base_task.py 33.4 KB
Newer Older
K
kinghuin 已提交
1 2
# coding:utf-8
# Copyright (c) 2019  PaddlePaddle Authors. All Rights Reserved.
Z
Zeyu Chen 已提交
3 4 5 6 7 8 9 10 11 12 13 14 15
#
# Licensed under the Apache License, Version 2.0 (the "License"
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

16 17 18 19
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Z
Zeyu Chen 已提交
20
import os
W
wuzewu 已提交
21
import contextlib
22
import time
W
wuzewu 已提交
23
import copy
24
import logging
K
kinghuin 已提交
25 26
import inspect
from functools import partial
K
kinghuin 已提交
27
from collections import OrderedDict
K
kinghuin 已提交
28 29 30 31 32
import six
if six.PY2:
    from inspect import getargspec as get_args
else:
    from inspect import getfullargspec as get_args
S
Steffy-zxf 已提交
33
import numpy as np
W
wuzewu 已提交
34
import paddle.fluid as fluid
K
kinghuin 已提交
35
from tb_paddle import SummaryWriter
W
wuzewu 已提交
36 37

import paddlehub as hub
S
Steffy-zxf 已提交
38
from paddlehub.common.paddle_helper import dtype_map, clone_program
W
wuzewu 已提交
39
from paddlehub.common.utils import mkdir, to_list
W
wuzewu 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66
from paddlehub.common.logger import logger
from paddlehub.finetune.checkpoint import load_checkpoint, save_checkpoint
from paddlehub.finetune.config import RunConfig


class RunState(object):
    def __init__(self, length):
        self.run_time_begin = time.time()
        self.run_step = 0
        self.run_examples = 0
        self.run_results = [0] * length
        self.run_time_used = 0
        self.run_speed = 0.0

    def __add__(self, other):
        self.run_step += other.run_step
        self.run_examples += other.run_examples
        for index in range(len(self.run_results)):
            self.run_results[index] += other.run_results[index]
        return self

    def update(self):
        self.run_time_used = time.time() - self.run_time_begin
        self.run_speed = self.run_step / self.run_time_used
        return self


W
wuzewu 已提交
67 68 69 70 71 72 73 74 75 76
class RunEnv(object):
    def __init__(self):
        self.current_epoch = 0
        self.current_step = 0
        self.main_program = None
        self.start_program = None
        self.main_program_compiled = None
        self.py_reader = None
        self.reader = None
        self.loss = None
W
wuzewu 已提交
77
        self.labels = None
W
wuzewu 已提交
78 79 80 81 82 83 84 85 86 87 88
        self.metrics = None
        self.is_inititalized = False
        self.UNG = copy.deepcopy(fluid.unique_name.generator)

    def __setattr__(self, key, value):
        self.__dict__[key] = value

    def __getattr__(self, key):
        return self.__dict__[key]


K
kinghuin 已提交
89 90 91
class TaskHooks():
    def __init__(self):
        self._registered_hooks = {
K
kinghuin 已提交
92 93 94 95 96 97 98 99 100 101 102 103
            "build_env_start_event": OrderedDict(),
            "build_env_end_event": OrderedDict(),
            "finetune_start_event": OrderedDict(),
            "finetune_end_event": OrderedDict(),
            "predict_start_event": OrderedDict(),
            "predict_end_event": OrderedDict(),
            "eval_start_event": OrderedDict(),
            "eval_end_event": OrderedDict(),
            "log_interval_event": OrderedDict(),
            "save_ckpt_interval_event": OrderedDict(),
            "eval_interval_event": OrderedDict(),
            "run_step_event": OrderedDict(),
K
kinghuin 已提交
104 105
        }
        self._hook_params_num = {
K
kinghuin 已提交
106 107 108 109 110 111 112 113 114 115 116 117
            "build_env_start_event": 1,
            "build_env_end_event": 1,
            "finetune_start_event": 1,
            "finetune_end_event": 2,
            "predict_start_event": 1,
            "predict_end_event": 2,
            "eval_start_event": 1,
            "eval_end_event": 2,
            "log_interval_event": 2,
            "save_ckpt_interval_event": 1,
            "eval_interval_event": 1,
            "run_step_event": 2,
K
kinghuin 已提交
118 119 120 121 122 123
        }

    def add(self, hook_type, name=None, func=None):
        if not func or not callable(func):
            raise TypeError(
                "The hook function is empty or it is not a function")
K
kinghuin 已提交
124
        if name == None:
K
kinghuin 已提交
125 126 127
            name = "hook_%s" % id(func)

        # check validity
K
kinghuin 已提交
128 129
        if not isinstance(name, str) or name.strip() == "":
            raise TypeError("The hook name must be a non-empty string")
K
kinghuin 已提交
130 131 132 133 134 135 136
        if hook_type not in self._registered_hooks:
            raise ValueError("hook_type: %s does not exist" % (hook_type))
        if name in self._registered_hooks[hook_type]:
            raise ValueError(
                "name: %s has existed in hook_type:%s, use modify method to modify it"
                % (name, hook_type))
        else:
K
kinghuin 已提交
137
            args_num = len(get_args(func).args)
K
kinghuin 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
            if args_num != self._hook_params_num[hook_type]:
                raise ValueError(
                    "The number of parameters to the hook hook_type:%s should be %i"
                    % (hook_type, self._hook_params_num[hook_type]))
            self._registered_hooks[hook_type][name] = func

    def delete(self, hook_type, name):
        if self.exist(hook_type, name):
            del self._registered_hooks[hook_type][name]
        else:
            raise ValueError(
                "No hook_type: %s exists or name: %s does not exist in hook_type: %s"
                % (hook_type, name, hook_type))

    def modify(self, hook_type, name, func):
        if not (isinstance(name, str) and callable(func)):
            raise TypeError(
                "The hook name must be a string, and the hook function must be a function"
            )
        if self.exist(hook_type, name):
            self._registered_hooks[hook_type][name] = func
        else:
            raise ValueError(
                "No hook_type: %s exists or name: %s does not exist in hook_type: %s"
                % (hook_type, name, hook_type))

    def exist(self, hook_type, name):
        if hook_type not in self._registered_hooks \
                or name not in self._registered_hooks[hook_type]:
            return False
        else:
            return True

K
kinghuin 已提交
171
    def info(self, show_default=False):
K
kinghuin 已提交
172 173 174 175 176
        # formatted output the source code
        ret = ""
        for hook_type, hooks in self._registered_hooks.items():
            already_print_type = False
            for name, func in hooks.items():
K
kinghuin 已提交
177
                if name == "default" and not show_default:
K
kinghuin 已提交
178 179 180 181 182 183 184 185 186 187 188 189
                    continue
                if not already_print_type:
                    ret += "hook_type: %s{\n" % hook_type
                    already_print_type = True
                source = inspect.getsource(func)
                ret += " name: %s{\n" % name
                for line in source.split("\n"):
                    ret += "  %s\n" % line
                ret += " }\n"
            if already_print_type:
                ret += "}\n"
        if not ret:
K
kinghuin 已提交
190
            ret = "Not any customized hooks have been defined, you can set show_default=True to see the default hooks information"
K
kinghuin 已提交
191 192 193 194 195 196 197 198 199
        return ret

    def __getitem__(self, hook_type):
        return self._registered_hooks[hook_type]

    def __repr__(self):
        return self.info(only_customized=False)


K
kinghuin 已提交
200
class BaseTask(object):
W
wuzewu 已提交
201
    def __init__(self,
W
wuzewu 已提交
202 203 204 205
                 feed_list,
                 data_reader,
                 main_program=None,
                 startup_program=None,
K
kinghuin 已提交
206 207
                 config=None,
                 metrics_choices="default"):
W
wuzewu 已提交
208 209 210 211

        # base item
        self._base_data_reader = data_reader
        self._base_feed_list = feed_list
K
kinghuin 已提交
212 213 214 215 216 217 218 219 220 221 222 223

        # metrics item
        self.best_score = -999
        if metrics_choices == "default":
            metrics_choices = ["acc"]
        elif metrics_choices == None:
            metrics_choices = []
        if isinstance(metrics_choices, list):
            self.metrics_choices = metrics_choices
        else:
            self.metrics_choices = [metrics_choices]

W
wuzewu 已提交
224
        if main_program is None:
S
Steffy-zxf 已提交
225 226 227
            self._base_main_program = clone_program(
                fluid.default_main_program(), for_test=False)

W
wuzewu 已提交
228
        else:
S
Steffy-zxf 已提交
229 230
            self._base_main_program = clone_program(
                main_program, for_test=False)
W
wuzewu 已提交
231
        if startup_program is None:
S
Steffy-zxf 已提交
232 233
            self._base_startup_program = clone_program(
                fluid.default_startup_program(), for_test=False)
W
wuzewu 已提交
234
        else:
S
Steffy-zxf 已提交
235 236
            self._base_startup_program = clone_program(
                startup_program, for_test=False)
W
wuzewu 已提交
237
        self.is_checkpoint_loaded = False
S
Steffy-zxf 已提交
238
        self._base_compiled_program = None
W
wuzewu 已提交
239 240

        # run config
W
wuzewu 已提交
241
        self.config = config if config else RunConfig()
242 243 244
        self.place = self.places[0]
        self.device_count = len(self.places)

W
wuzewu 已提交
245 246 247 248 249 250 251 252
        if self.config.use_data_parallel:
            if not self.config.use_pyreader and self.config.batch_size < self.device_count:
                logger.warning(
                    "Batch size({}) is less than the count of devices({}), which is not allowed in current Paddle versions"
                    .format(self.config.batch_size, self.device_count))
                logger.warning("Batch size automatically adjusted to {}".format(
                    self.device_count))
                self.config._batch_size = self.device_count
253

W
wuzewu 已提交
254
        self.exe = fluid.Executor(place=self.place)
W
wuzewu 已提交
255 256 257 258 259
        self.build_strategy = fluid.BuildStrategy()

        # run environment
        self._phases = []
        self._envs = {}
W
wuzewu 已提交
260
        self._predict_data = None
261
        self._tb_writer = None
W
wuzewu 已提交
262

K
kinghuin 已提交
263 264 265 266
        # event hooks
        self._hooks = TaskHooks()
        for hook_type, event_hooks in self._hooks._registered_hooks.items():
            self._hooks.add(hook_type, "default",
K
kinghuin 已提交
267 268
                            eval("self._default_%s" % hook_type))
            setattr(BaseTask, "_%s" % hook_type,
K
kinghuin 已提交
269 270
                    self.create_event_function(hook_type))

K
kinghuin 已提交
271 272 273
        # accelerate predict
        self.is_best_model_loaded = False

W
wuzewu 已提交
274 275
        # set default phase
        self.enter_phase("train")
W
wuzewu 已提交
276 277 278

    @contextlib.contextmanager
    def phase_guard(self, phase):
W
wuzewu 已提交
279 280 281 282 283
        self.enter_phase(phase)
        yield
        self.exit_phase()

    def enter_phase(self, phase):
W
wuzewu 已提交
284 285
        if phase not in ["train", "val", "dev", "test", "predict", "inference"]:
            raise RuntimeError()
K
kinghuin 已提交
286 287 288 289
        if phase in ["val", "dev"]:
            phase = "dev"
        elif phase in ["predict", "inference"]:
            phase = "predict"
W
wuzewu 已提交
290
        self._phases.append(phase)
W
wuzewu 已提交
291 292

    def exit_phase(self):
W
wuzewu 已提交
293 294
        self._phases = self._phases[:-1]

W
wuzewu 已提交
295 296 297 298
    def init_if_necessary(self):
        if not self.is_checkpoint_loaded:
            if not self.load_checkpoint():
                self.exe.run(self._base_startup_program)
K
kinghuin 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
            self.is_checkpoint_loaded = True
            self.is_best_model_loaded = False

    def init_if_load_best_model(self):
        if not self.is_best_model_loaded:
            best_model_path = os.path.join(self.config.checkpoint_dir,
                                           "best_model")
            logger.info("Load the best model from %s" % best_model_path)
            if os.path.exists(best_model_path):
                self.load_parameters(best_model_path)
                self.is_checkpoint_loaded = False
                self.is_best_model_loaded = True
            else:
                self.init_if_necessary()
        else:
            logger.info("The best model has been loaded")
W
wuzewu 已提交
315

W
wuzewu 已提交
316 317 318 319 320 321
    def _build_env(self):
        if self.env.is_inititalized:
            return

        self._build_env_start_event()
        self.env.is_inititalized = True
S
Steffy-zxf 已提交
322 323 324
        self.env.main_program = clone_program(
            self._base_main_program, for_test=False)

W
wuzewu 已提交
325 326 327 328
        self.env.startup_program = fluid.Program()
        with fluid.program_guard(self.env.main_program,
                                 self._base_startup_program):
            with fluid.unique_name.guard(self.env.UNG):
329
                self.env.outputs = self._build_net()
W
wuzewu 已提交
330
                if self.is_train_phase or self.is_test_phase:
W
wuzewu 已提交
331
                    self.env.labels = self._add_label()
W
wuzewu 已提交
332 333
                    self.env.loss = self._add_loss()
                    self.env.metrics = self._add_metrics()
W
wuzewu 已提交
334

W
wuzewu 已提交
335
        if self.is_predict_phase or self.is_test_phase:
S
Steffy-zxf 已提交
336 337
            self.env.main_program = clone_program(
                self.env.main_program, for_test=True)
W
wuzewu 已提交
338 339 340
            hub.common.paddle_helper.set_op_attr(
                self.env.main_program, is_test=True)

W
wuzewu 已提交
341 342 343 344 345 346 347 348 349 350 351 352
        if self.config.use_pyreader:
            t_program = fluid.Program()
            with fluid.program_guard(t_program, self.env.startup_program):
                self.env.py_reader = fluid.layers.py_reader(
                    capacity=64,
                    shapes=[var.shape for var in self.feed_var_list],
                    dtypes=[dtype_map[var.dtype] for var in self.feed_var_list],
                    lod_levels=[var.lod_level for var in self.feed_var_list],
                    use_double_buffer=False)

                feed_var_list = self.feed_var_list
                py_vars = fluid.layers.read_file(self.env.py_reader)
W
wuzewu 已提交
353
                py_vars = to_list(py_vars)
W
wuzewu 已提交
354 355 356 357 358 359 360 361 362 363 364 365
                input_dict = {
                    feed_var_list[index].name: py_var
                    for index, py_var in enumerate(py_vars)
                }

                hub.connect_program(
                    pre_program=t_program,
                    next_program=self.env.main_program,
                    input_dict=input_dict,
                    need_log=False)

            self.env.main_program = t_program
W
wuzewu 已提交
366 367 368 369 370 371 372 373 374
            if not self.is_predict_phase:
                self.env.loss = self.env.main_program.global_block().vars[
                    self.env.loss.name]
                metrics_name = [var.name for var in self.env.metrics]
                self.env.metrics = [
                    self.env.main_program.global_block().vars[name]
                    for name in metrics_name
                ]

375 376 377 378 379
            outputs_name = [var.name for var in self.env.outputs]
            self.env.outputs = [
                self.env.main_program.global_block().vars[name]
                for name in outputs_name
            ]
W
wuzewu 已提交
380 381 382 383 384 385 386 387 388 389

        if self.config.enable_memory_optim:
            for var_name in self.fetch_list:
                var = self.env.main_program.global_block().vars[var_name]
                var.persistable = True

        if self.is_train_phase:
            with fluid.program_guard(self.env.main_program,
                                     self._base_startup_program):
                with fluid.unique_name.guard(self.env.UNG):
K
kinghuin 已提交
390 391 392
                    self.scheduled_lr, self.max_train_steps = self.config.strategy.execute(
                        self.loss, self._base_data_reader, self.config,
                        self.device_count)
W
wuzewu 已提交
393 394 395 396 397 398

        if self.is_train_phase:
            loss_name = self.env.loss.name
        else:
            loss_name = None

K
kinghuin 已提交
399
        share_vars_from = self._base_compiled_program
W
wuzewu 已提交
400

W
wuzewu 已提交
401
        if not self.config.use_data_parallel:
W
wuzewu 已提交
402
            self.env.main_program_compiled = None
W
wuzewu 已提交
403 404 405 406 407 408
        else:
            self.env.main_program_compiled = fluid.CompiledProgram(
                self.env.main_program).with_data_parallel(
                    loss_name=loss_name,
                    share_vars_from=share_vars_from,
                    build_strategy=self.build_strategy)
W
wuzewu 已提交
409 410 411 412

        self.exe.run(self.env.startup_program)
        self._build_env_end_event()

413 414 415
    @property
    def places(self):
        if self.config.use_cuda:
W
wuzewu 已提交
416 417 418 419 420 421 422
            _places = fluid.framework.cuda_places()
        else:
            _places = fluid.framework.cpu_places()

        if not self.config.use_data_parallel:
            return [_places[0]]
        return _places
423

S
Steffy-zxf 已提交
424 425 426 427
    @property
    def return_numpy(self):
        return True

W
wuzewu 已提交
428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
    @property
    def is_train_phase(self):
        return self.phase in ["train"]

    @property
    def is_test_phase(self):
        return self.phase in ["val", "dev", "test"]

    @property
    def is_predict_phase(self):
        return self.phase in ["predict", "inference"]

    @property
    def phase(self):
        return self._phases[-1]

    @property
    def env(self):
        phase = self.phase
        if phase in ["val", "dev", "test"]:
K
kinghuin 已提交
448
            phase = "dev"
W
wuzewu 已提交
449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
        if not phase in self._envs:
            self._envs[phase] = RunEnv()
        return self._envs[phase]

    @property
    def py_reader(self):
        if not self.env.is_inititalized:
            self._build_env()
        return self.env.py_reader

    @property
    def current_step(self):
        if not self.env.is_inititalized:
            self._build_env()
        return self.env.current_step

    @property
    def current_epoch(self):
        if not self.env.is_inititalized:
            self._build_env()
        return self.env.current_epoch

    @property
Z
Zeyu Chen 已提交
472
    def main_program(self):
W
wuzewu 已提交
473 474 475
        if not self.env.is_inititalized:
            self._build_env()
        return self.env.main_program
Z
Zeyu Chen 已提交
476

W
wuzewu 已提交
477
    @property
Z
Zeyu Chen 已提交
478
    def startup_program(self):
W
wuzewu 已提交
479 480 481 482 483 484 485 486 487 488
        if not self.env.is_inititalized:
            self._build_env()
        return self.env.startup_program

    @property
    def main_program_compiled(self):
        if not self.env.is_inititalized:
            self._build_env()
        return self.env.main_program_compiled

W
wuzewu 已提交
489 490 491
    @property
    def main_program_to_be_run(self):
        if self.config.use_data_parallel:
K
kinghuin 已提交
492 493
            if self._base_compiled_program is None:
                self._base_compiled_program = self.env.main_program_compiled
W
wuzewu 已提交
494 495 496
            return self.main_program_compiled
        return self.main_program

W
wuzewu 已提交
497 498
    @property
    def reader(self):
W
wuzewu 已提交
499 500 501 502
        if self.is_predict_phase:
            data = self._predict_data
        else:
            data = None
W
wuzewu 已提交
503
        self.env.reader = self._base_data_reader.data_generator(
W
wuzewu 已提交
504
            batch_size=self.config.batch_size, phase=self.phase, data=data)
W
wuzewu 已提交
505 506 507 508 509 510 511 512 513 514 515 516
        return self.env.reader

    @property
    def loss(self):
        if self.is_predict_phase:
            raise RuntimeError()

        if not self.env.is_inititalized:
            self._build_env()
        return self.env.loss

    @property
W
wuzewu 已提交
517
    def labels(self):
W
wuzewu 已提交
518 519 520 521 522
        if self.is_predict_phase:
            raise RuntimeError()

        if not self.env.is_inititalized:
            self._build_env()
W
wuzewu 已提交
523
        return self.env.labels
W
wuzewu 已提交
524 525

    @property
526
    def outputs(self):
W
wuzewu 已提交
527 528
        if not self.env.is_inititalized:
            self._build_env()
529
        return self.env.outputs
W
wuzewu 已提交
530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547

    @property
    def metrics(self):
        if self.is_predict_phase:
            raise RuntimeError()

        if not self.env.is_inititalized:
            self._build_env()
        return self.env.metrics

    @property
    def unique_name_generator(self):
        return self.env.UNG

    @property
    def feed_list(self):
        feed_list = [varname for varname in self._base_feed_list]
        if self.is_train_phase or self.is_test_phase:
W
wuzewu 已提交
548
            feed_list += [label.name for label in self.labels]
W
wuzewu 已提交
549 550 551 552 553 554 555 556 557 558 559
        return feed_list

    @property
    def feed_var_list(self):
        vars = self.main_program.global_block().vars
        return [vars[varname] for varname in self.feed_list]

    @property
    def fetch_list(self):
        if self.is_train_phase or self.is_test_phase:
            return [metric.name for metric in self.metrics] + [self.loss.name]
560
        return [output.name for output in self.outputs]
W
wuzewu 已提交
561

562 563 564 565 566 567 568 569 570
    @property
    def tb_writer(self):
        if not os.path.exists(self.config.checkpoint_dir):
            mkdir(self.config.checkpoint_dir)
        tb_log_dir = os.path.join(self.config.checkpoint_dir, "visualization")
        if not self._tb_writer:
            self._tb_writer = SummaryWriter(tb_log_dir)
        return self._tb_writer

K
kinghuin 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
    def create_event_function(self, hook_type):
        def hook_function(self, *args):
            for name, func in self._hooks[hook_type].items():
                if inspect.ismethod(func):
                    func(*args)
                else:
                    partial(func, self)(*args)

        return hook_function

    @property
    def hooks(self):
        return self._hooks

    def hooks_info(self, only_customized=True):
        return self._hooks.info(only_customized)

    def add_hook(self, hook_type, name=None, func=None):
K
kinghuin 已提交
589 590
        if name == None:
            name = "hook_%s" % id(func)
K
kinghuin 已提交
591
        self._hooks.add(hook_type, name=name, func=func)
K
kinghuin 已提交
592
        logger.info("Add hook %s:%s successfully" % (hook_type, name))
K
kinghuin 已提交
593 594 595

    def delete_hook(self, hook_type, name):
        self._hooks.delete(hook_type, name)
K
kinghuin 已提交
596
        logger.info("Delete hook %s:%s successfully" % (hook_type, name))
K
kinghuin 已提交
597 598 599

    def modify_hook(self, hook_type, name, func):
        self._hooks.modify(hook_type, name, func)
K
kinghuin 已提交
600
        logger.info("Modify hook %s:%s successfully" % (hook_type, name))
K
kinghuin 已提交
601 602

    def _default_build_env_start_event(self):
W
wuzewu 已提交
603 604
        pass

K
kinghuin 已提交
605
    def _default_build_env_end_event(self):
K
kinghuin 已提交
606 607
        if not self.is_predict_phase:
            self.env.score_scalar = {}
W
wuzewu 已提交
608

K
kinghuin 已提交
609 610
    def _default_finetune_start_event(self):
        logger.info("PaddleHub finetune start")
W
wuzewu 已提交
611

K
kinghuin 已提交
612
    def _default_finetune_end_event(self, run_states):
W
wuzewu 已提交
613 614
        logger.info("PaddleHub finetune finished.")

K
kinghuin 已提交
615
    def _default_predict_start_event(self):
W
wuzewu 已提交
616 617
        logger.info("PaddleHub predict start")

K
kinghuin 已提交
618
    def _default_predict_end_event(self, run_states):
W
wuzewu 已提交
619 620
        logger.info("PaddleHub predict finished.")

K
kinghuin 已提交
621 622
    def _default_eval_start_event(self):
        logger.info("Evaluation on {} dataset start".format(self.phase))
W
wuzewu 已提交
623

K
kinghuin 已提交
624
    def _default_eval_end_event(self, run_states):
K
kinghuin 已提交
625
        eval_scores, eval_loss, run_speed = self._calculate_metrics(run_states)
K
kinghuin 已提交
626
        if 'train' in self._envs:
K
kinghuin 已提交
627
            self.tb_writer.add_scalar(
K
kinghuin 已提交
628 629
                tag="Loss_{}".format(self.phase),
                scalar_value=eval_loss,
630
                global_step=self._envs['train'].current_step)
K
kinghuin 已提交
631

K
kinghuin 已提交
632 633 634 635 636 637 638
        log_scores = ""
        for metric in eval_scores:
            if 'train' in self._envs:
                self.tb_writer.add_scalar(
                    tag="{}_{}".format(metric, self.phase),
                    scalar_value=eval_scores[metric],
                    global_step=self._envs['train'].current_step)
K
kinghuin 已提交
639
            log_scores += "%s=%.5f " % (metric, eval_scores[metric])
640
        logger.eval(
K
kinghuin 已提交
641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657
            "[%s dataset evaluation result] loss=%.5f %s[step/sec: %.2f]" %
            (self.phase, eval_loss, log_scores, run_speed))

        eval_scores_items = eval_scores.items()
        if len(eval_scores_items):
            # The first metric will be chose to eval
            main_metric, main_value = list(eval_scores_items)[0]
        else:
            logger.warning(
                "None of metrics has been implemented, loss will be used to evaluate."
            )
            # The larger, the better
            main_metric, main_value = "negative loss", -eval_loss
        if self.phase in ["dev", "val"] and main_value > self.best_score:
            self.best_score = main_value
            model_saved_dir = os.path.join(self.config.checkpoint_dir,
                                           "best_model")
658
            logger.eval("best model saved to %s [best %s=%.5f]" %
K
kinghuin 已提交
659
                        (model_saved_dir, main_metric, main_value))
K
kinghuin 已提交
660

K
kinghuin 已提交
661 662 663 664
            save_result = fluid.io.save_persistables(
                executor=self.exe,
                dirname=model_saved_dir,
                main_program=self.main_program)
W
wuzewu 已提交
665

K
kinghuin 已提交
666
    def _default_log_interval_event(self, run_states):
K
kinghuin 已提交
667 668
        scores, avg_loss, run_speed = self._calculate_metrics(run_states)
        self.tb_writer.add_scalar(
K
kinghuin 已提交
669
            tag="Loss_{}".format(self.phase),
K
kinghuin 已提交
670
            scalar_value=avg_loss,
671
            global_step=self._envs['train'].current_step)
K
kinghuin 已提交
672 673 674
        log_scores = ""
        for metric in scores:
            self.tb_writer.add_scalar(
K
kinghuin 已提交
675
                tag="{}_{}".format(metric, self.phase),
K
kinghuin 已提交
676
                scalar_value=scores[metric],
677
                global_step=self._envs['train'].current_step)
K
kinghuin 已提交
678
            log_scores += "%s=%.5f " % (metric, scores[metric])
679 680 681
        logger.train("step %d / %d: loss=%.5f %s[step/sec: %.2f]" %
                     (self.current_step, self.max_train_steps, avg_loss,
                      log_scores, run_speed))
W
wuzewu 已提交
682

K
kinghuin 已提交
683
    def _default_save_ckpt_interval_event(self):
W
wuzewu 已提交
684
        self.save_checkpoint()
W
wuzewu 已提交
685

K
kinghuin 已提交
686
    def _default_eval_interval_event(self):
W
wuzewu 已提交
687 688
        self.eval(phase="dev")

K
kinghuin 已提交
689 690
    def _default_run_step_event(self, run_state):
        pass
W
wuzewu 已提交
691 692 693 694 695 696 697 698 699 700 701

    def _build_net(self):
        raise NotImplementedError

    def _add_loss(self):
        raise NotImplementedError

    def _add_label(self):
        raise NotImplementedError

    def _add_metrics(self):
K
kinghuin 已提交
702 703
        # Some metrics like acc, auc can be calculated by fluid.layers
        # The others can be calculated in _calculate_metrics function
W
wuzewu 已提交
704 705
        raise NotImplementedError

W
wuzewu 已提交
706
    def _calculate_metrics(self, run_states):
K
kinghuin 已提交
707 708 709
        # NOTE: if you want to customize the metrics
        # you should make sure that the first parameter returned is a dict
        # The first key will be used as main metrics to update the best model
W
wuzewu 已提交
710 711
        raise NotImplementedError

W
wuzewu 已提交
712 713
    # NOTE: current saved checkpoint machanism is not completed,
    # it can't restore dataset training status
W
wuzewu 已提交
714
    def save_checkpoint(self):
W
wuzewu 已提交
715 716 717 718
        save_checkpoint(
            checkpoint_dir=self.config.checkpoint_dir,
            current_epoch=self.current_epoch,
            global_step=self.current_step,
K
kinghuin 已提交
719
            best_score=self.best_score,
W
wuzewu 已提交
720 721 722
            exe=self.exe,
            main_program=self.main_program)

W
wuzewu 已提交
723
    def load_checkpoint(self):
K
kinghuin 已提交
724
        is_load_successful, self.env.current_epoch, self.env.current_step, self.best_score = load_checkpoint(
W
wuzewu 已提交
725 726
            self.config.checkpoint_dir,
            self.exe,
W
wuzewu 已提交
727
            main_program=self.main_program)
W
wuzewu 已提交
728

W
wuzewu 已提交
729 730 731 732 733 734 735 736 737 738 739 740 741
        return is_load_successful

    def load_parameters(self, dirname):
        def if_exist(var):
            path = os.path.join(dirname, var.name)
            return os.path.exists(path)

        fluid.io.load_vars(
            self.exe, dirname, self.main_program, predicate=if_exist)

    def save_parameters(self, dirname):
        fluid.io.save_params(
            self.exe, dirname=dirname, main_program=self.main_program)
S
Steffy-zxf 已提交
742

W
wuzewu 已提交
743
    def finetune_and_eval(self):
744
        return self.finetune(do_eval=True)
W
wuzewu 已提交
745 746

    def finetune(self, do_eval=False):
747

W
wuzewu 已提交
748 749 750 751 752 753
        # Start to finetune
        with self.phase_guard(phase="train"):
            self.init_if_necessary()
            self._finetune_start_event()
            run_states = []
            if self.current_epoch <= self.config.num_epoch:
W
wuzewu 已提交
754
                while self.current_epoch <= self.config.num_epoch:
K
kinghuin 已提交
755
                    self.config.strategy.step()
W
wuzewu 已提交
756 757
                    run_states = self._run(do_eval=do_eval)
                    self.env.current_epoch += 1
W
wuzewu 已提交
758

W
wuzewu 已提交
759
                # Final evaluation
760 761 762
                if self._base_data_reader.get_dev_examples() != []:
                    self.eval(phase="dev")
                if self._base_data_reader.get_test_examples() != []:
K
kinghuin 已提交
763
                    self.eval(phase="test", load_best_model=True)
764 765
                # Save checkpoint after finetune
                self.save_checkpoint()
W
wuzewu 已提交
766

W
wuzewu 已提交
767
            self._finetune_end_event(run_states)
768
            return run_states
W
wuzewu 已提交
769

K
kinghuin 已提交
770 771 772 773
    def eval(self, phase="dev", load_best_model=False):
        # Warning: DO NOT use eval(load_best_model=True) in finetune_and_eval
        # It will cause trainer unable to continue training from checkpoint after eval
        # More important, The model should evaluate current performance during training.
W
wuzewu 已提交
774
        with self.phase_guard(phase=phase):
K
kinghuin 已提交
775 776 777 778
            if load_best_model:
                self.init_if_load_best_model()
            else:
                self.init_if_necessary()
W
wuzewu 已提交
779 780 781
            self._eval_start_event()
            run_states = self._run()
            self._eval_end_event(run_states)
782
            return run_states
W
wuzewu 已提交
783

K
kinghuin 已提交
784
    def predict(self, data, load_best_model=True, return_result=False):
W
wuzewu 已提交
785
        with self.phase_guard(phase="predict"):
W
wuzewu 已提交
786
            if load_best_model:
K
kinghuin 已提交
787 788 789
                self.init_if_load_best_model()
            else:
                self.init_if_necessary()
W
wuzewu 已提交
790
            self._predict_data = data
W
wuzewu 已提交
791
            self._predict_start_event()
W
wuzewu 已提交
792
            run_states = self._run()
W
wuzewu 已提交
793
            self._predict_end_event(run_states)
W
wuzewu 已提交
794
            self._predict_data = None
K
kinghuin 已提交
795 796
            if return_result:
                return self._postprocessing(run_states)
797
        return run_states
W
wuzewu 已提交
798

K
kinghuin 已提交
799 800 801 802 803 804 805
    def _postprocessing(self, run_states):
        results = []
        for batch_state in run_states:
            batch_result = batch_state.run_results[0]
            results += [result[0] for result in batch_result]
        return results

W
wuzewu 已提交
806 807 808 809 810 811 812 813 814 815 816
    def _run(self, do_eval=False):
        with fluid.program_guard(self.main_program, self.startup_program):
            if self.config.use_pyreader:
                return self._run_with_py_reader(do_eval=do_eval)
            return self._run_with_data_feeder(do_eval=do_eval)

    def _run_with_data_feeder(self, do_eval=False):

        data_feeder = fluid.DataFeeder(
            feed_list=self.feed_list, place=self.place)

W
wuzewu 已提交
817 818 819
        global_run_states = []
        period_run_states = []

W
wuzewu 已提交
820
        for run_step, batch in enumerate(self.reader(), start=1):
821 822
            if self.config.use_data_parallel and len(batch) < self.device_count:
                continue
W
wuzewu 已提交
823
            step_run_state = RunState(len(self.fetch_list))
W
wuzewu 已提交
824 825 826
            step_run_state.run_step = 1
            num_batch_examples = len(batch)

S
Steffy-zxf 已提交
827 828 829 830 831 832 833 834 835 836 837 838
            if self.return_numpy:
                fetch_result = self.exe.run(
                    self.main_program_to_be_run,
                    feed=data_feeder.feed(batch),
                    fetch_list=self.fetch_list)
            else:
                fetch_result = self.exe.run(
                    self.main_program_to_be_run,
                    feed=data_feeder.feed(batch),
                    fetch_list=self.fetch_list,
                    return_numpy=False)
                fetch_result = [np.array(x) for x in fetch_result]
W
wuzewu 已提交
839 840 841 842 843 844

            for index, result in enumerate(fetch_result):
                step_run_state.run_results[index] = result
            step_run_state.run_examples += num_batch_examples
            step_run_state.update()
            period_run_states += [step_run_state]
S
Steffy-zxf 已提交
845
            self.env.current_step += 1
W
wuzewu 已提交
846
            if self.is_train_phase:
W
wuzewu 已提交
847 848 849 850 851 852 853 854 855 856 857
                if self.current_step % self.config.log_interval == 0:
                    self._log_interval_event(period_run_states)
                    global_run_states += period_run_states
                    period_run_states = []

                if self.config.save_ckpt_interval and self.current_step % self.config.save_ckpt_interval == 0:
                    self._save_ckpt_interval_event()

                if do_eval and self.current_step % self.config.eval_interval == 0:
                    self._eval_interval_event()

W
wuzewu 已提交
858
            self._run_step_event(step_run_state)
W
wuzewu 已提交
859 860 861 862

        global_run_states += period_run_states
        return global_run_states

W
wuzewu 已提交
863
    def _run_with_py_reader(self, do_eval=False):
W
wuzewu 已提交
864
        flag = False
W
wuzewu 已提交
865
        use_data_parallel_backup = self.config.use_data_parallel
W
wuzewu 已提交
866 867 868 869 870 871 872 873 874 875
        while True:
            global_run_states = []
            period_run_states = []
            self.py_reader.decorate_paddle_reader(self.reader)
            self.py_reader.start()
            try:
                while True:
                    num_batch_examples = self.config.batch_size * self.device_count
                    step_run_state = RunState(len(self.fetch_list))
                    step_run_state.run_step = 1
S
Steffy-zxf 已提交
876 877 878 879 880 881 882 883 884 885 886

                    if self.return_numpy:
                        fetch_result = self.exe.run(
                            self.main_program_to_be_run,
                            fetch_list=self.fetch_list)
                    else:
                        fetch_result = self.exe.run(
                            self.main_program_to_be_run,
                            fetch_list=self.fetch_list,
                            return_numpy=False)
                        fetch_result = [np.array(x) for x in fetch_result]
W
wuzewu 已提交
887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921

                    for index, result in enumerate(fetch_result):
                        step_run_state.run_results[index] = result
                    step_run_state.run_examples += num_batch_examples
                    step_run_state.update()
                    period_run_states += [step_run_state]
                    self.env.current_step += 1
                    if self.is_train_phase:
                        if self.current_step % self.config.log_interval == 0:
                            self._log_interval_event(period_run_states)
                            global_run_states += period_run_states
                            period_run_states = []

                        if self.config.save_ckpt_interval and self.current_step % self.config.save_ckpt_interval == 0:
                            self._save_ckpt_interval_event()

                        if do_eval and self.current_step % self.config.eval_interval == 0:
                            self._eval_interval_event()

                    self._run_step_event(step_run_state)
            except fluid.core.EOFException:
                global_run_states += period_run_states
                self.py_reader.reset()
                '''
                When opening use_data_parallel and use_pyreader, if the amount of data is too small,
                the reader will have thrown EOF Exception when not fetching to the running result.
                In this case, temporarily close the use_data_parallel to get the result.
                '''
                if flag:
                    self.config._use_data_parallel = use_data_parallel_backup
                elif len(global_run_states) == 0:
                    flag = True
                    self.config._use_data_parallel = False
                    continue
                break
W
wuzewu 已提交
922 923

        return global_run_states
924 925 926 927 928

    def __repr__(self):
        return "Task: %s with metrics_choices: %s, reader: %s, %s" % (
            self.__class__.__name__, self.metrics_choices,
            self._base_data_reader.__class__.__name__, self.config)