trainer.py 13.8 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

L
LielinJiang 已提交
15 16
import os
import time
L
LielinJiang 已提交
17
import copy
L
LielinJiang 已提交
18

L
LielinJiang 已提交
19
import logging
L
LielinJiang 已提交
20
import datetime
L
LielinJiang 已提交
21

L
LielinJiang 已提交
22
import paddle
L
LielinJiang 已提交
23
from paddle.distributed import ParallelEnv
L
LielinJiang 已提交
24 25 26 27

from ..datasets.builder import build_dataloader
from ..models.builder import build_model
from ..utils.visual import tensor2img, save_image
L
LielinJiang 已提交
28
from ..utils.filesystem import makedirs, save, load
29
from ..utils.timer import TimeAverager
L
LielinJiang 已提交
30

L
fix nan  
LielinJiang 已提交
31

32 33 34 35 36
class IterLoader:
    def __init__(self, dataloader):
        self._dataloader = dataloader
        self.iter_loader = iter(self._dataloader)
        self._epoch = 1
L
LielinJiang 已提交
37

38 39 40 41 42 43 44 45 46 47 48
    @property
    def epoch(self):
        return self._epoch

    def __next__(self):
        try:
            data = next(self.iter_loader)
        except StopIteration:
            self._epoch += 1
            self.iter_loader = iter(self._dataloader)
            data = next(self.iter_loader)
L
LielinJiang 已提交
49

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
        return data

    def __len__(self):
        return len(self._dataloader)


class Trainer:
    """
    # trainer calling logic:
    #
    #                build_model                               ||    model(BaseModel)
    #                     |                                    ||
    #               build_dataloader                           ||    dataloader
    #                     |                                    ||
    #               model.setup_lr_schedulers                  ||    lr_scheduler
    #                     |                                    ||
    #               model.setup_optimizers                     ||    optimizers
    #                     |                                    ||
    #     train loop (model.setup_input + model.train_iter)    ||    train loop
    #                     |                                    ||
    #         print log (model.get_current_losses)             ||
    #                     |                                    ||
    #         save checkpoint (model.nets)                     \/
    """
    def __init__(self, cfg):
L
LielinJiang 已提交
75

L
LielinJiang 已提交
76
        # build model
77
        self.model = build_model(cfg.model)
78 79 80
        # multiple gpus prepare
        if ParallelEnv().nranks > 1:
            self.distributed_data_parallel()
L
LielinJiang 已提交
81

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
        # build train dataloader
        self.train_dataloader = build_dataloader(cfg.dataset.train)
        self.iters_per_epoch = len(self.train_dataloader)

        # build lr scheduler
        # TODO: has a better way?
        if 'lr_scheduler' in cfg and 'iters_per_epoch' in cfg.lr_scheduler:
            cfg.lr_scheduler.iters_per_epoch = self.iters_per_epoch
        self.lr_schedulers = self.model.setup_lr_schedulers(cfg.lr_scheduler)

        # build optimizers
        self.optimizers = self.model.setup_optimizers(self.lr_schedulers,
                                                      cfg.optimizer)

        # build metrics
        self.metrics = None
        validate_cfg = cfg.get('validate', None)
        if validate_cfg and 'metrics' in validate_cfg:
            self.metrics = self.model.setup_metrics(validate_cfg['metrics'])

L
LielinJiang 已提交
102
        self.logger = logging.getLogger(__name__)
郑启航 已提交
103 104 105 106
        self.enable_visualdl = cfg.get('enable_visualdl', False)
        if self.enable_visualdl:
            import visualdl
            self.vdl_logger = visualdl.LogWriter(logdir=cfg.output_dir)
107

L
LielinJiang 已提交
108 109
        # base config
        self.output_dir = cfg.output_dir
110 111 112 113 114 115 116 117
        self.epochs = cfg.get('epochs', None)
        if self.epochs:
            self.total_iters = self.epochs * self.iters_per_epoch
            self.by_epoch = True
        else:
            self.by_epoch = False
            self.total_iters = cfg.total_iters

L
LielinJiang 已提交
118 119
        self.start_epoch = 1
        self.current_epoch = 1
120 121
        self.current_iter = 1
        self.inner_iter = 1
L
LielinJiang 已提交
122
        self.batch_id = 0
郑启航 已提交
123
        self.global_steps = 0
L
LielinJiang 已提交
124 125 126
        self.weight_interval = cfg.snapshot_config.interval
        self.log_interval = cfg.log_config.interval
        self.visual_interval = cfg.log_config.visiual_interval
L
LielinJiang 已提交
127 128 129
        self.validate_interval = -1
        if cfg.get('validate', None) is not None:
            self.validate_interval = cfg.validate.get('interval', -1)
L
LielinJiang 已提交
130 131 132
        self.cfg = cfg

        self.local_rank = ParallelEnv().local_rank
133 134

        self.time_count = {}
L
LielinJiang 已提交
135 136
        self.best_metric = {}

137
    def distributed_data_parallel(self):
L
LielinJiang 已提交
138
        strategy = paddle.distributed.prepare_context()
139 140
        for net_name, net in self.model.nets.items():
            self.model.nets[net_name] = paddle.DataParallel(net, strategy)
141

L
LielinJiang 已提交
142
    def train(self):
143 144
        reader_cost_averager = TimeAverager()
        batch_cost_averager = TimeAverager()
L
LielinJiang 已提交
145

146
        iter_loader = IterLoader(self.train_dataloader)
L
LielinJiang 已提交
147

148 149 150
        while self.current_iter < (self.total_iters + 1):
            self.current_epoch = iter_loader.epoch
            self.inner_iter = self.current_iter % self.iters_per_epoch
L
LielinJiang 已提交
151

152 153 154 155 156 157 158 159 160 161 162
            start_time = step_start_time = time.time()
            data = next(iter_loader)
            reader_cost_averager.record(time.time() - step_start_time)
            # unpack data from dataset and apply preprocessing
            # data input should be dict
            self.model.setup_input(data)
            self.model.train_iter(self.optimizers)

            batch_cost_averager.record(time.time() - step_start_time,
                                       num_samples=self.cfg.get(
                                           'batch_size', 1))
163 164 165

            step_start_time = time.time()

166 167 168 169 170 171 172 173 174 175 176 177 178
            if self.current_iter % self.log_interval == 0:
                self.data_time = reader_cost_averager.get_average()
                self.step_time = batch_cost_averager.get_average()
                self.ips = batch_cost_averager.get_ips_average()
                self.print_log()

                reader_cost_averager.reset()
                batch_cost_averager.reset()

            if self.current_iter % self.visual_interval == 0:
                self.visual('visual_train')

            self.model.lr_scheduler.step()
L
LielinJiang 已提交
179

180 181 182 183 184 185
            if self.by_epoch:
                temp = self.current_epoch
            else:
                temp = self.current_iter
            if self.validate_interval > -1 and temp % self.validate_interval == 0:
                self.test()
L
fix nan  
LielinJiang 已提交
186

187 188 189
            if temp % self.weight_interval == 0:
                self.save(temp, 'weight', keep=-1)
                self.save(temp)
L
LielinJiang 已提交
190

191
            self.current_iter += 1
L
LielinJiang 已提交
192

L
LielinJiang 已提交
193 194
    def test(self):
        if not hasattr(self, 'test_dataloader'):
195
            self.test_dataloader = build_dataloader(self.cfg.dataset.test,
196 197 198 199 200 201
                                                    is_train=False,
                                                    distributed=False)

        if self.metrics:
            for metric in self.metrics.values():
                metric.reset()
L
LielinJiang 已提交
202 203 204 205

        # data[0]: img, data[1]: img path index
        # test batch size must be 1
        for i, data in enumerate(self.test_dataloader):
L
LielinJiang 已提交
206

207 208
            self.model.setup_input(data)
            self.model.test_iter(metrics=self.metrics)
L
LielinJiang 已提交
209 210

            visual_results = {}
L
LielinJiang 已提交
211 212 213
            current_paths = self.model.get_image_paths()
            current_visuals = self.model.get_current_visuals()

L
LielinJiang 已提交
214
            for j in range(len(current_paths)):
L
LielinJiang 已提交
215 216 217 218 219
                short_path = os.path.basename(current_paths[j])
                basename = os.path.splitext(short_path)[0]
                for k, img_tensor in current_visuals.items():
                    name = '%s_%s' % (basename, k)
                    visual_results.update({name: img_tensor[j]})
L
LielinJiang 已提交
220

郑启航 已提交
221 222 223 224
            self.visual('visual_test',
                        visual_results=visual_results,
                        step=self.batch_id,
                        is_save_image=True)
L
LielinJiang 已提交
225

L
LielinJiang 已提交
226
            if i % self.log_interval == 0:
227 228
                self.logger.info('Test iter: [%d/%d]' %
                                 (i, len(self.test_dataloader)))
L
LielinJiang 已提交
229

230 231 232 233 234
        if self.metrics:
            for metric_name, metric in self.metrics.items():
                self.logger.info("Metric {}: {:.4f}".format(
                    metric_name, metric.accumulate()))

L
LielinJiang 已提交
235 236
    def print_log(self):
        losses = self.model.get_current_losses()
L
LielinJiang 已提交
237

238 239 240 241 242 243 244 245 246
        message = ''
        if self.by_epoch:
            message += 'Epoch: %d/%d, iter: %d/%d ' % (
                self.current_epoch, self.epochs, self.inner_iter,
                self.iters_per_epoch)
        else:
            message += 'Iter: %d/%d ' % (self.current_iter, self.total_iters)

        message += f'lr: {self.current_learning_rate:.3e} '
L
LielinJiang 已提交
247 248 249

        for k, v in losses.items():
            message += '%s: %.3f ' % (k, v)
郑启航 已提交
250 251
            if self.enable_visualdl:
                self.vdl_logger.add_scalar(k, v, step=self.global_steps)
L
LielinJiang 已提交
252

253 254 255
        if hasattr(self, 'step_time'):
            message += 'batch_cost: %.5f sec ' % self.step_time

256
        if hasattr(self, 'data_time'):
257
            message += 'reader_cost: %.5f sec ' % self.data_time
258

259
        if hasattr(self, 'ips'):
L
LielinJiang 已提交
260 261 262
            message += 'ips: %.5f images/s ' % self.ips

        if hasattr(self, 'step_time'):
263
            eta = self.step_time * (self.total_iters - self.current_iter - 1)
L
LielinJiang 已提交
264 265
            eta_str = str(datetime.timedelta(seconds=int(eta)))
            message += f'eta: {eta_str}'
266

L
LielinJiang 已提交
267 268 269 270 271
        # print the message
        self.logger.info(message)

    @property
    def current_learning_rate(self):
L
LielinJiang 已提交
272 273
        for optimizer in self.model.optimizers.values():
            return optimizer.get_lr()
L
LielinJiang 已提交
274

郑启航 已提交
275 276 277 278 279 280 281 282 283 284 285 286 287 288
    def visual(self,
               results_dir,
               visual_results=None,
               step=None,
               is_save_image=False):
        """
        visual the images, use visualdl or directly write to the directory

        Parameters:
            results_dir (str)     --  directory name which contains saved images
            visual_results (dict) --  the results images dict
            step (int)            --  global steps, used in visualdl
            is_save_image (bool)  --  weather write to the directory or visualdl
        """
L
LielinJiang 已提交
289 290 291 292 293
        self.model.compute_visuals()

        if visual_results is None:
            visual_results = self.model.get_current_visuals()

L
LielinJiang 已提交
294 295 296
        min_max = self.cfg.get('min_max', None)
        if min_max is None:
            min_max = (-1., 1.)
297

郑启航 已提交
298 299 300
        image_num = self.cfg.get('image_num', None)
        if (image_num is None) or (not self.enable_visualdl):
            image_num = 1
L
LielinJiang 已提交
301
        for label, image in visual_results.items():
郑启航 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
            image_numpy = tensor2img(image, min_max, image_num)
            if (not is_save_image) and self.enable_visualdl:
                self.vdl_logger.add_image(
                    results_dir + '/' + label,
                    image_numpy,
                    step=step if step else self.global_steps,
                    dataformats="HWC" if image_num == 1 else "NCHW")
            else:
                if self.cfg.is_train:
                    msg = 'epoch%.3d_' % self.current_epoch
                else:
                    msg = ''
                makedirs(os.path.join(self.output_dir, results_dir))
                img_path = os.path.join(self.output_dir, results_dir,
                                        msg + '%s.png' % (label))
                save_image(image_numpy, img_path)
L
LielinJiang 已提交
318 319 320 321

    def save(self, epoch, name='checkpoint', keep=1):
        if self.local_rank != 0:
            return
L
LielinJiang 已提交
322

L
LielinJiang 已提交
323 324 325
        assert name in ['checkpoint', 'weight']

        state_dicts = {}
L
LielinJiang 已提交
326
        save_filename = 'epoch_%s_%s.pdparams' % (epoch, name)
L
LielinJiang 已提交
327
        save_path = os.path.join(self.output_dir, save_filename)
L
LielinJiang 已提交
328 329
        for net_name, net in self.model.nets.items():
            state_dicts[net_name] = net.state_dict()
L
LielinJiang 已提交
330 331 332 333 334 335 336

        if name == 'weight':
            save(state_dicts, save_path)
            return

        state_dicts['epoch'] = epoch

L
LielinJiang 已提交
337 338
        for opt_name, opt in self.model.optimizers.items():
            state_dicts[opt_name] = opt.state_dict()
L
LielinJiang 已提交
339 340 341 342 343

        save(state_dicts, save_path)

        if keep > 0:
            try:
L
LielinJiang 已提交
344
                checkpoint_name_to_be_removed = os.path.join(
L
LielinJiang 已提交
345 346
                    self.output_dir,
                    'epoch_%s_%s.pdparams' % (epoch - keep, name))
L
LielinJiang 已提交
347 348 349 350 351 352 353 354 355 356
                if os.path.exists(checkpoint_name_to_be_removed):
                    os.remove(checkpoint_name_to_be_removed)

            except Exception as e:
                self.logger.info('remove old checkpoints error: {}'.format(e))

    def resume(self, checkpoint_path):
        state_dicts = load(checkpoint_path)
        if state_dicts.get('epoch', None) is not None:
            self.start_epoch = state_dicts['epoch'] + 1
郑启航 已提交
357
            self.global_steps = self.steps_per_epoch * state_dicts['epoch']
L
LielinJiang 已提交
358

L
LielinJiang 已提交
359
        for net_name, net in self.model.nets.items():
360
            net.set_state_dict(state_dicts[net_name])
L
LielinJiang 已提交
361

L
LielinJiang 已提交
362
        for opt_name, opt in self.model.optimizers.items():
363
            opt.set_state_dict(state_dicts[opt_name])
L
LielinJiang 已提交
364 365 366

    def load(self, weight_path):
        state_dicts = load(weight_path)
L
LielinJiang 已提交
367

L
LielinJiang 已提交
368
        for net_name, net in self.model.nets.items():
369 370 371 372 373 374 375 376
            if net_name in state_dicts:
                net.set_state_dict(state_dicts[net_name])
                self.logger.info(
                    'Loaded pretrained weight for net {}'.format(net_name))
            else:
                self.logger.warning(
                    'Can not find state dict of net {}. Skip load pretrained weight for net {}'
                    .format(net_name, net_name))
377
            net.set_state_dict(state_dicts[net_name])
郑启航 已提交
378 379 380 381 382 383 384 385

    def close(self):
        """
        when finish the training need close file handler or other.

        """
        if self.enable_visualdl:
            self.vdl_logger.close()