Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleGAN
提交
ac794a9c
P
PaddleGAN
项目概览
PaddlePaddle
/
PaddleGAN
接近 2 年 前同步成功
通知
100
Star
7254
Fork
1210
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
4
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleGAN
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
4
Issue
4
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
ac794a9c
编写于
7月 02, 2020
作者:
L
LielinJiang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
support dict dataset, clean code
上级
07c143e6
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
178 addition
and
71 deletion
+178
-71
configs/cyclegan-cityscapes.yaml
configs/cyclegan-cityscapes.yaml
+1
-1
ppgan/datasets/aligned_dataset.py
ppgan/datasets/aligned_dataset.py
+2
-2
ppgan/datasets/builder.py
ppgan/datasets/builder.py
+98
-15
ppgan/datasets/single_dataset.py
ppgan/datasets/single_dataset.py
+7
-1
ppgan/datasets/unaligned_dataset.py
ppgan/datasets/unaligned_dataset.py
+2
-1
ppgan/engine/trainer.py
ppgan/engine/trainer.py
+14
-17
ppgan/models/base_model.py
ppgan/models/base_model.py
+3
-3
ppgan/models/cycle_gan_model.py
ppgan/models/cycle_gan_model.py
+36
-18
ppgan/models/pix2pix_model.py
ppgan/models/pix2pix_model.py
+12
-9
ppgan/utils/filesystem.py
ppgan/utils/filesystem.py
+3
-4
未找到文件。
configs/cyclegan-cityscapes.yaml
浏览文件 @
ac794a9c
...
@@ -61,7 +61,7 @@ optimizer:
...
@@ -61,7 +61,7 @@ optimizer:
beta1
:
0.5
beta1
:
0.5
lr_scheduler
:
lr_scheduler
:
name
:
linear
name
:
linear
learning_rate
:
0.000
4
learning_rate
:
0.000
2
start_epoch
:
100
start_epoch
:
100
decay_epochs
:
100
decay_epochs
:
100
...
...
ppgan/datasets/aligned_dataset.py
浏览文件 @
ac794a9c
...
@@ -60,8 +60,8 @@ class AlignedDataset(BaseDataset):
...
@@ -60,8 +60,8 @@ class AlignedDataset(BaseDataset):
A
=
A_transform
(
A
)
A
=
A_transform
(
A
)
B
=
B_transform
(
B
)
B
=
B_transform
(
B
)
#
return {'A': A, 'B': B, 'A_paths': AB_path, 'B_paths': AB_path}
return
{
'A'
:
A
,
'B'
:
B
,
'A_paths'
:
AB_path
,
'B_paths'
:
AB_path
}
return
A
,
B
,
index
#{'A': A, 'B': B, 'A_paths': AB_path, 'B_paths': AB_path}
#
return A, B, index #{'A': A, 'B': B, 'A_paths': AB_path, 'B_paths': AB_path}
def
__len__
(
self
):
def
__len__
(
self
):
"""Return the total number of images in the dataset."""
"""Return the total number of images in the dataset."""
...
...
ppgan/datasets/builder.py
浏览文件 @
ac794a9c
import
paddle
import
paddle
import
numbers
import
numbers
import
numpy
as
np
import
numpy
as
np
from
multiprocessing
import
Manager
from
paddle.imperative
import
ParallelEnv
from
paddle.imperative
import
ParallelEnv
from
paddle.incubate.hapi.distributed
import
DistributedBatchSampler
from
paddle.incubate.hapi.distributed
import
DistributedBatchSampler
...
@@ -10,25 +11,107 @@ from ..utils.registry import Registry
...
@@ -10,25 +11,107 @@ from ..utils.registry import Registry
DATASETS
=
Registry
(
"DATASETS"
)
DATASETS
=
Registry
(
"DATASETS"
)
def
build_dataloader
(
cfg
,
is_train
=
True
):
class
DictDataset
(
paddle
.
io
.
Dataset
):
dataset
=
DATASETS
.
get
(
cfg
.
name
)(
cfg
)
def
__init__
(
self
,
dataset
):
self
.
dataset
=
dataset
batch_size
=
cfg
.
get
(
'batch_size'
,
1
)
self
.
tensor_keys_set
=
set
()
self
.
non_tensor_keys_set
=
set
()
self
.
non_tensor_dict
=
Manager
().
dict
()
single_item
=
dataset
[
0
]
self
.
keys
=
single_item
.
keys
()
for
k
,
v
in
single_item
.
items
():
if
not
isinstance
(
v
,
(
numbers
.
Number
,
np
.
ndarray
)):
self
.
non_tensor_dict
.
update
({
k
:
{}})
self
.
non_tensor_keys_set
.
add
(
k
)
else
:
self
.
tensor_keys_set
.
add
(
k
)
def
__getitem__
(
self
,
index
):
ori_map
=
self
.
dataset
[
index
]
tmp_list
=
[]
for
k
,
v
in
ori_map
.
items
():
if
isinstance
(
v
,
(
numbers
.
Number
,
np
.
ndarray
)):
tmp_list
.
append
(
v
)
else
:
tmp_dict
=
self
.
non_tensor_dict
[
k
]
tmp_dict
.
update
({
index
:
v
})
self
.
non_tensor_dict
[
k
]
=
tmp_dict
# dataloader = DictDataLoader(dataset, batch_size, is_train)
tmp_list
.
append
(
index
)
return
tuple
(
tmp_list
)
place
=
paddle
.
fluid
.
CUDAPlace
(
ParallelEnv
().
dev_id
)
\
def
__len__
(
self
):
return
len
(
self
.
dataset
)
def
reset
(
self
):
for
k
in
self
.
non_tensor_keys_set
:
self
.
non_tensor_dict
[
k
]
=
{}
class
DictDataLoader
():
def
__init__
(
self
,
dataset
,
batch_size
,
is_train
,
num_workers
=
0
):
self
.
dataset
=
DictDataset
(
dataset
)
place
=
paddle
.
fluid
.
CUDAPlace
(
ParallelEnv
().
dev_id
)
\
if
ParallelEnv
().
nranks
>
1
else
paddle
.
fluid
.
CUDAPlace
(
0
)
if
ParallelEnv
().
nranks
>
1
else
paddle
.
fluid
.
CUDAPlace
(
0
)
sampler
=
DistributedBatchSampler
(
sampler
=
DistributedBatchSampler
(
dataset
,
self
.
dataset
,
batch_size
=
batch_size
,
batch_size
=
batch_size
,
shuffle
=
True
if
is_train
else
False
,
shuffle
=
True
if
is_train
else
False
,
drop_last
=
True
if
is_train
else
False
)
drop_last
=
True
if
is_train
else
False
)
self
.
dataloader
=
paddle
.
io
.
DataLoader
(
self
.
dataset
,
batch_sampler
=
sampler
,
places
=
place
,
num_workers
=
num_workers
)
self
.
batch_size
=
batch_size
def
__iter__
(
self
):
self
.
dataset
.
reset
()
for
i
,
data
in
enumerate
(
self
.
dataloader
):
return_dict
=
{}
j
=
0
for
k
in
self
.
dataset
.
keys
:
if
k
in
self
.
dataset
.
tensor_keys_set
:
return_dict
[
k
]
=
data
[
j
]
if
isinstance
(
data
,
(
list
,
tuple
))
else
data
j
+=
1
else
:
return_dict
[
k
]
=
self
.
get_items_by_indexs
(
k
,
data
[
-
1
])
yield
return_dict
def
__len__
(
self
):
return
len
(
self
.
dataloader
)
def
get_items_by_indexs
(
self
,
key
,
indexs
):
if
isinstance
(
indexs
,
paddle
.
Variable
):
indexs
=
indexs
.
numpy
()
current_items
=
[]
items
=
getattr
(
self
.
dataset
,
key
)
for
index
in
indexs
:
current_items
.
append
(
items
[
index
])
return
current_items
def
build_dataloader
(
cfg
,
is_train
=
True
):
dataset
=
DATASETS
.
get
(
cfg
.
name
)(
cfg
)
batch_size
=
cfg
.
get
(
'batch_size'
,
1
)
num_workers
=
cfg
.
get
(
'num_workers'
,
0
)
dataloader
=
paddle
.
io
.
DataLoader
(
dataset
,
dataloader
=
DictDataLoader
(
dataset
,
batch_size
,
is_train
)
batch_sampler
=
sampler
,
places
=
place
,
num_workers
=
0
)
return
dataloader
return
dataloader
\ No newline at end of file
ppgan/datasets/single_dataset.py
浏览文件 @
ac794a9c
...
@@ -36,7 +36,13 @@ class SingleDataset(BaseDataset):
...
@@ -36,7 +36,13 @@ class SingleDataset(BaseDataset):
# A_img = Image.open(A_path).convert('RGB')
# A_img = Image.open(A_path).convert('RGB')
A_img
=
cv2
.
imread
(
A_path
)
A_img
=
cv2
.
imread
(
A_path
)
A
=
self
.
transform
(
A_img
)
A
=
self
.
transform
(
A_img
)
return
(
A
,
index
)
#{'A': A, 'A_paths': A_path}
# items = {}
# if self.cfg.direction == 'AtoB':
# items = {'A': A, 'A_paths': A_path}
# else:
# items = {'B': A, 'B_paths': A_path}
# return items
return
{
'A'
:
A
,
'A_paths'
:
A_path
}
def
__len__
(
self
):
def
__len__
(
self
):
"""Return the total number of images in the dataset."""
"""Return the total number of images in the dataset."""
...
...
ppgan/datasets/unaligned_dataset.py
浏览文件 @
ac794a9c
...
@@ -62,7 +62,8 @@ class UnalignedDataset(BaseDataset):
...
@@ -62,7 +62,8 @@ class UnalignedDataset(BaseDataset):
A
=
self
.
transform_A
(
A_img
)
A
=
self
.
transform_A
(
A_img
)
B
=
self
.
transform_B
(
B_img
)
B
=
self
.
transform_B
(
B_img
)
return
A
,
B
# return A, B
return
{
'A'
:
A
,
'B'
:
B
,
'A_paths'
:
A_path
,
'B_paths'
:
B_path
}
def
__len__
(
self
):
def
__len__
(
self
):
"""Return the total number of images in the dataset.
"""Return the total number of images in the dataset.
...
...
ppgan/engine/trainer.py
浏览文件 @
ac794a9c
import
os
import
os
import
time
import
time
import
logging
import
logging
from
paddle.imperative
import
ParallelEnv
from
paddle.imperative
import
ParallelEnv
...
@@ -7,7 +8,7 @@ from paddle.imperative import ParallelEnv
...
@@ -7,7 +8,7 @@ from paddle.imperative import ParallelEnv
from
..datasets.builder
import
build_dataloader
from
..datasets.builder
import
build_dataloader
from
..models.builder
import
build_model
from
..models.builder
import
build_model
from
..utils.visual
import
tensor2img
,
save_image
from
..utils.visual
import
tensor2img
,
save_image
from
..utils.filesystem
s
import
save
,
load
,
makedirs
from
..utils.filesystem
import
save
,
load
,
makedirs
class
Trainer
:
class
Trainer
:
...
@@ -45,6 +46,7 @@ class Trainer:
...
@@ -45,6 +46,7 @@ class Trainer:
for
i
,
data
in
enumerate
(
self
.
train_dataloader
):
for
i
,
data
in
enumerate
(
self
.
train_dataloader
):
self
.
batch_id
=
i
self
.
batch_id
=
i
# unpack data from dataset and apply preprocessing
# unpack data from dataset and apply preprocessing
# data input should be dict
self
.
model
.
set_input
(
data
)
self
.
model
.
set_input
(
data
)
self
.
model
.
optimize_parameters
()
self
.
model
.
optimize_parameters
()
...
@@ -67,26 +69,21 @@ class Trainer:
...
@@ -67,26 +69,21 @@ class Trainer:
# test batch size must be 1
# test batch size must be 1
for
i
,
data
in
enumerate
(
self
.
test_dataloader
):
for
i
,
data
in
enumerate
(
self
.
test_dataloader
):
self
.
batch_id
=
i
self
.
batch_id
=
i
# FIXME: dataloader not support map input, hard code now!!!
if
self
.
cfg
.
dataset
.
test
.
name
==
'AlignedDataset'
:
self
.
model
.
set_input
(
data
)
if
self
.
cfg
.
dataset
.
test
.
direction
==
'BtoA'
:
self
.
model
.
test
()
fake
=
self
.
model
.
test
(
data
[
1
])
else
:
fake
=
self
.
model
.
test
(
data
[
0
])
elif
self
.
cfg
.
dataset
.
test
.
name
==
'SingleDataset'
:
fake
=
self
.
model
.
test
(
data
[
0
])
current_paths
=
self
.
test_dataloader
.
dataset
.
get_path_by_indexs
(
data
[
-
1
])
visual_results
=
{}
visual_results
=
{}
current_paths
=
self
.
model
.
get_image_paths
()
current_visuals
=
self
.
model
.
get_current_visuals
()
for
j
in
range
(
len
(
current_paths
)):
for
j
in
range
(
len
(
current_paths
)):
name
=
os
.
path
.
basename
(
current_paths
[
j
])
short_path
=
os
.
path
.
basename
(
current_paths
[
j
])
name
=
os
.
path
.
splitext
(
name
)[
0
]
basename
=
os
.
path
.
splitext
(
short_path
)[
0
]
for
k
,
img_tensor
in
current_visuals
.
items
():
name
=
'%s_%s'
%
(
basename
,
k
)
visual_results
.
update
({
name
:
img_tensor
[
j
]})
visual_results
.
update
({
name
+
'_fakeB'
:
fake
[
j
]})
visual_results
.
update
({
name
+
'_realA'
:
data
[
1
]})
visual_results
.
update
({
name
+
'_realB'
:
data
[
0
]})
# visual_results.update({'realB': data[1]})
self
.
visual
(
'visual_test'
,
visual_results
=
visual_results
)
self
.
visual
(
'visual_test'
,
visual_results
=
visual_results
)
if
i
%
self
.
log_interval
==
0
:
if
i
%
self
.
log_interval
==
0
:
...
...
ppgan/models/base_model.py
浏览文件 @
ac794a9c
...
@@ -83,14 +83,14 @@ class BaseModel(ABC):
...
@@ -83,14 +83,14 @@ class BaseModel(ABC):
net
=
getattr
(
self
,
'net'
+
name
)
net
=
getattr
(
self
,
'net'
+
name
)
net
.
eval
()
net
.
eval
()
def
test
(
self
,
input
):
def
test
(
self
):
"""Forward function used in test time.
"""Forward function used in test time.
This function wraps <forward> function in no_grad() so we don't save intermediate steps for backprop
This function wraps <forward> function in no_grad() so we don't save intermediate steps for backprop
It also calls <compute_visuals> to produce additional visualization results
It also calls <compute_visuals> to produce additional visualization results
"""
"""
with
paddle
.
imperative
.
no_grad
():
with
paddle
.
imperative
.
no_grad
():
self
.
forward
_test
()
self
.
forward
()
self
.
compute_visuals
()
self
.
compute_visuals
()
def
compute_visuals
(
self
):
def
compute_visuals
(
self
):
...
@@ -105,7 +105,7 @@ class BaseModel(ABC):
...
@@ -105,7 +105,7 @@ class BaseModel(ABC):
"""Return visualization images. train.py will display these images with visdom, and save the images to a HTML"""
"""Return visualization images. train.py will display these images with visdom, and save the images to a HTML"""
visual_ret
=
OrderedDict
()
visual_ret
=
OrderedDict
()
for
name
in
self
.
visual_names
:
for
name
in
self
.
visual_names
:
if
isinstance
(
name
,
str
):
if
isinstance
(
name
,
str
)
and
hasattr
(
self
,
name
)
:
visual_ret
[
name
]
=
getattr
(
self
,
name
)
visual_ret
[
name
]
=
getattr
(
self
,
name
)
return
visual_ret
return
visual_ret
...
...
ppgan/models/cycle_gan_model.py
浏览文件 @
ac794a9c
...
@@ -84,32 +84,50 @@ class CycleGANModel(BaseModel):
...
@@ -84,32 +84,50 @@ class CycleGANModel(BaseModel):
The option 'direction' can be used to swap domain A and domain B.
The option 'direction' can be used to swap domain A and domain B.
"""
"""
AtoB
=
self
.
opt
.
dataset
.
train
.
direction
==
'AtoB'
mode
=
'train'
if
self
.
isTrain
else
'test'
AtoB
=
self
.
opt
.
dataset
[
mode
].
direction
==
'AtoB'
self
.
real_A
=
paddle
.
imperative
.
to_variable
(
input
[
0
]
if
AtoB
else
input
[
1
])
if
AtoB
:
self
.
real_B
=
paddle
.
imperative
.
to_variable
(
input
[
1
]
if
AtoB
else
input
[
0
])
if
'A'
in
input
:
self
.
real_A
=
paddle
.
imperative
.
to_variable
(
input
[
'A'
])
if
'B'
in
input
:
self
.
real_B
=
paddle
.
imperative
.
to_variable
(
input
[
'B'
])
else
:
if
'B'
in
input
:
self
.
real_A
=
paddle
.
imperative
.
to_variable
(
input
[
'B'
])
if
'A'
in
input
:
self
.
real_B
=
paddle
.
imperative
.
to_variable
(
input
[
'A'
])
if
'A_paths'
in
input
:
self
.
image_paths
=
input
[
'A_paths'
]
elif
'B_paths'
in
input
:
self
.
image_paths
=
input
[
'B_paths'
]
# self.image_paths = input['A_paths' if AtoB else 'B_paths']
def
forward
(
self
):
def
forward
(
self
):
"""Run forward pass; called by both functions <optimize_parameters> and <test>."""
"""Run forward pass; called by both functions <optimize_parameters> and <test>."""
self
.
fake_B
=
self
.
netG_A
(
self
.
real_A
)
# G_A(A)
if
hasattr
(
self
,
'real_A'
):
self
.
rec_A
=
self
.
netG_B
(
self
.
fake_B
)
# G_B(G_A(A))
self
.
fake_B
=
self
.
netG_A
(
self
.
real_A
)
# G_A(A)
self
.
fake_A
=
self
.
netG_B
(
self
.
real_B
)
# G_B(B)
self
.
rec_A
=
self
.
netG_B
(
self
.
fake_B
)
# G_B(G_A(A))
self
.
rec_B
=
self
.
netG_A
(
self
.
fake_A
)
# G_A(G_B(B))
if
hasattr
(
self
,
'real_B'
):
self
.
fake_A
=
self
.
netG_B
(
self
.
real_B
)
# G_B(B)
self
.
rec_B
=
self
.
netG_A
(
self
.
fake_A
)
# G_A(G_B(B))
def
forward_test
(
self
,
input
):
input
=
paddle
.
imperative
.
to_variable
(
input
)
net_g
=
getattr
(
self
,
'netG_'
+
self
.
opt
.
dataset
.
test
.
direction
[
0
])
return
net_g
(
input
)
def
test
(
self
,
input
):
# def forward_test(self, input):
"""Forward function used in test time.
# input = paddle.imperative.to_variable(input)
# net_g = getattr(self, 'netG_' + self.opt.dataset.test.direction[0])
# return net_g(input)
This function wraps <forward> function in no_grad() so we don't save intermediate steps for backprop
# def test(self, input):
It also calls <compute_visuals> to produce additional visualization results
# """Forward function used in test time.
"""
with
paddle
.
imperative
.
no_grad
():
# This function wraps <forward> function in no_grad() so we don't save intermediate steps for backprop
return
self
.
forward_test
(
input
)
# It also calls <compute_visuals> to produce additional visualization results
# """
# with paddle.imperative.no_grad():
# return self.forward_test(input)
def
backward_D_basic
(
self
,
netD
,
real
,
fake
):
def
backward_D_basic
(
self
,
netD
,
real
,
fake
):
"""Calculate GAN loss for the discriminator
"""Calculate GAN loss for the discriminator
...
...
ppgan/models/pix2pix_model.py
浏览文件 @
ac794a9c
...
@@ -83,8 +83,11 @@ class Pix2PixModel(BaseModel):
...
@@ -83,8 +83,11 @@ class Pix2PixModel(BaseModel):
# self.real_B = input['B' if AtoB else 'A'].to(self.device)
# self.real_B = input['B' if AtoB else 'A'].to(self.device)
# self.image_paths = input['A_paths' if AtoB else 'B_paths']
# self.image_paths = input['A_paths' if AtoB else 'B_paths']
AtoB
=
self
.
opt
.
dataset
.
train
.
direction
==
'AtoB'
AtoB
=
self
.
opt
.
dataset
.
train
.
direction
==
'AtoB'
self
.
real_A
=
paddle
.
imperative
.
to_variable
(
input
[
0
]
if
AtoB
else
input
[
1
])
self
.
real_A
=
paddle
.
imperative
.
to_variable
(
input
[
'A'
if
AtoB
else
'B'
])
self
.
real_B
=
paddle
.
imperative
.
to_variable
(
input
[
1
]
if
AtoB
else
input
[
0
])
self
.
real_B
=
paddle
.
imperative
.
to_variable
(
input
[
'B'
if
AtoB
else
'A'
])
self
.
image_paths
=
input
[
'A_paths'
if
AtoB
else
'B_paths'
]
# self.real_A = paddle.imperative.to_variable(input[0] if AtoB else input[1])
# self.real_B = paddle.imperative.to_variable(input[1] if AtoB else input[0])
def
forward
(
self
):
def
forward
(
self
):
"""Run forward pass; called by both functions <optimize_parameters> and <test>."""
"""Run forward pass; called by both functions <optimize_parameters> and <test>."""
...
@@ -94,14 +97,14 @@ class Pix2PixModel(BaseModel):
...
@@ -94,14 +97,14 @@ class Pix2PixModel(BaseModel):
input
=
paddle
.
imperative
.
to_variable
(
input
)
input
=
paddle
.
imperative
.
to_variable
(
input
)
return
self
.
netG
(
input
)
return
self
.
netG
(
input
)
def
test
(
self
,
input
):
#
def test(self, input):
"""Forward function used in test time.
#
"""Forward function used in test time.
This function wraps <forward> function in no_grad() so we don't save intermediate steps for backprop
#
This function wraps <forward> function in no_grad() so we don't save intermediate steps for backprop
It also calls <compute_visuals> to produce additional visualization results
#
It also calls <compute_visuals> to produce additional visualization results
"""
#
"""
with
paddle
.
imperative
.
no_grad
():
#
with paddle.imperative.no_grad():
return
self
.
forward_test
(
input
)
#
return self.forward_test(input)
def
backward_D
(
self
):
def
backward_D
(
self
):
"""Calculate GAN loss for the discriminator"""
"""Calculate GAN loss for the discriminator"""
...
...
ppgan/utils/filesystem
s
.py
→
ppgan/utils/filesystem.py
浏览文件 @
ac794a9c
...
@@ -11,16 +11,15 @@ def save(state_dicts, file_name):
...
@@ -11,16 +11,15 @@ def save(state_dicts, file_name):
def
convert
(
state_dict
):
def
convert
(
state_dict
):
model_dict
=
{}
model_dict
=
{}
name_table
=
{}
#
name_table = {}
for
k
,
v
in
state_dict
.
items
():
for
k
,
v
in
state_dict
.
items
():
if
isinstance
(
v
,
(
paddle
.
framework
.
Variable
,
paddle
.
imperative
.
core
.
VarBase
)):
if
isinstance
(
v
,
(
paddle
.
framework
.
Variable
,
paddle
.
imperative
.
core
.
VarBase
)):
model_dict
[
k
]
=
v
.
numpy
()
model_dict
[
k
]
=
v
.
numpy
()
else
:
else
:
model_dict
[
k
]
=
v
model_dict
[
k
]
=
v
print
(
'enter k'
,
k
)
return
state_dict
return
state_dict
name_table
[
k
]
=
v
.
name
#
name_table[k] = v.name
model_dict
[
"StructuredToParameterName@@"
]
=
name_table
#
model_dict["StructuredToParameterName@@"] = name_table
return
model_dict
return
model_dict
final_dict
=
{}
final_dict
=
{}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录