.
mean
(
auc_list
)
self
.
env
.
avg_auc_scalar
.
add_record
(
self
.
current_step
,
avg_auc
)
logger
.
info
(
"step %d: loss=%.5f avg_auc=%.5f [step/sec: %.2f]"
%
(
self
.
current_step
,
avg_loss
,
avg_auc
,
run_speed
))
for
index
,
auc
in
enumerate
(
auc_list
):
for
index
,
auc_scalar
in
enumerate
(
self
.
env
.
auc_scalar_list
):
auc_scalar
.
add_record
(
self
.
current_step
,
auc_list
[
index
][
0
])
logger
.
info
(
"label_%d_auc = %.5f"
%
(
index
,
auc_list
[
index
][
0
]))
def
_eval_end_event
(
self
,
run_states
):
eval_loss
,
auc_list
,
run_speed
=
self
.
_calculate_metrics
(
run_states
)
if
self
.
is_train_phase
:
for
index
,
auc_scalar
in
enumerate
(
self
.
env
.
auc_scalar_list
):
auc_scalar
.
add_record
(
self
.
current_step
,
auc_list
[
index
])
avg_auc
=
np
.
mean
(
auc_list
)
logger
.
info
(
"[%s dataset evaluation result] loss=%.5f avg_auc=%.5f [step/sec: %.2f]"
%
(
self
.
phase
,
eval_loss
,
avg_auc
,
run_speed
))
for
index
,
auc
in
enumerate
(
auc_list
):
logger
.
info
(
"label_%d_auc = %.5f"
%
(
index
,
auc_list
[
index
][
0
]))
self
.
env
.
loss_scalar
.
add_record
(
self
.
current_step
,
eval_loss
)
self
.
env
.
avg_auc_scalar
.
add_record
(
self
.
current_step
,
avg_auc
)
if
self
.
phase
in
[
"dev"
,
"val"
]
and
avg_auc
>
self
.
best_avg_auc
:
self
.
env
.
loss_scalar
.
add_record
(
self
.
current_step
,
eval_loss
)
for
index
,
auc_scalar
in
enumerate
(
self
.
env
.
auc_scalar_list
):
auc_scalar
.
add_record
(
self
.
current_step
,
auc_list
[
index
])
self
.
env
.
avg_auc_scalar
.
add_record
(
self
.
current_step
,
avg_auc
)
self
.
best_avg_auc
=
avg_auc
model_saved_dir
=
os
.
path
.
join
(
self
.
config
.
checkpoint_dir
,
"best_model"
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录