trainer.py 16.3 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

L
LielinJiang 已提交
15 16
import os
import time
L
LielinJiang 已提交
17
import copy
L
LielinJiang 已提交
18

L
LielinJiang 已提交
19
import logging
L
LielinJiang 已提交
20
import datetime
L
LielinJiang 已提交
21

L
LielinJiang 已提交
22
import paddle
L
LielinJiang 已提交
23
from paddle.distributed import ParallelEnv
L
LielinJiang 已提交
24 25 26 27

from ..datasets.builder import build_dataloader
from ..models.builder import build_model
from ..utils.visual import tensor2img, save_image
L
LielinJiang 已提交
28
from ..utils.filesystem import makedirs, save, load
29
from ..utils.timer import TimeAverager
L
LielinJiang 已提交
30

L
fix nan  
LielinJiang 已提交
31

32 33 34 35 36
class IterLoader:
    def __init__(self, dataloader):
        self._dataloader = dataloader
        self.iter_loader = iter(self._dataloader)
        self._epoch = 1
L
LielinJiang 已提交
37

38 39 40 41 42 43 44 45 46 47 48
    @property
    def epoch(self):
        return self._epoch

    def __next__(self):
        try:
            data = next(self.iter_loader)
        except StopIteration:
            self._epoch += 1
            self.iter_loader = iter(self._dataloader)
            data = next(self.iter_loader)
L
LielinJiang 已提交
49

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
        return data

    def __len__(self):
        return len(self._dataloader)


class Trainer:
    """
    # trainer calling logic:
    #
    #                build_model                               ||    model(BaseModel)
    #                     |                                    ||
    #               build_dataloader                           ||    dataloader
    #                     |                                    ||
    #               model.setup_lr_schedulers                  ||    lr_scheduler
    #                     |                                    ||
    #               model.setup_optimizers                     ||    optimizers
    #                     |                                    ||
    #     train loop (model.setup_input + model.train_iter)    ||    train loop
    #                     |                                    ||
    #         print log (model.get_current_losses)             ||
    #                     |                                    ||
    #         save checkpoint (model.nets)                     \/
    """
    def __init__(self, cfg):
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
        # base config
        self.logger = logging.getLogger(__name__)
        self.cfg = cfg
        self.output_dir = cfg.output_dir
        self.max_eval_steps = cfg.model.get('max_eval_steps', None)

        self.local_rank = ParallelEnv().local_rank
        self.log_interval = cfg.log_config.interval
        self.visual_interval = cfg.log_config.visiual_interval
        self.weight_interval = cfg.snapshot_config.interval

        self.start_epoch = 1
        self.current_epoch = 1
        self.current_iter = 1
        self.inner_iter = 1
        self.batch_id = 0
        self.global_steps = 0
L
LielinJiang 已提交
92

L
LielinJiang 已提交
93
        # build model
94
        self.model = build_model(cfg.model)
95 96 97
        # multiple gpus prepare
        if ParallelEnv().nranks > 1:
            self.distributed_data_parallel()
L
LielinJiang 已提交
98

99 100 101 102 103
        # build metrics
        self.metrics = None
        validate_cfg = cfg.get('validate', None)
        if validate_cfg and 'metrics' in validate_cfg:
            self.metrics = self.model.setup_metrics(validate_cfg['metrics'])
104 105
        if validate_cfg and 'save_img' in validate_cfg:
            self.is_save_img = validate_cfg['save_img']
106 107 108 109 110 111 112 113 114 115

        self.enable_visualdl = cfg.get('enable_visualdl', False)
        if self.enable_visualdl:
            import visualdl
            self.vdl_logger = visualdl.LogWriter(logdir=cfg.output_dir)

        # evaluate only
        if not cfg.is_train:
            return

116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
        # build train dataloader
        self.train_dataloader = build_dataloader(cfg.dataset.train)
        self.iters_per_epoch = len(self.train_dataloader)

        # build lr scheduler
        # TODO: has a better way?
        if 'lr_scheduler' in cfg and 'iters_per_epoch' in cfg.lr_scheduler:
            cfg.lr_scheduler.iters_per_epoch = self.iters_per_epoch
        self.lr_schedulers = self.model.setup_lr_schedulers(cfg.lr_scheduler)

        # build optimizers
        self.optimizers = self.model.setup_optimizers(self.lr_schedulers,
                                                      cfg.optimizer)

        self.epochs = cfg.get('epochs', None)
        if self.epochs:
            self.total_iters = self.epochs * self.iters_per_epoch
            self.by_epoch = True
        else:
            self.by_epoch = False
            self.total_iters = cfg.total_iters

L
LielinJiang 已提交
138 139 140
        if self.by_epoch:
            self.weight_interval *= self.iters_per_epoch

L
LielinJiang 已提交
141 142 143
        self.validate_interval = -1
        if cfg.get('validate', None) is not None:
            self.validate_interval = cfg.validate.get('interval', -1)
144 145

        self.time_count = {}
L
LielinJiang 已提交
146
        self.best_metric = {}
147
        self.model.set_total_iter(self.total_iters)
L
LielinJiang 已提交
148

149
    def distributed_data_parallel(self):
L
LielinJiang 已提交
150
        paddle.distributed.init_parallel_env()
151
        find_unused_parameters = self.cfg.get('find_unused_parameters', False)
152
        for net_name, net in self.model.nets.items():
153 154
            self.model.nets[net_name] = paddle.DataParallel(
                net, find_unused_parameters=find_unused_parameters)
155

L
LielinJiang 已提交
156 157 158 159 160 161 162 163 164 165 166
    def learning_rate_scheduler_step(self):
        if isinstance(self.model.lr_scheduler, dict):
            for lr_scheduler in self.model.lr_scheduler.values():
                lr_scheduler.step()
        elif isinstance(self.model.lr_scheduler,
                        paddle.optimizer.lr.LRScheduler):
            self.model.lr_scheduler.step()
        else:
            raise ValueError(
                'lr schedulter must be a dict or an instance of LRScheduler')

L
LielinJiang 已提交
167
    def train(self):
168 169
        reader_cost_averager = TimeAverager()
        batch_cost_averager = TimeAverager()
L
LielinJiang 已提交
170

171
        iter_loader = IterLoader(self.train_dataloader)
L
LielinJiang 已提交
172

L
LielinJiang 已提交
173 174
        # set model.is_train = True
        self.model.setup_train_mode(is_train=True)
175 176 177
        while self.current_iter < (self.total_iters + 1):
            self.current_epoch = iter_loader.epoch
            self.inner_iter = self.current_iter % self.iters_per_epoch
L
LielinJiang 已提交
178

179 180 181 182 183 184 185 186 187 188 189
            start_time = step_start_time = time.time()
            data = next(iter_loader)
            reader_cost_averager.record(time.time() - step_start_time)
            # unpack data from dataset and apply preprocessing
            # data input should be dict
            self.model.setup_input(data)
            self.model.train_iter(self.optimizers)

            batch_cost_averager.record(time.time() - step_start_time,
                                       num_samples=self.cfg.get(
                                           'batch_size', 1))
190 191 192

            step_start_time = time.time()

193 194 195 196 197 198 199 200 201 202 203 204
            if self.current_iter % self.log_interval == 0:
                self.data_time = reader_cost_averager.get_average()
                self.step_time = batch_cost_averager.get_average()
                self.ips = batch_cost_averager.get_ips_average()
                self.print_log()

                reader_cost_averager.reset()
                batch_cost_averager.reset()

            if self.current_iter % self.visual_interval == 0:
                self.visual('visual_train')

L
LielinJiang 已提交
205
            self.learning_rate_scheduler_step()
L
LielinJiang 已提交
206

L
LielinJiang 已提交
207
            if self.validate_interval > -1 and self.current_iter % self.validate_interval == 0:
208
                self.test()
L
fix nan  
LielinJiang 已提交
209

L
LielinJiang 已提交
210 211 212
            if self.current_iter % self.weight_interval == 0:
                self.save(self.current_iter, 'weight', keep=-1)
                self.save(self.current_iter)
L
LielinJiang 已提交
213

214
            self.current_iter += 1
L
LielinJiang 已提交
215

L
LielinJiang 已提交
216 217
    def test(self):
        if not hasattr(self, 'test_dataloader'):
218
            self.test_dataloader = build_dataloader(self.cfg.dataset.test,
219 220
                                                    is_train=False,
                                                    distributed=False)
L
lijianshe02 已提交
221 222 223
        iter_loader = IterLoader(self.test_dataloader)
        if self.max_eval_steps is None:
            self.max_eval_steps = len(self.test_dataloader)
224 225 226 227

        if self.metrics:
            for metric in self.metrics.values():
                metric.reset()
L
LielinJiang 已提交
228

L
LielinJiang 已提交
229 230 231
        # set model.is_train = False
        self.model.setup_train_mode(is_train=False)

L
lijianshe02 已提交
232 233
        for i in range(self.max_eval_steps):
            data = next(iter_loader)
234 235
            self.model.setup_input(data)
            self.model.test_iter(metrics=self.metrics)
L
LielinJiang 已提交
236

237 238 239 240
            if self.is_save_img:
                visual_results = {}
                current_paths = self.model.get_image_paths()
                current_visuals = self.model.get_current_visuals()
L
LielinJiang 已提交
241

242 243 244
                if len(current_visuals) > 0 and list(
                        current_visuals.values())[0].shape == 4:
                    num_samples = list(current_visuals.values())[0].shape[0]
L
LielinJiang 已提交
245
                else:
246
                    num_samples = 1
L
LielinJiang 已提交
247

248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
                for j in range(num_samples):
                    if j < len(current_paths):
                        short_path = os.path.basename(current_paths[j])
                        basename = os.path.splitext(short_path)[0]
                    else:
                        basename = '{:04d}_{:04d}'.format(i, j)
                    for k, img_tensor in current_visuals.items():
                        name = '%s_%s' % (basename, k)
                        if len(img_tensor.shape) == 4:
                            visual_results.update({name: img_tensor[j]})
                        else:
                            visual_results.update({name: img_tensor})

                self.visual('visual_test',
                            visual_results=visual_results,
                            step=self.batch_id,
                            is_save_image=True)
L
LielinJiang 已提交
265

L
LielinJiang 已提交
266
            if i % self.log_interval == 0:
267
                self.logger.info('Test iter: [%d/%d]' %
L
lijianshe02 已提交
268
                                 (i, self.max_eval_steps))
L
LielinJiang 已提交
269

270 271 272 273 274
        if self.metrics:
            for metric_name, metric in self.metrics.items():
                self.logger.info("Metric {}: {:.4f}".format(
                    metric_name, metric.accumulate()))

L
LielinJiang 已提交
275 276
    def print_log(self):
        losses = self.model.get_current_losses()
L
LielinJiang 已提交
277

278 279 280 281 282 283 284 285 286
        message = ''
        if self.by_epoch:
            message += 'Epoch: %d/%d, iter: %d/%d ' % (
                self.current_epoch, self.epochs, self.inner_iter,
                self.iters_per_epoch)
        else:
            message += 'Iter: %d/%d ' % (self.current_iter, self.total_iters)

        message += f'lr: {self.current_learning_rate:.3e} '
L
LielinJiang 已提交
287 288 289

        for k, v in losses.items():
            message += '%s: %.3f ' % (k, v)
郑启航 已提交
290 291
            if self.enable_visualdl:
                self.vdl_logger.add_scalar(k, v, step=self.global_steps)
L
LielinJiang 已提交
292

293 294 295
        if hasattr(self, 'step_time'):
            message += 'batch_cost: %.5f sec ' % self.step_time

296
        if hasattr(self, 'data_time'):
297
            message += 'reader_cost: %.5f sec ' % self.data_time
298

299
        if hasattr(self, 'ips'):
L
LielinJiang 已提交
300 301 302
            message += 'ips: %.5f images/s ' % self.ips

        if hasattr(self, 'step_time'):
L
LielinJiang 已提交
303 304 305
            eta = self.step_time * (self.total_iters - self.current_iter)
            eta = eta if eta > 0 else 0

L
LielinJiang 已提交
306 307
            eta_str = str(datetime.timedelta(seconds=int(eta)))
            message += f'eta: {eta_str}'
308

L
LielinJiang 已提交
309 310 311 312 313
        # print the message
        self.logger.info(message)

    @property
    def current_learning_rate(self):
L
LielinJiang 已提交
314 315
        for optimizer in self.model.optimizers.values():
            return optimizer.get_lr()
L
LielinJiang 已提交
316

郑启航 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330
    def visual(self,
               results_dir,
               visual_results=None,
               step=None,
               is_save_image=False):
        """
        visual the images, use visualdl or directly write to the directory

        Parameters:
            results_dir (str)     --  directory name which contains saved images
            visual_results (dict) --  the results images dict
            step (int)            --  global steps, used in visualdl
            is_save_image (bool)  --  weather write to the directory or visualdl
        """
L
LielinJiang 已提交
331 332 333 334 335
        self.model.compute_visuals()

        if visual_results is None:
            visual_results = self.model.get_current_visuals()

L
LielinJiang 已提交
336 337 338
        min_max = self.cfg.get('min_max', None)
        if min_max is None:
            min_max = (-1., 1.)
339

郑启航 已提交
340 341 342
        image_num = self.cfg.get('image_num', None)
        if (image_num is None) or (not self.enable_visualdl):
            image_num = 1
L
LielinJiang 已提交
343
        for label, image in visual_results.items():
郑启航 已提交
344 345 346 347 348 349 350 351 352
            image_numpy = tensor2img(image, min_max, image_num)
            if (not is_save_image) and self.enable_visualdl:
                self.vdl_logger.add_image(
                    results_dir + '/' + label,
                    image_numpy,
                    step=step if step else self.global_steps,
                    dataformats="HWC" if image_num == 1 else "NCHW")
            else:
                if self.cfg.is_train:
W
wangna11BD 已提交
353 354 355 356
                    if self.by_epoch:
                        msg = 'epoch%.3d_' % self.current_epoch
                    else:
                        msg = 'iter%.3d_' % self.current_iter
郑启航 已提交
357 358 359 360 361 362
                else:
                    msg = ''
                makedirs(os.path.join(self.output_dir, results_dir))
                img_path = os.path.join(self.output_dir, results_dir,
                                        msg + '%s.png' % (label))
                save_image(image_numpy, img_path)
L
LielinJiang 已提交
363 364 365 366

    def save(self, epoch, name='checkpoint', keep=1):
        if self.local_rank != 0:
            return
L
LielinJiang 已提交
367

L
LielinJiang 已提交
368 369 370
        assert name in ['checkpoint', 'weight']

        state_dicts = {}
L
LielinJiang 已提交
371 372 373 374 375 376
        if self.by_epoch:
            save_filename = 'epoch_%s_%s.pdparams' % (
                epoch // self.iters_per_epoch, name)
        else:
            save_filename = 'iter_%s_%s.pdparams' % (epoch, name)

L
lijianshe02 已提交
377
        os.makedirs(self.output_dir, exist_ok=True)
L
LielinJiang 已提交
378
        save_path = os.path.join(self.output_dir, save_filename)
L
LielinJiang 已提交
379 380
        for net_name, net in self.model.nets.items():
            state_dicts[net_name] = net.state_dict()
L
LielinJiang 已提交
381 382 383 384 385 386 387

        if name == 'weight':
            save(state_dicts, save_path)
            return

        state_dicts['epoch'] = epoch

L
LielinJiang 已提交
388 389
        for opt_name, opt in self.model.optimizers.items():
            state_dicts[opt_name] = opt.state_dict()
L
LielinJiang 已提交
390 391 392 393 394

        save(state_dicts, save_path)

        if keep > 0:
            try:
L
LielinJiang 已提交
395 396 397 398 399 400 401 402 403 404
                if self.by_epoch:
                    checkpoint_name_to_be_removed = os.path.join(
                        self.output_dir, 'epoch_%s_%s.pdparams' %
                        ((epoch - keep * self.weight_interval) //
                         self.iters_per_epoch, name))
                else:
                    checkpoint_name_to_be_removed = os.path.join(
                        self.output_dir, 'iter_%s_%s.pdparams' %
                        (epoch - keep * self.weight_interval, name))

L
LielinJiang 已提交
405 406 407 408 409 410 411 412 413 414
                if os.path.exists(checkpoint_name_to_be_removed):
                    os.remove(checkpoint_name_to_be_removed)

            except Exception as e:
                self.logger.info('remove old checkpoints error: {}'.format(e))

    def resume(self, checkpoint_path):
        state_dicts = load(checkpoint_path)
        if state_dicts.get('epoch', None) is not None:
            self.start_epoch = state_dicts['epoch'] + 1
L
LielinJiang 已提交
415
            self.global_steps = self.iters_per_epoch * state_dicts['epoch']
L
LielinJiang 已提交
416

L
lijianshe02 已提交
417 418
            self.current_iter = state_dicts['epoch'] + 1

L
LielinJiang 已提交
419
        for net_name, net in self.model.nets.items():
420
            net.set_state_dict(state_dicts[net_name])
L
LielinJiang 已提交
421

L
LielinJiang 已提交
422
        for opt_name, opt in self.model.optimizers.items():
423
            opt.set_state_dict(state_dicts[opt_name])
L
LielinJiang 已提交
424 425 426

    def load(self, weight_path):
        state_dicts = load(weight_path)
L
LielinJiang 已提交
427

L
LielinJiang 已提交
428
        for net_name, net in self.model.nets.items():
429 430 431 432 433 434 435 436
            if net_name in state_dicts:
                net.set_state_dict(state_dicts[net_name])
                self.logger.info(
                    'Loaded pretrained weight for net {}'.format(net_name))
            else:
                self.logger.warning(
                    'Can not find state dict of net {}. Skip load pretrained weight for net {}'
                    .format(net_name, net_name))
郑启航 已提交
437 438 439 440 441 442 443 444

    def close(self):
        """
        when finish the training need close file handler or other.

        """
        if self.enable_visualdl:
            self.vdl_logger.close()