trainer.py 16.6 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

L
LielinJiang 已提交
15 16
import os
import time
L
LielinJiang 已提交
17
import copy
L
LielinJiang 已提交
18

L
LielinJiang 已提交
19
import logging
L
LielinJiang 已提交
20
import datetime
L
LielinJiang 已提交
21

L
LielinJiang 已提交
22
import paddle
L
LielinJiang 已提交
23
from paddle.distributed import ParallelEnv
L
LielinJiang 已提交
24 25 26 27

from ..datasets.builder import build_dataloader
from ..models.builder import build_model
from ..utils.visual import tensor2img, save_image
L
LielinJiang 已提交
28
from ..utils.filesystem import makedirs, save, load
29
from ..utils.timer import TimeAverager
L
lzzyzlbb 已提交
30
from ..utils.profiler import add_profiler_step
L
fix nan  
LielinJiang 已提交
31

32 33 34 35 36
class IterLoader:
    def __init__(self, dataloader):
        self._dataloader = dataloader
        self.iter_loader = iter(self._dataloader)
        self._epoch = 1
L
LielinJiang 已提交
37

38 39 40 41 42 43 44 45 46 47 48
    @property
    def epoch(self):
        return self._epoch

    def __next__(self):
        try:
            data = next(self.iter_loader)
        except StopIteration:
            self._epoch += 1
            self.iter_loader = iter(self._dataloader)
            data = next(self.iter_loader)
L
LielinJiang 已提交
49

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
        return data

    def __len__(self):
        return len(self._dataloader)


class Trainer:
    """
    # trainer calling logic:
    #
    #                build_model                               ||    model(BaseModel)
    #                     |                                    ||
    #               build_dataloader                           ||    dataloader
    #                     |                                    ||
    #               model.setup_lr_schedulers                  ||    lr_scheduler
    #                     |                                    ||
    #               model.setup_optimizers                     ||    optimizers
    #                     |                                    ||
    #     train loop (model.setup_input + model.train_iter)    ||    train loop
    #                     |                                    ||
    #         print log (model.get_current_losses)             ||
    #                     |                                    ||
    #         save checkpoint (model.nets)                     \/
    """
    def __init__(self, cfg):
75 76 77 78 79 80 81
        # base config
        self.logger = logging.getLogger(__name__)
        self.cfg = cfg
        self.output_dir = cfg.output_dir
        self.max_eval_steps = cfg.model.get('max_eval_steps', None)

        self.local_rank = ParallelEnv().local_rank
82
        self.world_size = ParallelEnv().nranks
83 84 85 86 87 88 89 90 91 92
        self.log_interval = cfg.log_config.interval
        self.visual_interval = cfg.log_config.visiual_interval
        self.weight_interval = cfg.snapshot_config.interval

        self.start_epoch = 1
        self.current_epoch = 1
        self.current_iter = 1
        self.inner_iter = 1
        self.batch_id = 0
        self.global_steps = 0
L
LielinJiang 已提交
93

L
LielinJiang 已提交
94
        # build model
95
        self.model = build_model(cfg.model)
96 97 98
        # multiple gpus prepare
        if ParallelEnv().nranks > 1:
            self.distributed_data_parallel()
L
LielinJiang 已提交
99

100 101
        # build metrics
        self.metrics = None
L
LielinJiang 已提交
102
        self.is_save_img = True
103 104 105
        validate_cfg = cfg.get('validate', None)
        if validate_cfg and 'metrics' in validate_cfg:
            self.metrics = self.model.setup_metrics(validate_cfg['metrics'])
106 107
        if validate_cfg and 'save_img' in validate_cfg:
            self.is_save_img = validate_cfg['save_img']
108 109 110 111 112 113 114 115 116 117

        self.enable_visualdl = cfg.get('enable_visualdl', False)
        if self.enable_visualdl:
            import visualdl
            self.vdl_logger = visualdl.LogWriter(logdir=cfg.output_dir)

        # evaluate only
        if not cfg.is_train:
            return

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
        # build train dataloader
        self.train_dataloader = build_dataloader(cfg.dataset.train)
        self.iters_per_epoch = len(self.train_dataloader)

        # build lr scheduler
        # TODO: has a better way?
        if 'lr_scheduler' in cfg and 'iters_per_epoch' in cfg.lr_scheduler:
            cfg.lr_scheduler.iters_per_epoch = self.iters_per_epoch
        self.lr_schedulers = self.model.setup_lr_schedulers(cfg.lr_scheduler)

        # build optimizers
        self.optimizers = self.model.setup_optimizers(self.lr_schedulers,
                                                      cfg.optimizer)

        self.epochs = cfg.get('epochs', None)
        if self.epochs:
            self.total_iters = self.epochs * self.iters_per_epoch
            self.by_epoch = True
        else:
            self.by_epoch = False
            self.total_iters = cfg.total_iters

L
LielinJiang 已提交
140 141 142
        if self.by_epoch:
            self.weight_interval *= self.iters_per_epoch

L
LielinJiang 已提交
143 144 145
        self.validate_interval = -1
        if cfg.get('validate', None) is not None:
            self.validate_interval = cfg.validate.get('interval', -1)
146 147

        self.time_count = {}
L
LielinJiang 已提交
148
        self.best_metric = {}
149
        self.model.set_total_iter(self.total_iters)
L
lzzyzlbb 已提交
150
        self.profiler_options = cfg.profiler_options
L
LielinJiang 已提交
151

152
    def distributed_data_parallel(self):
L
LielinJiang 已提交
153
        paddle.distributed.init_parallel_env()
154
        find_unused_parameters = self.cfg.get('find_unused_parameters', False)
155
        for net_name, net in self.model.nets.items():
156 157
            self.model.nets[net_name] = paddle.DataParallel(
                net, find_unused_parameters=find_unused_parameters)
158

L
LielinJiang 已提交
159 160 161 162 163 164 165 166 167 168 169
    def learning_rate_scheduler_step(self):
        if isinstance(self.model.lr_scheduler, dict):
            for lr_scheduler in self.model.lr_scheduler.values():
                lr_scheduler.step()
        elif isinstance(self.model.lr_scheduler,
                        paddle.optimizer.lr.LRScheduler):
            self.model.lr_scheduler.step()
        else:
            raise ValueError(
                'lr schedulter must be a dict or an instance of LRScheduler')

L
LielinJiang 已提交
170
    def train(self):
171 172
        reader_cost_averager = TimeAverager()
        batch_cost_averager = TimeAverager()
L
LielinJiang 已提交
173

174
        iter_loader = IterLoader(self.train_dataloader)
L
LielinJiang 已提交
175

L
LielinJiang 已提交
176 177
        # set model.is_train = True
        self.model.setup_train_mode(is_train=True)
178 179 180
        while self.current_iter < (self.total_iters + 1):
            self.current_epoch = iter_loader.epoch
            self.inner_iter = self.current_iter % self.iters_per_epoch
L
LielinJiang 已提交
181

L
lzzyzlbb 已提交
182 183
            add_profiler_step(self.profiler_options)

184 185 186 187 188 189 190 191
            start_time = step_start_time = time.time()
            data = next(iter_loader)
            reader_cost_averager.record(time.time() - step_start_time)
            # unpack data from dataset and apply preprocessing
            # data input should be dict
            self.model.setup_input(data)
            self.model.train_iter(self.optimizers)

W
wangna11BD 已提交
192 193 194
            batch_cost_averager.record(
                time.time() - step_start_time,
                num_samples=self.cfg['dataset']['train'].get('batch_size', 1))
195 196 197

            step_start_time = time.time()

198 199 200 201 202 203 204 205 206
            if self.current_iter % self.log_interval == 0:
                self.data_time = reader_cost_averager.get_average()
                self.step_time = batch_cost_averager.get_average()
                self.ips = batch_cost_averager.get_ips_average()
                self.print_log()

                reader_cost_averager.reset()
                batch_cost_averager.reset()

L
LielinJiang 已提交
207
            if self.current_iter % self.visual_interval == 0 and self.local_rank == 0:
208 209
                self.visual('visual_train')

L
LielinJiang 已提交
210
            self.learning_rate_scheduler_step()
L
LielinJiang 已提交
211

L
LielinJiang 已提交
212
            if self.validate_interval > -1 and self.current_iter % self.validate_interval == 0:
213
                self.test()
L
fix nan  
LielinJiang 已提交
214

L
LielinJiang 已提交
215 216 217
            if self.current_iter % self.weight_interval == 0:
                self.save(self.current_iter, 'weight', keep=-1)
                self.save(self.current_iter)
L
LielinJiang 已提交
218

219
            self.current_iter += 1
L
LielinJiang 已提交
220

L
LielinJiang 已提交
221 222
    def test(self):
        if not hasattr(self, 'test_dataloader'):
223
            self.test_dataloader = build_dataloader(self.cfg.dataset.test,
224
                                                    is_train=False)
L
lijianshe02 已提交
225 226 227
        iter_loader = IterLoader(self.test_dataloader)
        if self.max_eval_steps is None:
            self.max_eval_steps = len(self.test_dataloader)
228 229 230 231

        if self.metrics:
            for metric in self.metrics.values():
                metric.reset()
L
LielinJiang 已提交
232

L
LielinJiang 已提交
233 234 235
        # set model.is_train = False
        self.model.setup_train_mode(is_train=False)

L
lijianshe02 已提交
236
        for i in range(self.max_eval_steps):
237 238
            if self.max_eval_steps < self.log_interval or i % self.log_interval == 0:
                self.logger.info('Test iter: [%d/%d]' %
W
wangna11BD 已提交
239 240
                                 (i * self.world_size,
                                  self.max_eval_steps * self.world_size))
241

L
lijianshe02 已提交
242
            data = next(iter_loader)
243 244
            self.model.setup_input(data)
            self.model.test_iter(metrics=self.metrics)
L
LielinJiang 已提交
245

246 247 248 249
            if self.is_save_img:
                visual_results = {}
                current_paths = self.model.get_image_paths()
                current_visuals = self.model.get_current_visuals()
L
LielinJiang 已提交
250

251 252 253
                if len(current_visuals) > 0 and list(
                        current_visuals.values())[0].shape == 4:
                    num_samples = list(current_visuals.values())[0].shape[0]
L
LielinJiang 已提交
254
                else:
255
                    num_samples = 1
L
LielinJiang 已提交
256

257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273
                for j in range(num_samples):
                    if j < len(current_paths):
                        short_path = os.path.basename(current_paths[j])
                        basename = os.path.splitext(short_path)[0]
                    else:
                        basename = '{:04d}_{:04d}'.format(i, j)
                    for k, img_tensor in current_visuals.items():
                        name = '%s_%s' % (basename, k)
                        if len(img_tensor.shape) == 4:
                            visual_results.update({name: img_tensor[j]})
                        else:
                            visual_results.update({name: img_tensor})

                self.visual('visual_test',
                            visual_results=visual_results,
                            step=self.batch_id,
                            is_save_image=True)
L
LielinJiang 已提交
274

275 276 277 278 279
        if self.metrics:
            for metric_name, metric in self.metrics.items():
                self.logger.info("Metric {}: {:.4f}".format(
                    metric_name, metric.accumulate()))

L
LielinJiang 已提交
280 281
    def print_log(self):
        losses = self.model.get_current_losses()
L
LielinJiang 已提交
282

283 284 285 286 287 288 289 290 291
        message = ''
        if self.by_epoch:
            message += 'Epoch: %d/%d, iter: %d/%d ' % (
                self.current_epoch, self.epochs, self.inner_iter,
                self.iters_per_epoch)
        else:
            message += 'Iter: %d/%d ' % (self.current_iter, self.total_iters)

        message += f'lr: {self.current_learning_rate:.3e} '
L
LielinJiang 已提交
292 293 294

        for k, v in losses.items():
            message += '%s: %.3f ' % (k, v)
郑启航 已提交
295 296
            if self.enable_visualdl:
                self.vdl_logger.add_scalar(k, v, step=self.global_steps)
L
LielinJiang 已提交
297

298 299 300
        if hasattr(self, 'step_time'):
            message += 'batch_cost: %.5f sec ' % self.step_time

301
        if hasattr(self, 'data_time'):
302
            message += 'reader_cost: %.5f sec ' % self.data_time
303

304
        if hasattr(self, 'ips'):
L
LielinJiang 已提交
305 306 307
            message += 'ips: %.5f images/s ' % self.ips

        if hasattr(self, 'step_time'):
L
LielinJiang 已提交
308 309 310
            eta = self.step_time * (self.total_iters - self.current_iter)
            eta = eta if eta > 0 else 0

L
LielinJiang 已提交
311 312
            eta_str = str(datetime.timedelta(seconds=int(eta)))
            message += f'eta: {eta_str}'
313

L
LielinJiang 已提交
314 315 316 317 318
        # print the message
        self.logger.info(message)

    @property
    def current_learning_rate(self):
L
LielinJiang 已提交
319 320
        for optimizer in self.model.optimizers.values():
            return optimizer.get_lr()
L
LielinJiang 已提交
321

郑启航 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334
    def visual(self,
               results_dir,
               visual_results=None,
               step=None,
               is_save_image=False):
        """
        visual the images, use visualdl or directly write to the directory
        Parameters:
            results_dir (str)     --  directory name which contains saved images
            visual_results (dict) --  the results images dict
            step (int)            --  global steps, used in visualdl
            is_save_image (bool)  --  weather write to the directory or visualdl
        """
L
LielinJiang 已提交
335 336 337 338 339
        self.model.compute_visuals()

        if visual_results is None:
            visual_results = self.model.get_current_visuals()

L
LielinJiang 已提交
340 341 342
        min_max = self.cfg.get('min_max', None)
        if min_max is None:
            min_max = (-1., 1.)
343

郑启航 已提交
344 345 346
        image_num = self.cfg.get('image_num', None)
        if (image_num is None) or (not self.enable_visualdl):
            image_num = 1
L
LielinJiang 已提交
347
        for label, image in visual_results.items():
郑启航 已提交
348 349 350 351 352 353 354 355 356
            image_numpy = tensor2img(image, min_max, image_num)
            if (not is_save_image) and self.enable_visualdl:
                self.vdl_logger.add_image(
                    results_dir + '/' + label,
                    image_numpy,
                    step=step if step else self.global_steps,
                    dataformats="HWC" if image_num == 1 else "NCHW")
            else:
                if self.cfg.is_train:
W
wangna11BD 已提交
357 358 359 360
                    if self.by_epoch:
                        msg = 'epoch%.3d_' % self.current_epoch
                    else:
                        msg = 'iter%.3d_' % self.current_iter
郑启航 已提交
361 362 363 364 365 366
                else:
                    msg = ''
                makedirs(os.path.join(self.output_dir, results_dir))
                img_path = os.path.join(self.output_dir, results_dir,
                                        msg + '%s.png' % (label))
                save_image(image_numpy, img_path)
L
LielinJiang 已提交
367 368 369 370

    def save(self, epoch, name='checkpoint', keep=1):
        if self.local_rank != 0:
            return
L
LielinJiang 已提交
371

L
LielinJiang 已提交
372 373 374
        assert name in ['checkpoint', 'weight']

        state_dicts = {}
L
LielinJiang 已提交
375 376 377 378 379 380
        if self.by_epoch:
            save_filename = 'epoch_%s_%s.pdparams' % (
                epoch // self.iters_per_epoch, name)
        else:
            save_filename = 'iter_%s_%s.pdparams' % (epoch, name)

L
lijianshe02 已提交
381
        os.makedirs(self.output_dir, exist_ok=True)
L
LielinJiang 已提交
382
        save_path = os.path.join(self.output_dir, save_filename)
L
LielinJiang 已提交
383 384
        for net_name, net in self.model.nets.items():
            state_dicts[net_name] = net.state_dict()
L
LielinJiang 已提交
385 386 387 388 389 390 391

        if name == 'weight':
            save(state_dicts, save_path)
            return

        state_dicts['epoch'] = epoch

L
LielinJiang 已提交
392 393
        for opt_name, opt in self.model.optimizers.items():
            state_dicts[opt_name] = opt.state_dict()
L
LielinJiang 已提交
394 395 396 397 398

        save(state_dicts, save_path)

        if keep > 0:
            try:
L
LielinJiang 已提交
399 400 401 402 403 404 405 406 407 408
                if self.by_epoch:
                    checkpoint_name_to_be_removed = os.path.join(
                        self.output_dir, 'epoch_%s_%s.pdparams' %
                        ((epoch - keep * self.weight_interval) //
                         self.iters_per_epoch, name))
                else:
                    checkpoint_name_to_be_removed = os.path.join(
                        self.output_dir, 'iter_%s_%s.pdparams' %
                        (epoch - keep * self.weight_interval, name))

L
LielinJiang 已提交
409 410 411 412 413 414 415 416 417 418
                if os.path.exists(checkpoint_name_to_be_removed):
                    os.remove(checkpoint_name_to_be_removed)

            except Exception as e:
                self.logger.info('remove old checkpoints error: {}'.format(e))

    def resume(self, checkpoint_path):
        state_dicts = load(checkpoint_path)
        if state_dicts.get('epoch', None) is not None:
            self.start_epoch = state_dicts['epoch'] + 1
L
LielinJiang 已提交
419
            self.global_steps = self.iters_per_epoch * state_dicts['epoch']
L
LielinJiang 已提交
420

L
lijianshe02 已提交
421 422
            self.current_iter = state_dicts['epoch'] + 1

L
LielinJiang 已提交
423
        for net_name, net in self.model.nets.items():
424
            net.set_state_dict(state_dicts[net_name])
L
LielinJiang 已提交
425

L
LielinJiang 已提交
426
        for opt_name, opt in self.model.optimizers.items():
427
            opt.set_state_dict(state_dicts[opt_name])
L
LielinJiang 已提交
428 429 430

    def load(self, weight_path):
        state_dicts = load(weight_path)
L
LielinJiang 已提交
431

L
LielinJiang 已提交
432
        for net_name, net in self.model.nets.items():
433 434 435 436 437 438 439 440
            if net_name in state_dicts:
                net.set_state_dict(state_dicts[net_name])
                self.logger.info(
                    'Loaded pretrained weight for net {}'.format(net_name))
            else:
                self.logger.warning(
                    'Can not find state dict of net {}. Skip load pretrained weight for net {}'
                    .format(net_name, net_name))
郑启航 已提交
441 442 443 444 445 446

    def close(self):
        """
        when finish the training need close file handler or other.
        """
        if self.enable_visualdl:
W
wangna11BD 已提交
447
            self.vdl_logger.close()