detection.py 96.3 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15 16 17
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

18 19
from __future__ import print_function

20 21
from .layer_function_generator import generate_layer_fn
from .layer_function_generator import autodoc, templatedoc
22
from ..layer_helper import LayerHelper
D
dengkaipeng 已提交
23
from ..framework import Variable
24 25
from . import tensor
from . import nn
26
from . import ops
M
minqiyang 已提交
27
from ... import compat as cpt
C
chengduoZH 已提交
28
import math
M
minqiyang 已提交
29
import six
30
import numpy
31
from functools import reduce
32

C
chengduoZH 已提交
33
__all__ = [
34 35 36 37 38 39 40 41 42 43 44 45 46
    'prior_box',
    'density_prior_box',
    'multi_box_head',
    'bipartite_match',
    'target_assign',
    'detection_output',
    'ssd_loss',
    'detection_map',
    'rpn_target_assign',
    'anchor_generator',
    'roi_perspective_transform',
    'generate_proposal_labels',
    'generate_proposals',
47
    'generate_mask_labels',
48 49 50 51 52
    'iou_similarity',
    'box_coder',
    'polygon_box_transform',
    'yolov3_loss',
    'box_clip',
J
jerrywgz 已提交
53
    'multiclass_nms',
54
    'distribute_fpn_proposals',
55
    'box_decoder_and_assign',
C
chengduoZH 已提交
56
]
57 58


59 60
def rpn_target_assign(bbox_pred,
                      cls_logits,
Y
Yuan Gao 已提交
61
                      anchor_box,
62
                      anchor_var,
63 64 65
                      gt_boxes,
                      is_crowd,
                      im_info,
Y
Yuan Gao 已提交
66
                      rpn_batch_size_per_im=256,
67 68
                      rpn_straddle_thresh=0.0,
                      rpn_fg_fraction=0.5,
Y
Yuan Gao 已提交
69
                      rpn_positive_overlap=0.7,
70 71
                      rpn_negative_overlap=0.3,
                      use_random=True):
Y
Yuan Gao 已提交
72
    """
H
haowang101779990 已提交
73
    **Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection.**
Y
Yuan Gao 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

    This layer can be, for given the  Intersection-over-Union (IoU) overlap
    between anchors and ground truth boxes, to assign classification and
    regression targets to each each anchor, these target labels are used for
    train RPN. The classification targets is a binary class label (of being
    an object or not). Following the paper of Faster-RCNN, the positive labels
    are two kinds of anchors: (i) the anchor/anchors with the highest IoU
    overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap
    higher than rpn_positive_overlap(0.7) with any ground-truth box. Note
    that a single ground-truth box may assign positive labels to multiple
    anchors. A non-positive anchor is when its IoU ratio is lower than
    rpn_negative_overlap (0.3) for all ground-truth boxes. Anchors that are
    neither positive nor negative do not contribute to the training objective.
    The regression targets are the encoded ground-truth boxes associated with
    the positive anchors.

    Args:
91
        bbox_pred(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Y
Yuan Gao 已提交
92 93 94
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
95 96 97
        cls_logits(Variable): A 3-D Tensor with shape [N, M, 1] represents the
            predicted confidence predictions. N is the batch size, 1 is the
            frontground and background sigmoid, M is number of bounding boxes.
Y
Yuan Gao 已提交
98 99 100 101 102 103
        anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
104 105
        anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded 
            variances of anchors.
106
        gt_boxes (Variable): The ground-truth boudding boxes (bboxes) are a 2D
Y
Yuan Gao 已提交
107 108
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
109 110 111
        is_crowd (Variable): A 1-D LoDTensor which indicates groud-truth is crowd.
        im_info (Variable): A 2-D LoDTensor with shape [N, 3]. N is the batch size,
        3 is the height, width and scale.
Y
Yuan Gao 已提交
112
        rpn_batch_size_per_im(int): Total number of RPN examples per image.
113 114 115
        rpn_straddle_thresh(float): Remove RPN anchors that go outside the image
            by straddle_thresh pixels.
        rpn_fg_fraction(float): Target fraction of RoI minibatch that is labeled
Y
Yuan Gao 已提交
116 117 118 119 120 121 122 123 124
            foreground (i.e. class > 0), 0-th class is background.
        rpn_positive_overlap(float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a positive
            example.
        rpn_negative_overlap(float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a negative
            examples.

    Returns:
M
minqiyang 已提交
125
        tuple:
Y
Yuan Gao 已提交
126
               A tuple(predicted_scores, predicted_location, target_label,
J
jerrywgz 已提交
127 128
               target_bbox, bbox_inside_weight) is returned. The predicted_scores 
               and predicted_location is the predicted result of the RPN.
Y
Yuan Gao 已提交
129 130 131 132 133 134 135
               The target_label and target_bbox is the ground truth,
               respectively. The predicted_location is a 2D Tensor with shape
               [F, 4], and the shape of target_bbox is same as the shape of
               the predicted_location, F is the number of the foreground
               anchors. The predicted_scores is a 2D Tensor with shape
               [F + B, 1], and the shape of target_label is same as the shape
               of the predicted_scores, B is the number of the background
M
minqiyang 已提交
136
               anchors, the F and B is depends on the input of this operator.
J
jerrywgz 已提交
137 138
               Bbox_inside_weight represents whether the predicted loc is fake_fg
               or not and the shape is [F, 4].
Y
Yuan Gao 已提交
139 140 141 142

    Examples:
        .. code-block:: python

H
haowang101779990 已提交
143 144 145 146 147 148 149 150 151 152 153 154 155 156
            bbox_pred = layers.data(name='bbox_pred', shape=[100, 4],
                              append_batch_size=False, dtype='float32')
            cls_logits = layers.data(name='cls_logits', shape=[100, 1],
                              append_batch_size=False, dtype='float32')
            anchor_box = layers.data(name='anchor_box', shape=[20, 4],
                              append_batch_size=False, dtype='float32')
            gt_boxes = layers.data(name='gt_boxes', shape=[10, 4],
                             append_batch_size=False, dtype='float32')
            loc_pred, score_pred, loc_target, score_target, bbox_inside_weight =
                fluid.layers.rpn_target_assign(bbox_pred=bbox_pred,
                                              cls_logits=cls_logits,
                                              anchor_box=anchor_box,
                                              gt_boxes=gt_boxes)

Y
Yuan Gao 已提交
157 158 159
    """

    helper = LayerHelper('rpn_target_assign', **locals())
160
    # Assign target label to anchors
J
jerrywgz 已提交
161 162 163 164 165 166 167
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
Y
Yuan Gao 已提交
168 169
    helper.append_op(
        type="rpn_target_assign",
170 171 172 173 174 175
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'IsCrowd': is_crowd,
            'ImInfo': im_info
        },
Y
Yuan Gao 已提交
176 177 178
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
179
            'TargetLabel': target_label,
J
jerrywgz 已提交
180
            'TargetBBox': target_bbox,
J
jerrywgz 已提交
181
            'BBoxInsideWeight': bbox_inside_weight
Y
Yuan Gao 已提交
182 183 184
        },
        attrs={
            'rpn_batch_size_per_im': rpn_batch_size_per_im,
185
            'rpn_straddle_thresh': rpn_straddle_thresh,
Y
Yuan Gao 已提交
186 187
            'rpn_positive_overlap': rpn_positive_overlap,
            'rpn_negative_overlap': rpn_negative_overlap,
188 189
            'rpn_fg_fraction': rpn_fg_fraction,
            'use_random': use_random
Y
Yuan Gao 已提交
190 191
        })

192 193 194 195
    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
J
jerrywgz 已提交
196
    bbox_inside_weight.stop_gradient = True
Y
Yuan Gao 已提交
197

198 199 200 201
    cls_logits = nn.reshape(x=cls_logits, shape=(-1, 1))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)
202

J
jerrywgz 已提交
203
    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight
Y
Yuan Gao 已提交
204 205


Y
Yuan Gao 已提交
206 207
def detection_output(loc,
                     scores,
208 209 210 211 212 213 214 215 216
                     prior_box,
                     prior_box_var,
                     background_label=0,
                     nms_threshold=0.3,
                     nms_top_k=400,
                     keep_top_k=200,
                     score_threshold=0.01,
                     nms_eta=1.0):
    """
217
    **Detection Output Layer for Single Shot Multibox Detector (SSD).**
218

219 220
    This operation is to get the detection results by performing following
    two steps:
C
caoying03 已提交
221

222 223 224 225 226 227
    1. Decode input bounding box predictions according to the prior boxes.
    2. Get the final detection results by applying multi-class non maximum
       suppression (NMS).

    Please note, this operation doesn't clip the final output bounding boxes
    to the image window.
228 229 230 231 232 233

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
Y
Yuan Gao 已提交
234 235 236 237
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
            predicted confidence predictions. N is the batch size, C is the
            class number, M is number of bounding boxes. For each category
            there are total M scores which corresponding M bounding boxes.
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
            of variance.
        background_label(float): The index of background label,
            the background label will be ignored. If set to -1, then all
            categories will be considered.
        nms_threshold(float): The threshold to be used in NMS.
        nms_top_k(int): Maximum number of detections to be kept according
            to the confidences aftern the filtering detections based on
            score_threshold.
        keep_top_k(int): Number of total bboxes to be kept per image after
            NMS step. -1 means keeping all bboxes after NMS step.
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
        nms_eta(float): The parameter for adaptive NMS.

    Returns:
M
minqiyang 已提交
260 261
        Variable:

262
            The detection outputs is a LoDTensor with shape [No, 6].
263 264 265 266 267 268
            Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
            `No` is the total number of detections in this mini-batch. For each
            instance, the offsets in first dimension are called LoD, the offset
            number is N + 1, N is the batch size. The i-th image has
            `LoD[i + 1] - LoD[i]` detected results, if it is 0, the i-th image
            has no detected results. If all images have not detected results,
J
jerrywgz 已提交
269
            LoD will be set to {1}, and output tensor only contains one
270
            value, which is -1.
J
jerrywgz 已提交
271 272
            (After version 1.3, when no boxes detected, the lod is changed
             from {0} to {1}.)
273 274 275 276

    Examples:
        .. code-block:: python

277
            pb = layers.data(name='prior_box', shape=[10, 4],
278
                         append_batch_size=False, dtype='float32')
279
            pbv = layers.data(name='prior_box_var', shape=[10, 4],
280
                          append_batch_size=False, dtype='float32')
281
            loc = layers.data(name='target_box', shape=[2, 21, 4],
282
                          append_batch_size=False, dtype='float32')
283
            scores = layers.data(name='scores', shape=[2, 21, 10],
284
                          append_batch_size=False, dtype='float32')
285
            nmsed_outs = fluid.layers.detection_output(scores=scores,
286 287 288 289 290
                                       loc=loc,
                                       prior_box=pb,
                                       prior_box_var=pbv)
    """
    helper = LayerHelper("detection_output", **locals())
291 292 293 294 295
    decoded_box = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=loc,
        code_type='decode_center_size')
296
    scores = nn.softmax(input=scores)
Y
Yuan Gao 已提交
297
    scores = nn.transpose(scores, perm=[0, 2, 1])
298
    scores.stop_gradient = True
X
Xin Pan 已提交
299 300
    nmsed_outs = helper.create_variable_for_type_inference(
        dtype=decoded_box.dtype)
301 302 303 304 305 306 307 308 309 310 311 312 313
    helper.append_op(
        type="multiclass_nms",
        inputs={'Scores': scores,
                'BBoxes': decoded_box},
        outputs={'Out': nmsed_outs},
        attrs={
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0
        })
314
    nmsed_outs.stop_gradient = True
315
    return nmsed_outs
C
chengduoZH 已提交
316 317


X
Xin Pan 已提交
318 319 320 321 322 323 324 325 326 327 328 329 330 331
@templatedoc()
def iou_similarity(x, y, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("iou_similarity", **locals())
    if name is None:
X
Xin Pan 已提交
332
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="iou_similarity",
        inputs={"X": x,
                "Y": y},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def box_coder(prior_box,
              prior_box_var,
              target_box,
              code_type="encode_center_size",
              box_normalized=True,
352 353
              name=None,
              axis=0):
X
Xin Pan 已提交
354
    """
355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
    **Box Coder Layer**

    Encode/Decode the target bounding box with the priorbox information.
    
    The Encoding schema described below:

    .. math::

        ox = (tx - px) / pw / pxv

        oy = (ty - py) / ph / pyv

        ow = \log(\abs(tw / pw)) / pwv 

        oh = \log(\abs(th / ph)) / phv 

    The Decoding schema described below:
    
    .. math::
  
        ox = (pw * pxv * tx * + px) - tw / 2

        oy = (ph * pyv * ty * + py) - th / 2

        ow = \exp(pwv * tw) * pw + tw / 2

        oh = \exp(phv * th) * ph + th / 2   

    where `tx`, `ty`, `tw`, `th` denote the target box's center coordinates, 
    width and height respectively. Similarly, `px`, `py`, `pw`, `ph` denote 
    the priorbox's (anchor) center coordinates, width and height. `pxv`, 
    `pyv`, `pwv`, `phv` denote the variance of the priorbox and `ox`, `oy`, 
    `ow`, `oh` denote the encoded/decoded coordinates, width and height. 

    During Box Decoding, two modes for broadcast are supported. Say target 
    box has shape [N, M, 4], and the shape of prior box can be [N, 4] or 
    [M, 4]. Then prior box will broadcast to target box along the 
    assigned axis. 
X
Xin Pan 已提交
393 394

    Args:
395 396 397 398 399 400 401
        prior_box(Variable): Box list prior_box is a 2-D Tensor with shape 
                             [M, 4] holds M boxes, each box is represented as
                             [xmin, ymin, xmax, ymax], [xmin, ymin] is the 
                             left top coordinate of the anchor box, if the 
                             input is image feature map, they are close to 
                             the origin of the coordinate system. [xmax, ymax]
                             is the right bottom coordinate of the anchor box.       
402 403 404 405
        prior_box_var(Variable|list|None): prior_box_var supports two types 
                              of input. One is variable with shape [M, 4] 
                              holds M group. The other one is list consist of 
                              4 elements shared by all boxes. 
406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
        target_box(Variable): This input can be a 2-D LoDTensor with shape 
                              [N, 4] when code_type is 'encode_center_size'. 
                              This input also can be a 3-D Tensor with shape 
                              [N, M, 4] when code_type is 'decode_center_size'. 
                              Each box is represented as  
                              [xmin, ymin, xmax, ymax]. This tensor can 
                              contain LoD information to represent a batch 
                              of inputs. 
        code_type(string): The code type used with the target box. It can be
                           encode_center_size or decode_center_size
        box_normalized(int): Whether treat the priorbox as a noramlized box.
                             Set true by default.
        name(string): The name of box coder.
        axis(int): Which axis in PriorBox to broadcast for box decode, 
                   for example, if axis is 0 and TargetBox has shape
                   [N, M, 4] and PriorBox has shape [M, 4], then PriorBox
                   will broadcast to [N, M, 4] for decoding. It is only valid
                   when code type is decode_center_size. Set 0 by default. 
X
Xin Pan 已提交
424 425

    Returns:
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
        output_box(Variable): When code_type is 'encode_center_size', the 
                              output tensor of box_coder_op with shape 
                              [N, M, 4] representing the result of N target 
                              boxes encoded with M Prior boxes and variances. 
                              When code_type is 'decode_center_size', 
                              N represents the batch size and M represents 
                              the number of deocded boxes.

    Examples:
 
        .. code-block:: python
 
            prior_box = fluid.layers.data(name='prior_box', 
                                          shape=[512, 4], 
                                          dtype='float32',
                                          append_batch_size=False)
            target_box = fluid.layers.data(name='target_box',
                                           shape=[512,81,4],
                                           dtype='float32',
                                           append_batch_size=False)
            output = fluid.layers.box_coder(prior_box=prior_box,
                                            prior_box_var=[0.1,0.1,0.2,0.2],
                                            target_box=target_box,
                                            code_type="decode_center_size",
                                            box_normalized=False,
                                            axis=1)

X
Xin Pan 已提交
453 454 455 456
    """
    helper = LayerHelper("box_coder", **locals())

    if name is None:
X
Xin Pan 已提交
457 458
        output_box = helper.create_variable_for_type_inference(
            dtype=prior_box.dtype)
X
Xin Pan 已提交
459 460 461 462
    else:
        output_box = helper.create_variable(
            name=name, dtype=prior_box.dtype, persistable=False)

463 464 465 466 467 468 469 470 471 472 473 474
    inputs = {"PriorBox": prior_box, "TargetBox": target_box}
    attrs = {
        "code_type": code_type,
        "box_normalized": box_normalized,
        "axis": axis
    }
    if isinstance(prior_box_var, Variable):
        inputs['PriorBoxVar'] = prior_box_var
    elif isinstance(prior_box_var, list):
        attrs['variance'] = prior_box_var
    else:
        raise TypeError("Input variance of box_coder must be Variable or lisz")
X
Xin Pan 已提交
475 476
    helper.append_op(
        type="box_coder",
477 478
        inputs=inputs,
        attrs=attrs,
X
Xin Pan 已提交
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
        outputs={"OutputBox": output_box})
    return output_box


@templatedoc()
def polygon_box_transform(input, name=None):
    """
    ${comment}

    Args:
        input(${input_type}): ${input_comment}

    Returns:
        output(${output_type}): ${output_comment}
    """
    helper = LayerHelper("polygon_box_transform", **locals())
    if name is None:
X
Xin Pan 已提交
496
        output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
Xin Pan 已提交
497 498 499 500 501 502 503 504 505 506 507 508
    else:
        output = helper.create_variable(
            name=name, dtype=prior_box.input, persistable=False)

    helper.append_op(
        type="polygon_box_transform",
        inputs={"Input": input},
        attrs={},
        outputs={"Output": output})
    return output


D
dengkaipeng 已提交
509 510 511
@templatedoc(op_type="yolov3_loss")
def yolov3_loss(x,
                gtbox,
D
dengkaipeng 已提交
512
                gtlabel,
D
dengkaipeng 已提交
513
                anchors,
514
                anchor_mask,
D
dengkaipeng 已提交
515 516
                class_num,
                ignore_thresh,
517
                downsample_ratio,
D
dengkaipeng 已提交
518 519 520 521 522 523
                name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
D
dengkaipeng 已提交
524 525 526 527 528
        gtbox (Variable): groud truth boxes, should be in shape of [N, B, 4],
                          in the third dimenstion, x, y, w, h should be stored 
                          and x, y, w, h should be relative value of input image.
                          N is the batch number and B is the max box number in 
                          an image.
D
dengkaipeng 已提交
529
        gtlabel (Variable): class id of ground truth boxes, shoud be in shape
D
dengkaipeng 已提交
530
                            of [N, B].
D
dengkaipeng 已提交
531
        anchors (list|tuple): ${anchors_comment}
532
        anchor_mask (list|tuple): ${anchor_mask_comment}
D
dengkaipeng 已提交
533 534
        class_num (int): ${class_num_comment}
        ignore_thresh (float): ${ignore_thresh_comment}
535
        downsample_ratio (int): ${downsample_ratio_comment}
D
dengkaipeng 已提交
536 537 538 539 540 541 542 543
        name (string): the name of yolov3 loss

    Returns:
        Variable: A 1-D tensor with shape [1], the value of yolov3 loss

    Raises:
        TypeError: Input x of yolov3_loss must be Variable
        TypeError: Input gtbox of yolov3_loss must be Variable"
D
dengkaipeng 已提交
544
        TypeError: Input gtlabel of yolov3_loss must be Variable"
D
dengkaipeng 已提交
545 546 547 548 549
        TypeError: Attr anchors of yolov3_loss must be list or tuple
        TypeError: Attr class_num of yolov3_loss must be an integer
        TypeError: Attr ignore_thresh of yolov3_loss must be a float number

    Examples:
550 551 552 553 554 555 556 557 558 559
      .. code-block:: python

          x = fluid.layers.data(name='x', shape=[255, 13, 13], dtype='float32')
          gtbox = fluid.layers.data(name='gtbox', shape=[6, 5], dtype='float32')
          gtlabel = fluid.layers.data(name='gtlabel', shape=[6, 1], dtype='int32')
          anchors = [10, 13, 16, 30, 33, 23, 30, 61, 62, 45, 59, 119, 116, 90, 156, 198, 373, 326]
          anchor_mask = [0, 1, 2]
          loss = fluid.layers.yolov3_loss(x=x, gtbox=gtbox, gtlabel=gtlabel, anchors=anchors, 
                                          anchor_mask=anchor_mask, class_num=80,
                                          ignore_thresh=0.7, downsample_ratio=32)
D
dengkaipeng 已提交
560 561 562 563 564 565 566
    """
    helper = LayerHelper('yolov3_loss', **locals())

    if not isinstance(x, Variable):
        raise TypeError("Input x of yolov3_loss must be Variable")
    if not isinstance(gtbox, Variable):
        raise TypeError("Input gtbox of yolov3_loss must be Variable")
D
dengkaipeng 已提交
567 568
    if not isinstance(gtlabel, Variable):
        raise TypeError("Input gtlabel of yolov3_loss must be Variable")
D
dengkaipeng 已提交
569 570
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
        raise TypeError("Attr anchors of yolov3_loss must be list or tuple")
571 572
    if not isinstance(anchor_mask, list) and not isinstance(anchor_mask, tuple):
        raise TypeError("Attr anchor_mask of yolov3_loss must be list or tuple")
D
dengkaipeng 已提交
573 574 575 576 577 578 579 580 581 582 583 584
    if not isinstance(class_num, int):
        raise TypeError("Attr class_num of yolov3_loss must be an integer")
    if not isinstance(ignore_thresh, float):
        raise TypeError(
            "Attr ignore_thresh of yolov3_loss must be a float number")

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

585 586 587
    objectness_mask = helper.create_variable_for_type_inference(dtype='int32')
    gt_match_mask = helper.create_variable_for_type_inference(dtype='int32')

D
dengkaipeng 已提交
588 589
    attrs = {
        "anchors": anchors,
590
        "anchor_mask": anchor_mask,
D
dengkaipeng 已提交
591 592
        "class_num": class_num,
        "ignore_thresh": ignore_thresh,
593
        "downsample_ratio": downsample_ratio,
D
dengkaipeng 已提交
594 595 596 597
    }

    helper.append_op(
        type='yolov3_loss',
D
dengkaipeng 已提交
598 599 600 601 602
        inputs={
            "X": x,
            "GTBox": gtbox,
            "GTLabel": gtlabel,
        },
603 604 605 606 607
        outputs={
            'Loss': loss,
            'ObjectnessMask': objectness_mask,
            'GTMatchMask': gt_match_mask
        },
D
dengkaipeng 已提交
608 609 610 611
        attrs=attrs)
    return loss


X
Xin Pan 已提交
612
@templatedoc()
613 614
def detection_map(detect_res,
                  label,
615 616
                  class_num,
                  background_label=0,
617 618
                  overlap_threshold=0.3,
                  evaluate_difficult=True,
619 620 621 622
                  has_state=None,
                  input_states=None,
                  out_states=None,
                  ap_version='integral'):
X
Xin Pan 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
    """
    ${comment}

    Args:
        detect_res: ${detect_res_comment}
        label:  ${label_comment}
        class_num: ${class_num_comment}
        background_label: ${background_label_comment}
        overlap_threshold: ${overlap_threshold_comment}
        evaluate_difficult: ${evaluate_difficult_comment}
        has_state: ${has_state_comment}
        input_states: If not None, It contains 3 elements:
            1. pos_count ${pos_count_comment}.
            2. true_pos ${true_pos_comment}.
            3. false_pos ${false_pos_comment}.
        out_states: If not None, it contains 3 elements.
            1. accum_pos_count ${accum_pos_count_comment}.
            2. accum_true_pos ${accum_true_pos_comment}.
            3. accum_false_pos ${accum_false_pos_comment}.
        ap_version: ${ap_type_comment}

    Returns:
        ${map_comment}


    Examples:
          .. code-block:: python

            detect_res = fluid.layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')
            label = fluid.layers.data(
                name='label',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')

            map_out = fluid.layers.detection_map(detect_res, label, 21)
    """
664 665
    helper = LayerHelper("detection_map", **locals())

666
    def __create_var(type):
X
Xin Pan 已提交
667
        return helper.create_variable_for_type_inference(dtype=type)
668 669 670 671 672 673 674 675 676 677 678 679

    map_out = __create_var('float32')
    accum_pos_count_out = out_states[0] if out_states else __create_var('int32')
    accum_true_pos_out = out_states[1] if out_states else __create_var(
        'float32')
    accum_false_pos_out = out_states[2] if out_states else __create_var(
        'float32')

    pos_count = input_states[0] if input_states else None
    true_pos = input_states[1] if input_states else None
    false_pos = input_states[2] if input_states else None

680 681 682 683 684
    helper.append_op(
        type="detection_map",
        inputs={
            'Label': label,
            'DetectRes': detect_res,
685
            'HasState': has_state,
686 687 688 689 690 691 692 693 694 695 696 697 698
            'PosCount': pos_count,
            'TruePos': true_pos,
            'FalsePos': false_pos
        },
        outputs={
            'MAP': map_out,
            'AccumPosCount': accum_pos_count_out,
            'AccumTruePos': accum_true_pos_out,
            'AccumFalsePos': accum_false_pos_out
        },
        attrs={
            'overlap_threshold': overlap_threshold,
            'evaluate_difficult': evaluate_difficult,
699 700
            'ap_type': ap_version,
            'class_num': class_num,
701
        })
702
    return map_out
703 704


705 706 707 708
def bipartite_match(dist_matrix,
                    match_type=None,
                    dist_threshold=None,
                    name=None):
709
    """
Y
yuyang18 已提交
710 711
    This operator implements a greedy bipartite matching algorithm, which is
    used to obtain the matching with the maximum distance based on the input
712
    distance matrix. For input 2D matrix, the bipartite matching algorithm can
Y
yuyang18 已提交
713 714 715 716 717 718 719 720
    find the matched column for each row (matched means the largest distance),
    also can find the matched row for each column. And this operator only
    calculate matched indices from column to row. For each instance,
    the number of matched indices is the column number of the input distance
    matrix.

    There are two outputs, matched indices and distance.
    A simple description, this algorithm matched the best (maximum distance)
721 722 723
    row entity to the column entity and the matched indices are not duplicated
    in each row of ColToRowMatchIndices. If the column entity is not matched
    any row entity, set -1 in ColToRowMatchIndices.
C
chengduoZH 已提交
724

Y
yuyang18 已提交
725
    NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
726 727 728
    If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
    If Tensor, the height of ColToRowMatchIndices is 1.

Y
yuyang18 已提交
729 730 731
    NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
    layer. Please consider to use :code:`ssd_loss` instead.

732 733 734 735 736
    Args:
        dist_matrix(Variable): This input is a 2-D LoDTensor with shape
            [K, M]. It is pair-wise distance matrix between the entities
            represented by each row and each column. For example, assumed one
            entity is A with shape [K], another entity is B with shape [M]. The
Y
yuyang18 已提交
737 738 739 740 741 742
            dist_matrix[i][j] is the distance between A[i] and B[j]. The bigger
            the distance is, the better matching the pairs are.

            NOTE: This tensor can contain LoD information to represent a batch
            of inputs. One instance of this batch can contain different numbers
            of entities.
743
        match_type(string|None): The type of matching method, should be
Y
yuyang18 已提交
744
           'bipartite' or 'per_prediction'. [default 'bipartite'].
745 746
        dist_threshold(float|None): If `match_type` is 'per_prediction',
            this threshold is to determine the extra matching bboxes based
Y
yuyang18 已提交
747
            on the maximum distance, 0.5 by default.
748
    Returns:
Y
yuyang18 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
        tuple: a tuple with two elements is returned. The first is
        matched_indices, the second is matched_distance.

        The matched_indices is a 2-D Tensor with shape [N, M] in int type.
        N is the batch size. If match_indices[i][j] is -1, it
        means B[j] does not match any entity in i-th instance.
        Otherwise, it means B[j] is matched to row
        match_indices[i][j] in i-th instance. The row number of
        i-th instance is saved in match_indices[i][j].

        The matched_distance is a 2-D Tensor with shape [N, M] in float type
        . N is batch size. If match_indices[i][j] is -1,
        match_distance[i][j] is also -1.0. Otherwise, assumed
        match_distance[i][j] = d, and the row offsets of each instance
        are called LoD. Then match_distance[i][j] =
        dist_matrix[d+LoD[i]][j].

    Examples:

        >>> x = fluid.layers.data(name='x', shape=[4], dtype='float32')
        >>> y = fluid.layers.data(name='y', shape=[4], dtype='float32')
        >>> iou = fluid.layers.iou_similarity(x=x, y=y)
        >>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
772 773
    """
    helper = LayerHelper('bipartite_match', **locals())
X
Xin Pan 已提交
774 775 776
    match_indices = helper.create_variable_for_type_inference(dtype='int32')
    match_distance = helper.create_variable_for_type_inference(
        dtype=dist_matrix.dtype)
777 778 779
    helper.append_op(
        type='bipartite_match',
        inputs={'DistMat': dist_matrix},
780 781 782 783
        attrs={
            'match_type': match_type,
            'dist_threshold': dist_threshold,
        },
784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800
        outputs={
            'ColToRowMatchIndices': match_indices,
            'ColToRowMatchDist': match_distance
        })
    return match_indices, match_distance


def target_assign(input,
                  matched_indices,
                  negative_indices=None,
                  mismatch_value=None,
                  name=None):
    """
    This operator can be, for given the target bounding boxes or labels,
    to assign classification and regression targets to each prediction as well as
    weights to prediction. The weights is used to specify which prediction would
    not contribute to training loss.
C
chengduoZH 已提交
801

802 803 804 805 806
    For each instance, the output `out` and`out_weight` are assigned based on
    `match_indices` and `negative_indices`.
    Assumed that the row offset for each instance in `input` is called lod,
    this operator assigns classification/regression targets by performing the
    following steps:
C
chengduoZH 已提交
807

808
    1. Assigning all outpts based on `match_indices`:
C
chengduoZH 已提交
809

810 811 812
    .. code-block:: text

        If id = match_indices[i][j] > 0,
C
chengduoZH 已提交
813

814 815
            out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
            out_weight[i][j] = 1.
C
chengduoZH 已提交
816

817
        Otherwise,
C
chengduoZH 已提交
818

819 820
            out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][j] = 0.
C
chengduoZH 已提交
821

822
    2. Assigning out_weight based on `neg_indices` if `neg_indices` is provided:
C
chengduoZH 已提交
823

824 825
    Assumed that the row offset for each instance in `neg_indices` is called neg_lod,
    for i-th instance and each `id` of neg_indices in this instance:
M
minqiyang 已提交
826

827
    .. code-block:: text
C
chengduoZH 已提交
828

829 830 831 832 833 834 835 836 837 838 839 840 841 842 843
        out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
        out_weight[i][id] = 1.0

    Args:
       inputs (Variable): This input is a 3D LoDTensor with shape [M, P, K].
       matched_indices (Variable): Tensor<int>), The input matched indices
           is 2D Tenosr<int32> with shape [N, P], If MatchIndices[i][j] is -1,
           the j-th entity of column is not matched to any entity of row in
           i-th instance.
       negative_indices (Variable): The input negative example indices are
           an optional input with shape [Neg, 1] and int32 type, where Neg is
           the total number of negative example indices.
       mismatch_value (float32): Fill this value to the mismatched location.

    Returns:
M
minqiyang 已提交
844 845 846 847 848
        tuple:
               A tuple(out, out_weight) is returned. out is a 3D Tensor with
               shape [N, P, K], N and P is the same as they are in
               `neg_indices`, K is the same as it in input of X. If
               `match_indices[i][j]`. out_weight is the weight for output with
849 850 851 852 853 854 855 856 857 858 859
               the shape of [N, P, 1].

    Examples:

        .. code-block:: python

            matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
            gt = layers.data(
                        name='gt', shape=[1, 1], dtype='int32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                            gt, matched_indices, mismatch_value=0)
860 861
    """
    helper = LayerHelper('target_assign', **locals())
X
Xin Pan 已提交
862 863
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_weight = helper.create_variable_for_type_inference(dtype='float32')
864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890
    helper.append_op(
        type='target_assign',
        inputs={
            'X': input,
            'MatchIndices': matched_indices,
            'NegIndices': negative_indices
        },
        outputs={'Out': out,
                 'OutWeight': out_weight},
        attrs={'mismatch_value': mismatch_value})
    return out, out_weight


def ssd_loss(location,
             confidence,
             gt_box,
             gt_label,
             prior_box,
             prior_box_var=None,
             background_label=0,
             overlap_threshold=0.5,
             neg_pos_ratio=3.0,
             neg_overlap=0.5,
             loc_loss_weight=1.0,
             conf_loss_weight=1.0,
             match_type='per_prediction',
             mining_type='max_negative',
891
             normalize=True,
892 893
             sample_size=None):
    """
Y
yuyang18 已提交
894
    **Multi-box loss layer for object detection algorithm of SSD**
895 896 897 898 899 900 901

    This layer is to compute dection loss for SSD given the location offset
    predictions, confidence predictions, prior boxes and ground-truth boudding
    boxes and labels, and the type of hard example mining. The returned loss
    is a weighted sum of the localization loss (or regression loss) and
    confidence loss (or classification loss) by performing the following steps:

Y
yuyang18 已提交
902
    1. Find matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
903

904
      1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
Y
yuyang18 已提交
905

906
      1.2 Compute matched boundding box by bipartite matching algorithm.
Y
yuyang18 已提交
907

908
    2. Compute confidence for mining hard examples
Y
yuyang18 已提交
909

910
      2.1. Get the target label based on matched indices.
Y
yuyang18 已提交
911

912
      2.2. Compute confidence loss.
Y
yuyang18 已提交
913

914 915
    3. Apply hard example mining to get the negative example indices and update
       the matched indices.
Y
yuyang18 已提交
916

917
    4. Assign classification and regression targets
Y
yuyang18 已提交
918

919
      4.1. Encoded bbox according to the prior boxes.
Y
yuyang18 已提交
920

921
      4.2. Assign regression targets.
Y
yuyang18 已提交
922

923
      4.3. Assign classification targets.
Y
yuyang18 已提交
924

925
    5. Compute the overall objective loss.
Y
yuyang18 已提交
926

927
      5.1 Compute confidence loss.
Y
yuyang18 已提交
928

929
      5.1 Compute localization loss.
Y
yuyang18 已提交
930

931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953
      5.3 Compute the overall weighted loss.

    Args:
        location (Variable): The location predictions are a 3D Tensor with
            shape [N, Np, 4], N is the batch size, Np is total number of
            predictions for each instance. 4 is the number of coordinate values,
            the layout is [xmin, ymin, xmax, ymax].
        confidence (Variable): The confidence predictions are a 3D Tensor
            with shape [N, Np, C], N and Np are the same as they are in
            `location`, C is the class number.
        gt_box (Variable): The ground-truth boudding boxes (bboxes) are a 2D
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
        gt_label (Variable): The ground-truth labels are a 2D LoDTensor
            with shape [Ng, 1].
        prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4].
        prior_box_var (Variable): The variance of prior boxes are a 2D Tensor
            with shape [Np, 4].
        background_label (int): The index of background label, 0 by default.
        overlap_threshold (float): If match_type is 'per_prediction', use
            `overlap_threshold` to determine the extra matching bboxes when
             finding matched boxes. 0.5 by default.
        neg_pos_ratio (float): The ratio of the negative boxes to the positive
954
            boxes, used only when mining_type is 'max_negative', 3.0 by defalut.
955
        neg_overlap (float): The negative overlap upper bound for the unmatched
956
            predictions. Use only when mining_type is 'max_negative',
957 958 959 960
            0.5 by default.
        loc_loss_weight (float): Weight for localization loss, 1.0 by default.
        conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
        match_type (str): The type of matching method during training, should
961
            be 'bipartite' or 'per_prediction', 'per_prediction' by defalut.
962 963
        mining_type (str): The hard example mining type, should be 'hard_example'
            or 'max_negative', now only support `max_negative`.
964
        normalize (bool): Whether to normalize the SSD loss by the total number
Y
yuyang18 已提交
965
            of output locations, True by default.
966 967
        sample_size (int): The max sample size of negative box, used only when
            mining_type is 'hard_example'.
968 969

    Returns:
Y
yuyang18 已提交
970 971
        The weighted sum of the localization loss and confidence loss, with \
        shape [N * Np, 1], N and Np are the same as they are in `location`.
972 973

    Raises:
Y
yuyang18 已提交
974 975
        ValueError: If mining_type is 'hard_example', now only support mining \
        type of `max_negative`.
Y
yuyang18 已提交
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994

    Examples:
        >>> pb = fluid.layers.data(
        >>>                   name='prior_box',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> pbv = fluid.layers.data(
        >>>                   name='prior_box_var',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> loc = fluid.layers.data(name='target_box', shape=[10, 4], dtype='float32')
        >>> scores = fluid.layers.data(name='scores', shape=[10, 21], dtype='float32')
        >>> gt_box = fluid.layers.data(
        >>>         name='gt_box', shape=[4], lod_level=1, dtype='float32')
        >>> gt_label = fluid.layers.data(
        >>>         name='gt_label', shape=[1], lod_level=1, dtype='float32')
        >>> loss = fluid.layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
995 996 997 998 999 1000 1001
    """

    helper = LayerHelper('ssd_loss', **locals())
    if mining_type != 'max_negative':
        raise ValueError("Only support mining_type == max_negative now.")

    num, num_prior, num_class = confidence.shape
G
merge  
gongweibao 已提交
1002
    conf_shape = nn.shape(confidence)
1003 1004

    def __reshape_to_2d(var):
1005
        return nn.flatten(x=var, axis=2)
1006 1007 1008 1009 1010

    # 1. Find matched boundding box by prior box.
    #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
    iou = iou_similarity(x=gt_box, y=prior_box)
    #   1.2 Compute matched boundding box by bipartite matching algorithm.
1011 1012
    matched_indices, matched_dist = bipartite_match(iou, match_type,
                                                    overlap_threshold)
1013 1014 1015

    # 2. Compute confidence for mining hard examples
    # 2.1. Get the target label based on matched indices
1016 1017
    gt_label = nn.reshape(
        x=gt_label, shape=(len(gt_label.shape) - 1) * (0, ) + (-1, 1))
1018
    gt_label.stop_gradient = True
1019 1020 1021 1022 1023 1024 1025
    target_label, _ = target_assign(
        gt_label, matched_indices, mismatch_value=background_label)
    # 2.2. Compute confidence loss.
    # Reshape confidence to 2D tensor.
    confidence = __reshape_to_2d(confidence)
    target_label = tensor.cast(x=target_label, dtype='int64')
    target_label = __reshape_to_2d(target_label)
1026
    target_label.stop_gradient = True
1027 1028
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    # 3. Mining hard examples
G
merge  
gongweibao 已提交
1029
    actual_shape = nn.slice(conf_shape, axes=[0], starts=[0], ends=[2])
1030
    actual_shape.stop_gradient = True
1031
    conf_loss = nn.reshape(
1032
        x=conf_loss, shape=(num, num_prior), actual_shape=actual_shape)
1033
    conf_loss.stop_gradient = True
X
Xin Pan 已提交
1034
    neg_indices = helper.create_variable_for_type_inference(dtype='int32')
1035
    dtype = matched_indices.dtype
X
Xin Pan 已提交
1036 1037
    updated_matched_indices = helper.create_variable_for_type_inference(
        dtype=dtype)
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051
    helper.append_op(
        type='mine_hard_examples',
        inputs={
            'ClsLoss': conf_loss,
            'LocLoss': None,
            'MatchIndices': matched_indices,
            'MatchDist': matched_dist,
        },
        outputs={
            'NegIndices': neg_indices,
            'UpdatedMatchIndices': updated_matched_indices
        },
        attrs={
            'neg_pos_ratio': neg_pos_ratio,
B
Bai Yifan 已提交
1052
            'neg_dist_threshold': neg_overlap,
1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077
            'mining_type': mining_type,
            'sample_size': sample_size,
        })

    # 4. Assign classification and regression targets
    # 4.1. Encoded bbox according to the prior boxes.
    encoded_bbox = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=gt_box,
        code_type='encode_center_size')
    # 4.2. Assign regression targets
    target_bbox, target_loc_weight = target_assign(
        encoded_bbox, updated_matched_indices, mismatch_value=background_label)
    # 4.3. Assign classification targets
    target_label, target_conf_weight = target_assign(
        gt_label,
        updated_matched_indices,
        negative_indices=neg_indices,
        mismatch_value=background_label)

    # 5. Compute loss.
    # 5.1 Compute confidence loss.
    target_label = __reshape_to_2d(target_label)
    target_label = tensor.cast(x=target_label, dtype='int64')
1078

1079 1080 1081 1082
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    target_conf_weight = __reshape_to_2d(target_conf_weight)
    conf_loss = conf_loss * target_conf_weight

1083 1084 1085 1086
    # the target_label and target_conf_weight do not have gradient.
    target_label.stop_gradient = True
    target_conf_weight.stop_gradient = True

1087 1088 1089 1090 1091 1092 1093 1094
    # 5.2 Compute regression loss.
    location = __reshape_to_2d(location)
    target_bbox = __reshape_to_2d(target_bbox)

    loc_loss = nn.smooth_l1(location, target_bbox)
    target_loc_weight = __reshape_to_2d(target_loc_weight)
    loc_loss = loc_loss * target_loc_weight

1095 1096 1097 1098
    # the target_bbox and target_loc_weight do not have gradient.
    target_bbox.stop_gradient = True
    target_loc_weight.stop_gradient = True

1099 1100
    # 5.3 Compute overall weighted loss.
    loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
1101
    # reshape to [N, Np], N is the batch size and Np is the prior box number.
1102
    loss = nn.reshape(x=loss, shape=(num, num_prior), actual_shape=actual_shape)
1103 1104 1105 1106 1107
    loss = nn.reduce_sum(loss, dim=1, keep_dim=True)
    if normalize:
        normalizer = nn.reduce_sum(target_loc_weight)
        loss = loss / normalizer

1108
    return loss
C
chengduoZH 已提交
1109 1110


1111 1112 1113 1114
def prior_box(input,
              image,
              min_sizes,
              max_sizes=None,
1115
              aspect_ratios=[1.],
1116 1117 1118 1119 1120
              variance=[0.1, 0.1, 0.2, 0.2],
              flip=False,
              clip=False,
              steps=[0.0, 0.0],
              offset=0.5,
1121 1122
              name=None,
              min_max_aspect_ratios_order=False):
1123
    """
Q
update  
qiaolongfei 已提交
1124
    **Prior Box Operator**
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135

    Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

    Args:
       input(Variable): The Input Variables, the format is NCHW.
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
1136
       min_sizes(list|tuple|float value): min sizes of generated prior boxes.
1137 1138
       max_sizes(list|tuple|None): max sizes of generated prior boxes.
            Default: None.
1139 1140
       aspect_ratios(list|tuple|float value): the aspect ratios of generated
            prior boxes. Default: [1.].
1141 1142 1143 1144
       variance(list|tuple): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
1145
       step(list|turple): Prior boxes step across width and height, If
1146
            step[0] == 0.0/step[1] == 0.0, the prior boxes step across
1147 1148
            height/weight of the input will be automatically calculated.
            Default: [0., 0.]
1149 1150
       offset(float): Prior boxes center offset. Default: 0.5
       name(str): Name of the prior box op. Default: None.
1151
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1152
            in order of [min, max, aspect_ratios], which is consistent with
1153 1154 1155
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the final
            detection results. Default: False.
1156 1157

    Returns:
Q
update  
qiaolongfei 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170
        tuple: A tuple with two Variable (boxes, variances)

        boxes: the output prior boxes of PriorBox.
        The layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input,
        num_priors is the total
        box count of each position of input.

        variances: the expanded variances of PriorBox.
        The layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_priors is the total
        box count of each position of input
1171 1172 1173 1174


    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1175 1176 1177 1178 1179 1180 1181

            box, var = fluid.layers.prior_box(
                input=conv1,
                image=images,
                min_sizes=[100.],
                flip=True,
                clip=True)
1182 1183 1184 1185
    """
    helper = LayerHelper("prior_box", **locals())
    dtype = helper.input_dtype()

1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(min_sizes):
        min_sizes = [min_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    min_sizes = list(map(float, min_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    steps = list(map(float, steps))

1201 1202 1203 1204 1205 1206 1207 1208
    attrs = {
        'min_sizes': min_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'flip': flip,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
1209 1210
        'offset': offset,
        'min_max_aspect_ratios_order': min_max_aspect_ratios_order
1211 1212
    }
    if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
1213 1214
        if not _is_list_or_tuple_(max_sizes):
            max_sizes = [max_sizes]
1215 1216
        attrs['max_sizes'] = max_sizes

X
Xin Pan 已提交
1217 1218
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230
    helper.append_op(
        type="prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


R
ruri 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239
def density_prior_box(input,
                      image,
                      densities=None,
                      fixed_sizes=None,
                      fixed_ratios=None,
                      variance=[0.1, 0.1, 0.2, 0.2],
                      clip=False,
                      steps=[0.0, 0.0],
                      offset=0.5,
1240
                      flatten_to_2d=False,
R
ruri 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276
                      name=None):
    """
    **Density Prior Box Operator**

    Generate density prior boxes for SSD(Single Shot MultiBox Detector) 
    algorithm. Each position of the input produce N prior boxes, N is 
    determined by the count of densities, fixed_sizes and fixed_ratios. 
    Boxes center at grid points around each input position is generated by 
    this operator, and the grid points is determined by densities and 
    the count of density prior box is determined by fixed_sizes and fixed_ratios. 
    Obviously, the number of fixed_sizes is equal to the number of densities.
    For densities_i in densities:
    N_density_prior_box =sum(N_fixed_ratios * densities_i^2),

    Args:
       input(Variable): The Input Variables, the format is NCHW.
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
       densities(list|tuple|None): the densities of generated density prior 
            boxes, this attribute should be a list or tuple of integers. 
            Default: None.
       fixed_sizes(list|tuple|None): the fixed sizes of generated density
            prior boxes, this attribute should a list or tuple of same 
            length with :attr:`densities`. Default: None.
       fixed_ratios(list|tuple|None): the fixed ratios of generated density
            prior boxes, if this attribute is not set and :attr:`densities`
            and :attr:`fix_sizes` is set, :attr:`aspect_ratios` will be used
            to generate density prior boxes.
       variance(list|tuple): the variances to be encoded in density prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       step(list|turple): Prior boxes step across width and height, If
            step[0] == 0.0/step[1] == 0.0, the density prior boxes step across
            height/weight of the input will be automatically calculated.
            Default: [0., 0.]
       offset(float): Prior boxes center offset. Default: 0.5
1277 1278
       flatten_to_2d(bool): Whether to flatten output prior boxes and variance
           to 2D shape, the second dim is 4. Default: False.
R
ruri 已提交
1279 1280 1281 1282 1283 1284
       name(str): Name of the density prior box op. Default: None.

    Returns:
        tuple: A tuple with two Variable (boxes, variances)

        boxes: the output density prior boxes of PriorBox.
1285 1286 1287 1288
            The layout is [H, W, num_priors, 4] when flatten_to_2d is False.
            The layout is [H * W * num_priors, 4] when flatten_to_2d is True.
            H is the height of input, W is the width of input,
            num_priors is the total box count of each position of input.
R
ruri 已提交
1289 1290

        variances: the expanded variances of PriorBox.
1291 1292 1293 1294
            The layout is [H, W, num_priors, 4] when flatten_to_2d is False.
            The layout is [H * W * num_priors, 4] when flatten_to_2d is True.
            H is the height of input, W is the width of input
            num_priors is the total box count of each position of input.
R
ruri 已提交
1295 1296 1297 1298 1299 1300 1301 1302


    Examples:
        .. code-block:: python

            box, var = fluid.layers.density_prior_box(
                input=conv1,
                image=images,
1303 1304 1305 1306 1307
                densities=[4, 2, 1],
                fixed_sizes=[32.0, 64.0, 128.0],
                fixed_ratios=[1.],
                clip=True,
                flatten_to_2d=True)
R
ruri 已提交
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
    """
    helper = LayerHelper("density_prior_box", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(densities):
        raise TypeError('densities should be a list or a tuple or None.')
    if not _is_list_or_tuple_(fixed_sizes):
        raise TypeError('fixed_sizes should be a list or a tuple or None.')
    if not _is_list_or_tuple_(fixed_ratios):
        raise TypeError('fixed_ratios should be a list or a tuple or None.')
    if len(densities) != len(fixed_sizes):
        raise ValueError('densities and fixed_sizes length should be euqal.')
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    densities = list(map(int, densities))
    fixed_sizes = list(map(float, fixed_sizes))
    fixed_ratios = list(map(float, fixed_ratios))
    steps = list(map(float, steps))

    attrs = {
        'variances': variance,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
        'offset': offset,
1338 1339 1340 1341
        'densities': densities,
        'fixed_sizes': fixed_sizes,
        'fixed_ratios': fixed_ratios,
        'flatten_to_2d': flatten_to_2d,
R
ruri 已提交
1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
    }
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
    helper.append_op(
        type="density_prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


C
chengduoZH 已提交
1357
def multi_box_head(inputs,
C
chengduoZH 已提交
1358 1359
                   image,
                   base_size,
C
chengduoZH 已提交
1360
                   num_classes,
C
chengduoZH 已提交
1361
                   aspect_ratios,
1362 1363
                   min_ratio=None,
                   max_ratio=None,
C
chengduoZH 已提交
1364 1365
                   min_sizes=None,
                   max_sizes=None,
C
chengduoZH 已提交
1366 1367 1368 1369
                   steps=None,
                   step_w=None,
                   step_h=None,
                   offset=0.5,
1370 1371
                   variance=[0.1, 0.1, 0.2, 0.2],
                   flip=True,
C
chengduoZH 已提交
1372
                   clip=False,
C
chengduoZH 已提交
1373
                   kernel_size=1,
C
chengduoZH 已提交
1374
                   pad=0,
C
chengduoZH 已提交
1375
                   stride=1,
1376 1377
                   name=None,
                   min_max_aspect_ratios_order=False):
C
chengduoZH 已提交
1378
    """
C
chengduoZH 已提交
1379 1380
    Generate prior boxes for SSD(Single Shot MultiBox Detector)
    algorithm. The details of this algorithm, please refer the
Q
update  
qiaolongfei 已提交
1381
    section 2.2 of SSD paper `SSD: Single Shot MultiBox Detector
C
chengduoZH 已提交
1382
    <https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
1383 1384

    Args:
1385
       inputs(list|tuple): The list of input Variables, the format
C
chengduoZH 已提交
1386
            of all Variables is NCHW.
C
chengduoZH 已提交
1387 1388
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
C
chengduoZH 已提交
1389 1390
       base_size(int): the base_size is used to get min_size
            and max_size according to min_ratio and max_ratio.
C
chengduoZH 已提交
1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412
       num_classes(int): The number of classes.
       aspect_ratios(list|tuple): the aspect ratios of generated prior
            boxes. The length of input and aspect_ratios must be equal.
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       min_sizes(list|tuple|None): If `len(inputs) <=2`,
            min_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       max_sizes(list|tuple|None): If `len(inputs) <=2`,
            max_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       steps(list|tuple): If step_w and step_h are the same,
            step_w and step_h can be replaced by steps.
       step_w(list|tuple): Prior boxes step
            across width. If step_w[i] == 0.0, the prior boxes step
            across width of the inputs[i] will be automatically
            calculated. Default: None.
       step_h(list|tuple): Prior boxes step across height, If
            step_h[i] == 0.0, the prior boxes step across height of
            the inputs[i] will be automatically calculated. Default: None.
       offset(float): Prior boxes center offset. Default: 0.5
       variance(list|tuple): the variances to be encoded in prior boxes.
1413
            Default:[0.1, 0.1, 0.2, 0.2].
C
chengduoZH 已提交
1414 1415 1416 1417 1418 1419
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       kernel_size(int): The kernel size of conv2d. Default: 1.
       pad(int|list|tuple): The padding of conv2d. Default:0.
       stride(int|list|tuple): The stride of conv2d. Default:1,
       name(str): Name of the prior box layer. Default: None.
1420
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1421
            in order of [min, max, aspect_ratios], which is consistent with
1422 1423 1424
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the fininal
            detection results. Default: False.
C
chengduoZH 已提交
1425 1426

    Returns:
Q
update  
qiaolongfei 已提交
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
        tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances)

        mbox_loc: The predicted boxes' location of the inputs. The layout
        is [N, H*W*Priors, 4]. where Priors is the number of predicted
        boxes each position of each input.

        mbox_conf: The predicted boxes' confidence of the inputs. The layout
        is [N, H*W*Priors, C]. where Priors is the number of predicted boxes
        each position of each input and C is the number of Classes.

        boxes: the output prior boxes of PriorBox. The layout is [num_priors, 4].
        num_priors is the total box count of each position of inputs.

        variances: the expanded variances of PriorBox. The layout is
        [num_priors, 4]. num_priors is the total box count of each position of inputs
C
chengduoZH 已提交
1442

C
chengduoZH 已提交
1443 1444 1445

    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1446 1447

          mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
C
chengduoZH 已提交
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
            inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
            image=images,
            num_classes=21,
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
C
chengduoZH 已提交
1458 1459
    """

C
chengduoZH 已提交
1460
    def _reshape_with_axis_(input, axis=1):
1461
        out = nn.flatten(x=input, axis=axis)
C
chengduoZH 已提交
1462
        return out
1463

1464 1465
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))
1466

C
chengduoZH 已提交
1467 1468 1469 1470
    def _is_list_or_tuple_and_equal(data, length, err_info):
        if not (_is_list_or_tuple_(data) and len(data) == length):
            raise ValueError(err_info)

1471 1472
    if not _is_list_or_tuple_(inputs):
        raise ValueError('inputs should be a list or tuple.')
C
chengduoZH 已提交
1473

C
chengduoZH 已提交
1474 1475 1476 1477 1478
    num_layer = len(inputs)

    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
1479
    elif min_sizes is None and max_sizes is None:
C
chengduoZH 已提交
1480 1481 1482
        min_sizes = []
        max_sizes = []
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
M
minqiyang 已提交
1483
        for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
C
chengduoZH 已提交
1484 1485 1486 1487 1488
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511
    if aspect_ratios:
        _is_list_or_tuple_and_equal(
            aspect_ratios, num_layer,
            'aspect_ratios should be list or tuple, and the length of inputs '
            'and aspect_ratios should be the same.')
    if step_h:
        _is_list_or_tuple_and_equal(
            step_h, num_layer,
            'step_h should be list or tuple, and the length of inputs and '
            'step_h should be the same.')
    if step_w:
        _is_list_or_tuple_and_equal(
            step_w, num_layer,
            'step_w should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
    if steps:
        _is_list_or_tuple_and_equal(
            steps, num_layer,
            'steps should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
        step_w = steps
        step_h = steps

C
chengduoZH 已提交
1512 1513
    mbox_locs = []
    mbox_confs = []
C
chengduoZH 已提交
1514 1515
    box_results = []
    var_results = []
C
chengduoZH 已提交
1516 1517
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
C
chengduoZH 已提交
1518 1519
        max_size = max_sizes[i]

1520
        if not _is_list_or_tuple_(min_size):
C
chengduoZH 已提交
1521
            min_size = [min_size]
C
chengduoZH 已提交
1522 1523
        if not _is_list_or_tuple_(max_size):
            max_size = [max_size]
C
chengduoZH 已提交
1524 1525 1526 1527

        aspect_ratio = []
        if aspect_ratios is not None:
            aspect_ratio = aspect_ratios[i]
1528
            if not _is_list_or_tuple_(aspect_ratio):
C
chengduoZH 已提交
1529
                aspect_ratio = [aspect_ratio]
1530
        step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0]
C
chengduoZH 已提交
1531

1532
        box, var = prior_box(input, image, min_size, max_size, aspect_ratio,
1533 1534
                             variance, flip, clip, step, offset, None,
                             min_max_aspect_ratios_order)
C
chengduoZH 已提交
1535 1536 1537 1538 1539

        box_results.append(box)
        var_results.append(var)

        num_boxes = box.shape[2]
C
chengduoZH 已提交
1540

1541
        # get loc
Y
Yuan Gao 已提交
1542
        num_loc_output = num_boxes * 4
1543
        mbox_loc = nn.conv2d(
C
chengduoZH 已提交
1544
            input=input,
1545 1546 1547 1548 1549
            num_filters=num_loc_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)

1550
        mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1])
1551
        compile_shape = [
1552
            mbox_loc.shape[0], cpt.floor_division(
M
minqiyang 已提交
1553
                mbox_loc.shape[1] * mbox_loc.shape[2] * mbox_loc.shape[3], 4), 4
Y
Yuan Gao 已提交
1554
        ]
1555 1556 1557
        run_shape = tensor.assign(numpy.array([0, -1, 4]).astype("int32"))
        mbox_loc_flatten = nn.reshape(
            mbox_loc, shape=compile_shape, actual_shape=run_shape)
Y
Yuan Gao 已提交
1558
        mbox_locs.append(mbox_loc_flatten)
C
chengduoZH 已提交
1559

1560
        # get conf
C
chengduoZH 已提交
1561
        num_conf_output = num_boxes * num_classes
1562
        conf_loc = nn.conv2d(
C
chengduoZH 已提交
1563
            input=input,
1564 1565 1566 1567
            num_filters=num_conf_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)
1568
        conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1])
1569 1570
        new_shape = [0, -1, num_classes]
        compile_shape = [
1571 1572 1573
            conf_loc.shape[0],
            cpt.floor_division(conf_loc.shape[1] * conf_loc.shape[2] *
                               conf_loc.shape[3], num_classes), num_classes
Y
Yuan Gao 已提交
1574
        ]
1575 1576 1577 1578
        run_shape = tensor.assign(
            numpy.array([0, -1, num_classes]).astype("int32"))
        conf_loc_flatten = nn.reshape(
            conf_loc, shape=compile_shape, actual_shape=run_shape)
Y
Yuan Gao 已提交
1579
        mbox_confs.append(conf_loc_flatten)
C
chengduoZH 已提交
1580

C
chengduoZH 已提交
1581 1582 1583
    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
Y
Yuan Gao 已提交
1584 1585
        mbox_locs_concat = mbox_locs[0]
        mbox_confs_concat = mbox_confs[0]
C
chengduoZH 已提交
1586 1587 1588 1589 1590 1591 1592 1593 1594
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))

        box = tensor.concat(reshaped_boxes)
        var = tensor.concat(reshaped_vars)
Y
Yuan Gao 已提交
1595 1596
        mbox_locs_concat = tensor.concat(mbox_locs, axis=1)
        mbox_confs_concat = tensor.concat(mbox_confs, axis=1)
C
chengduoZH 已提交
1597

1598 1599
    box.stop_gradient = True
    var.stop_gradient = True
Y
Yuan Gao 已提交
1600
    return mbox_locs_concat, mbox_confs_concat, box, var
1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620


def anchor_generator(input,
                     anchor_sizes=None,
                     aspect_ratios=None,
                     variance=[0.1, 0.1, 0.2, 0.2],
                     stride=None,
                     offset=0.5,
                     name=None):
    """
    **Anchor generator operator**

    Generate anchors for Faster RCNN algorithm.
    Each position of the input produce N anchors, N =
    size(anchor_sizes) * size(aspect_ratios). The order of generated anchors
    is firstly aspect_ratios loop then anchor_sizes loop.

    Args:
       input(Variable): The input feature map, the format is NCHW.
       anchor_sizes(list|tuple|float): The anchor sizes of generated anchors,
H
haowang101779990 已提交
1621 1622
                                       given in absolute pixels e.g. [64., 128., 256., 512.].
                                       For instance, the anchor size of 64 means the area of this anchor equals to 64**2.
1623
       aspect_ratios(list|tuple|float): The height / width ratios of generated
H
haowang101779990 已提交
1624
                                        anchors, e.g. [0.5, 1.0, 2.0].
1625
       variance(list|tuple): The variances to be used in box regression deltas.
H
haowang101779990 已提交
1626 1627
                             Default:[0.1, 0.1, 0.2, 0.2].
       stride(list|turple): The anchors stride across width and height,e.g. [16.0, 16.0]
1628 1629 1630 1631
       offset(float): Prior boxes center offset. Default: 0.5
       name(str): Name of the prior box op. Default: None.

    Returns:
H
haowang101779990 已提交
1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644
        Anchors(Variable),Variances(Variable):  
        
              two variables:
        
              - Anchors(Variable): The output anchors with a layout of [H, W, num_anchors, 4]. \
                H is the height of input, W is the width of input, \
                num_anchors is the box count of each position.  \
                Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized. 
              - Variances(Variable): The expanded variances of anchors \
                with a layout of [H, W, num_priors, 4]. \
                H is the height of input, W is the width of input \
                num_anchors is the box count of each position. \
                Each variance is in (xcenter, ycenter, w, h) format.
1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684


    Examples:

        .. code-block:: python

            anchor, var = anchor_generator(
                input=conv1,
                anchor_sizes=[64, 128, 256, 512],
                aspect_ratios=[0.5, 1.0, 2.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
    """
    helper = LayerHelper("anchor_generator", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(anchor_sizes):
        anchor_sizes = [anchor_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(stride) and len(stride) == 2):
        raise ValueError('stride should be a list or tuple ',
                         'with length 2, (stride_width, stride_height).')

    anchor_sizes = list(map(float, anchor_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    stride = list(map(float, stride))

    attrs = {
        'anchor_sizes': anchor_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'stride': stride,
        'offset': offset
    }

X
Xin Pan 已提交
1685 1686
    anchor = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
1687 1688 1689 1690 1691 1692 1693 1694 1695
    helper.append_op(
        type="anchor_generator",
        inputs={"Input": input},
        outputs={"Anchors": anchor,
                 "Variances": var},
        attrs=attrs, )
    anchor.stop_gradient = True
    var.stop_gradient = True
    return anchor, var
1696 1697


W
whs 已提交
1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731
def roi_perspective_transform(input,
                              rois,
                              transformed_height,
                              transformed_width,
                              spatial_scale=1.0):
    """
    ROI perspective transform op.

    Args:
        input (Variable): The input of ROIPerspectiveTransformOp. The format of 
                          input tensor is NCHW. Where N is batch size, C is the
                          number of input channels, H is the height of the feature,
                          and W is the width of the feature.
        rois (Variable):  ROIs (Regions of Interest) to be transformed. It should be
                          a 2-D LoDTensor of shape (num_rois, 8). Given as 
                          [[x1, y1, x2, y2, x3, y3, x4, y4], ...], (x1, y1) is the 
                          top left coordinates, and (x2, y2) is the top right 
                          coordinates, and (x3, y3) is the bottom right coordinates, 
                          and (x4, y4) is the bottom left coordinates.
        transformed_height (integer): The height of transformed output.
        transformed_height (integer): The width of transformed output.
        spatial_scale (float): Spatial scale factor to scale ROI coords. Default: 1.0

    Returns:
        Variable: The output of ROIPerspectiveTransformOp which is a 4-D tensor with shape 
                  (num_rois, channels, transformed_h, transformed_w).

    Examples:
        .. code-block:: python

            out = fluid.layers.roi_perspective_transform(input, rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_perspective_transform', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1732
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745
    helper.append_op(
        type="roi_perspective_transform",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": out},
        attrs={
            "transformed_height": transformed_height,
            "transformed_width": transformed_width,
            "spatial_scale": spatial_scale
        })
    return out


1746 1747
def generate_proposal_labels(rpn_rois,
                             gt_classes,
1748
                             is_crowd,
1749
                             gt_boxes,
1750
                             im_info,
1751 1752 1753 1754 1755 1756
                             batch_size_per_im=256,
                             fg_fraction=0.25,
                             fg_thresh=0.25,
                             bg_thresh_hi=0.5,
                             bg_thresh_lo=0.0,
                             bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
1757 1758
                             class_nums=None,
                             use_random=True):
1759
    """
1760
    ** Generate Proposal Labels of Faster-RCNN **
B
buxingyuan 已提交
1761
    This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth,
B
buxingyuan 已提交
1762
    to sample foreground boxes and background boxes, and compute loss target.
B
buxingyuan 已提交
1763 1764 1765

    RpnRois is the output boxes of RPN and was processed by generate_proposal_op, these boxes
    were combined with groundtruth boxes and sampled according to batch_size_per_im and fg_fraction,
B
buxingyuan 已提交
1766
    If an instance with a groundtruth overlap greater than fg_thresh, then it was considered as a foreground sample.
B
buxingyuan 已提交
1767 1768
    If an instance with a groundtruth overlap greater than bg_thresh_lo and lower than bg_thresh_hi,
    then it was considered as a background sample.
B
buxingyuan 已提交
1769
    After all foreground and background boxes are chosen (so called Rois),
B
buxingyuan 已提交
1770
    then we apply random sampling to make sure
B
buxingyuan 已提交
1771
    the number of foreground boxes is no more than batch_size_per_im * fg_fraction.
B
buxingyuan 已提交
1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790

    For each box in Rois, we assign the classification (class label) and regression targets (box label) to it.
    Finally BboxInsideWeights and BboxOutsideWeights are used to specify whether it would contribute to training loss.

    Args:
        rpn_rois(Variable): A 2-D LoDTensor with shape [N, 4]. N is the number of the GenerateProposalOp's output, each element is a bounding box with [xmin, ymin, xmax, ymax] format.
        gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a class label of groundtruth.
        is_crowd(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a flag indicates whether a groundtruth is crowd.
        gt_boxes(Variable): A 2-D LoDTensor with shape [M, 4]. M is the number of groundtruth, each element is a bounding box with [xmin, ymin, xmax, ymax] format.
        im_info(Variable): A 2-D LoDTensor with shape [B, 3]. B is the number of input images, each element consists of im_height, im_width, im_scale.

        batch_size_per_im(int): Batch size of rois per images.
        fg_fraction(float): Foreground fraction in total batch_size_per_im.
        fg_thresh(float): Overlap threshold which is used to chose foreground sample.
        bg_thresh_hi(float): Overlap threshold upper bound which is used to chose background sample.
        bg_thresh_lo(float): Overlap threshold lower bound which is used to chose background sample.
        bbox_reg_weights(list|tuple): Box regression weights.
        class_nums(int): Class number.
        use_random(bool): Use random sampling to choose foreground and background boxes.
1791 1792 1793 1794
    """

    helper = LayerHelper('generate_proposal_labels', **locals())

X
Xin Pan 已提交
1795 1796 1797 1798 1799 1800 1801 1802 1803
    rois = helper.create_variable_for_type_inference(dtype=rpn_rois.dtype)
    labels_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    bbox_targets = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_inside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_outside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
1804 1805 1806 1807 1808 1809

    helper.append_op(
        type="generate_proposal_labels",
        inputs={
            'RpnRois': rpn_rois,
            'GtClasses': gt_classes,
1810
            'IsCrowd': is_crowd,
1811
            'GtBoxes': gt_boxes,
1812
            'ImInfo': im_info
1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
        },
        outputs={
            'Rois': rois,
            'LabelsInt32': labels_int32,
            'BboxTargets': bbox_targets,
            'BboxInsideWeights': bbox_inside_weights,
            'BboxOutsideWeights': bbox_outside_weights
        },
        attrs={
            'batch_size_per_im': batch_size_per_im,
            'fg_fraction': fg_fraction,
            'fg_thresh': fg_thresh,
            'bg_thresh_hi': bg_thresh_hi,
            'bg_thresh_lo': bg_thresh_lo,
            'bbox_reg_weights': bbox_reg_weights,
1828 1829
            'class_nums': class_nums,
            'use_random': use_random
1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840
        })

    rois.stop_gradient = True
    labels_int32.stop_gradient = True
    bbox_targets.stop_gradient = True
    bbox_inside_weights.stop_gradient = True
    bbox_outside_weights.stop_gradient = True

    return rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights


1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974
def generate_mask_labels(im_info, gt_classes, is_crowd, gt_segms, rois,
                         labels_int32, num_classes, resolution):
    """
    ** Generate Mask Labels for Mask-RCNN **

    This operator can be, for given the RoIs and corresponding labels,
    to sample foreground RoIs. This mask branch also has
    a :math: `K \\times M^{2}` dimensional output targets for each foreground
    RoI, which encodes K binary masks of resolution M x M, one for each of the
    K classes. This mask targets are used to compute loss of mask branch.

    Please note, the data format of groud-truth segmentation, assumed the
    segmentations are as follows. The first instance has two gt objects.
    The second instance has one gt object, this object has two gt segmentations.

        .. code-block:: python

            #[
            #  [[[229.14, 370.9, 229.14, 370.9, ...]],
            #   [[343.7, 139.85, 349.01, 138.46, ...]]], # 0-th instance
            #  [[[500.0, 390.62, ...],[115.48, 187.86, ...]]] # 1-th instance
            #]

            batch_masks = []
            for semgs in batch_semgs:
                gt_masks = []
                for semg in semgs:
                    gt_segm = []
                    for polys in semg:
                        gt_segm.append(np.array(polys).reshape(-1, 2))
                    gt_masks.append(gt_segm)
                batch_masks.append(gt_masks)
            
            
            place = fluid.CPUPlace()
            feeder = fluid.DataFeeder(place=place, feed_list=feeds)
            feeder.feed(batch_masks)

    Args:
        im_info(Variable): A 2-D Tensor with shape [N, 3]. N is the batch size,
            each element is [height, width, scale] of image. Image scale is
            target_size) / original_size.
        gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the total
            number of ground-truth, each element is a class label.
        is_crowd(Variable): A 2-D LoDTensor with shape as gt_classes,
            each element is a flag indicating whether a groundtruth is crowd.
        gt_segms(Variable): This input is a 2D LoDTensor with shape [S, 2],
            it's LoD level is 3. Usually users do not needs to understand LoD,
            The users should return correct data format in reader.



            The LoD[0] represents the gt objects number of
            each instance. LoD[1] represents the segmentation counts of each
            objects. LoD[2] represents the polygons number of each segmentation.
            S the total number of polygons coordinate points. Each element is
            (x, y) coordinate points.
        rois(Variable): A 2-D LoDTensor with shape [R, 4]. R is the total
            number of RoIs, each element is a bounding box with
            (xmin, ymin, xmax, ymax) format in the range of original image.
        labels_int32(Variable): A 2-D LoDTensor in shape of [R, 1] with type
            of int32. R is the same as it in `rois`. Each element repersents
            a class label of a RoI.
        num_classes(int): Class number.
        resolution(int): Resolution of mask predictions.

    Returns:
        mask_rois (Variable):  A 2D LoDTensor with shape [P, 4]. P is the total
            number of sampled RoIs. Each element is a bounding box with
            [xmin, ymin, xmax, ymax] format in range of orignal image size.
        mask_rois_has_mask_int32 (Variable): A 2D LoDTensor with shape [P, 1],
            each element repersents the output mask RoI index with regard to
            to input RoIs.
        mask_int32 (Variable): A 2D LoDTensor with shape [P, K * M * M],
            K is the classes number and M is the resolution of mask predictions.
            Each element repersents the binary mask targets.

    Examples:
        .. code-block:: python

          im_info = fluid.layers.data(name="im_info", shape=[3],
              dtype="float32")
          gt_classes = fluid.layers.data(name="gt_classes", shape=[1],
              dtype="float32", lod_level=1)
          is_crowd = fluid.layers.data(name="is_crowd", shape=[1],
              dtype="float32", lod_level=1)
          gt_masks = fluid.layers.data(name="gt_masks", shape=[2],
              dtype="float32", lod_level=3)
          # rois, labels_int32 can be the output of
          # fluid.layers.generate_proposal_labels.
          mask_rois, mask_index, mask_int32 = fluid.layers.generate_mask_labels(
              im_info=im_info,
              gt_classes=gt_classes,
              is_crowd=is_crowd,
              gt_segms=gt_masks,
              rois=rois,
              labels_int32=labels_int32,
              num_classes=81,
              resolution=14)
    """

    helper = LayerHelper('generate_mask_labels', **locals())

    mask_rois = helper.create_variable_for_type_inference(dtype=rois.dtype)
    roi_has_mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    mask_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)

    helper.append_op(
        type="generate_mask_labels",
        inputs={
            'ImInfo': im_info,
            'GtClasses': gt_classes,
            'IsCrowd': is_crowd,
            'GtSegms': gt_segms,
            'Rois': rois,
            'LabelsInt32': labels_int32
        },
        outputs={
            'MaskRois': mask_rois,
            'RoiHasMaskInt32': roi_has_mask_int32,
            'MaskInt32': mask_int32
        },
        attrs={'num_classes': num_classes,
               'resolution': resolution})

    mask_rois.stop_gradient = True
    roi_has_mask_int32.stop_gradient = True
    mask_int32.stop_gradient = True

    return mask_rois, roi_has_mask_int32, mask_int32


1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986
def generate_proposals(scores,
                       bbox_deltas,
                       im_info,
                       anchors,
                       variances,
                       pre_nms_top_n=6000,
                       post_nms_top_n=1000,
                       nms_thresh=0.5,
                       min_size=0.1,
                       eta=1.0,
                       name=None):
    """
H
haowang101779990 已提交
1987 1988
    **Generate proposal Faster-RCNN**

1989 1990 1991 1992
    This operation proposes RoIs according to each box with their
    probability to be a foreground object and 
    the box can be calculated by anchors. Bbox_deltais and scores
    to be an object are the output of RPN. Final proposals
H
haowang101779990 已提交
1993 1994 1995 1996
    could be used to train detection net.

    For generating proposals, this operation performs following steps:

1997 1998
    1. Transposes and resizes scores and bbox_deltas in size of
       (H*W*A, 1) and (H*W*A, 4)
H
haowang101779990 已提交
1999 2000 2001 2002 2003 2004
    2. Calculate box locations as proposals candidates. 
    3. Clip boxes to image
    4. Remove predicted boxes with small area. 
    5. Apply NMS to get final proposals as output.

    Args:
2005 2006 2007 2008 2009 2010 2011 2012 2013
        scores(Variable): A 4-D Tensor with shape [N, A, H, W] represents
            the probability for each box to be an object.
            N is batch size, A is number of anchors, H and W are height and
            width of the feature map.
        bbox_deltas(Variable): A 4-D Tensor with shape [N, 4*A, H, W]
            represents the differece between predicted box locatoin and
            anchor location.
        im_info(Variable): A 2-D Tensor with shape [N, 3] represents origin
            image information for N batch. Info contains height, width and scale
H
haowang101779990 已提交
2014
            between origin image size and the size of feature map.
2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
        anchors(Variable):   A 4-D Tensor represents the anchors with a layout
            of [H, W, A, 4]. H and W are height and width of the feature map,
            num_anchors is the box count of each position. Each anchor is
            in (xmin, ymin, xmax, ymax) format an unnormalized.
        variances(Variable): The expanded variances of anchors with a layout of
            [H, W, num_priors, 4]. Each variance is in
            (xcenter, ycenter, w, h) format.
        pre_nms_top_n(float): Number of total bboxes to be kept per
            image before NMS. 6000 by default.
        post_nms_top_n(float): Number of total bboxes to be kept per
            image after NMS. 1000 by default.
H
haowang101779990 已提交
2026
        nms_thresh(float): Threshold in NMS, 0.5 by default.
2027 2028 2029 2030
        min_size(float): Remove predicted boxes with either height or
            width < min_size. 0.1 by default.
        eta(float): Apply in adaptive NMS, if adaptive threshold > 0.5,
            adaptive_threshold = adaptive_threshold * eta in each iteration.
2031 2032 2033
    """
    helper = LayerHelper('generate_proposals', **locals())

X
Xin Pan 已提交
2034 2035 2036 2037
    rpn_rois = helper.create_variable_for_type_inference(
        dtype=bbox_deltas.dtype)
    rpn_roi_probs = helper.create_variable_for_type_inference(
        dtype=scores.dtype)
2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059
    helper.append_op(
        type="generate_proposals",
        inputs={
            'Scores': scores,
            'BboxDeltas': bbox_deltas,
            'ImInfo': im_info,
            'Anchors': anchors,
            'Variances': variances
        },
        attrs={
            'pre_nms_topN': pre_nms_top_n,
            'post_nms_topN': post_nms_top_n,
            'nms_thresh': nms_thresh,
            'min_size': min_size,
            'eta': eta
        },
        outputs={'RpnRois': rpn_rois,
                 'RpnRoiProbs': rpn_roi_probs})
    rpn_rois.stop_gradient = True
    rpn_roi_probs.stop_gradient = True

    return rpn_rois, rpn_roi_probs
J
jerrywgz 已提交
2060 2061


J
jerrywgz 已提交
2062
def box_clip(input, im_info, name=None):
J
jerrywgz 已提交
2063 2064
    """
    Clip the box into the size given by im_info
J
jerrywgz 已提交
2065
    For each input box, The formula is given as follows:
2066 2067 2068
        
    .. code-block:: text

J
jerrywgz 已提交
2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079
        xmin = max(min(xmin, im_w - 1), 0)
        ymin = max(min(ymin, im_h - 1), 0) 
        xmax = max(min(xmax, im_w - 1), 0)
        ymax = max(min(ymax, im_h - 1), 0)
    
    where im_w and im_h are computed from im_info:
 
    .. code-block:: text

        im_h = round(height / scale)
        im_w = round(weight / scale)
J
jerrywgz 已提交
2080 2081

    Args:
J
jerrywgz 已提交
2082
        input(variable): The input box, the last dimension is 4.
2083 2084 2085 2086
        im_info(variable): The information of image with shape [N, 3] with 
                            layout (height, width, scale). height and width
                            is the input size and scale is the ratio of input
                            size and original size.
J
jerrywgz 已提交
2087 2088 2089 2090
        name (str): The name of this layer. It is optional.
    
    Returns:
        Variable: The cliped tensor variable.
2091
        
J
jerrywgz 已提交
2092 2093
    Examples:
        .. code-block:: python
2094
        
J
jerrywgz 已提交
2095 2096 2097 2098
            boxes = fluid.layers.data(
                name='data', shape=[8, 4], dtype='float32', lod_level=1)
            im_info = fluid.layers.data(name='im_info', shape=[3])
            out = fluid.layers.box_clip(
J
jerrywgz 已提交
2099
                input=boxes, im_info=im_info, inplace=True)
J
jerrywgz 已提交
2100 2101 2102
    """

    helper = LayerHelper("box_clip", **locals())
J
jerrywgz 已提交
2103
    output = helper.create_variable_for_type_inference(dtype=input.dtype)
2104
    inputs = {"Input": input, "ImInfo": im_info}
J
jerrywgz 已提交
2105
    helper.append_op(type="box_clip", inputs=inputs, outputs={"Output": output})
J
jerrywgz 已提交
2106

2107 2108
    return output

J
jerrywgz 已提交
2109

J
jerrywgz 已提交
2110 2111 2112 2113 2114
def multiclass_nms(bboxes,
                   scores,
                   score_threshold,
                   nms_top_k,
                   keep_top_k,
J
jerrywgz 已提交
2115
                   nms_threshold=0.3,
J
jerrywgz 已提交
2116 2117
                   normalized=True,
                   nms_eta=1.,
2118 2119
                   background_label=0,
                   name=None):
J
jerrywgz 已提交
2120
    """
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181
    **Multiclass NMS**
    
    This operator is to do multi-class non maximum suppression (NMS) on
    boxes and scores.

    In the NMS step, this operator greedily selects a subset of detection bounding
    boxes that have high scores larger than score_threshold, if providing this
    threshold, then selects the largest nms_top_k confidences scores if nms_top_k
    is larger than -1. Then this operator pruns away boxes that have high IOU
    (intersection over union) overlap with already selected boxes by adaptive
    threshold NMS based on parameters of nms_threshold and nms_eta.

    Aftern NMS step, at most keep_top_k number of total bboxes are to be kept
    per image if keep_top_k is larger than -1.

    Args:
        bboxes (Variable): Two types of bboxes are supported:
                           1. (Tensor) A 3-D Tensor with shape
                           [N, M, 4 or 8 16 24 32] represents the
                           predicted locations of M bounding bboxes,
                           N is the batch size. Each bounding box has four
                           coordinate values and the layout is 
                           [xmin, ymin, xmax, ymax], when box size equals to 4.
                           2. (LoDTensor) A 3-D Tensor with shape [M, C, 4]
                           M is the number of bounding boxes, C is the 
                           class number   
        scores (Variable): Two types of scores are supported:
                           1. (Tensor) A 3-D Tensor with shape [N, C, M]
                           represents the predicted confidence predictions.
                           N is the batch size, C is the class number, M is 
                           number of bounding boxes. For each category there 
                           are total M scores which corresponding M bounding
                           boxes. Please note, M is equal to the 2nd dimension
                           of BBoxes.
                           2. (LoDTensor) A 2-D LoDTensor with shape [M, C].
                           M is the number of bbox, C is the class number.
                           In this case, input BBoxes should be the second
                           case with shape [M, C, 4].
        background_label (int): The index of background label, the background 
                                label will be ignored. If set to -1, then all
                                categories will be considered. Default: 0
        score_threshold (float): Threshold to filter out bounding boxes with
                                 low confidence score. If not provided, 
                                 consider all boxes.
        nms_top_k (int): Maximum number of detections to be kept according to
                         the confidences aftern the filtering detections based
                         on score_threshold.
        nms_threshold (float): The threshold to be used in NMS. Default: 0.3
        nms_eta (float): The threshold to be used in NMS. Default: 1.0
        keep_top_k (int): Number of total bboxes to be kept per image after NMS
                          step. -1 means keeping all bboxes after NMS step.
        normalized (bool): Whether detections are normalized. Default: True
        name(str): Name of the multiclass nms op. Default: None.

    Returns:
        Out: A 2-D LoDTensor with shape [No, 6] represents the detections.
             Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax]
             or A 2-D LoDTensor with shape [No, 10] represents the detections.
             Each row has 10 values: 
             [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the 
             total number of detections. If there is no detected boxes for all
J
jerrywgz 已提交
2182 2183 2184 2185
             images, lod will be set to {1} and Out only contains one value
             which is -1.
             (After version 1.3, when no boxes detected, the lod is changed 
             from {0} to {1}) 
2186

2187

2188 2189 2190
    Examples:
        .. code-block:: python

2191

2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203
            boxes = fluid.layers.data(name='bboxes', shape=[81, 4],
                                      dtype='float32', lod_level=1)
            scores = fluid.layers.data(name='scores', shape=[81],
                                      dtype='float32', lod_level=1)
            out = fluid.layers.multiclass_nms(bboxes=boxes,
                                              scores=scores,
                                              background_label=0,
                                              score_threshold=0.5,
                                              nms_top_k=400,
                                              nms_threshold=0.3,
                                              keep_top_k=200,
                                              normalized=False)
J
jerrywgz 已提交
2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223
    """
    helper = LayerHelper('multiclass_nms', **locals())

    output = helper.create_variable_for_type_inference(dtype=bboxes.dtype)
    helper.append_op(
        type="multiclass_nms",
        inputs={'BBoxes': bboxes,
                'Scores': scores},
        attrs={
            'background_label': background_label,
            'score_threshold': score_threshold,
            'nms_top_k': nms_top_k,
            'nms_threshold': nms_threshold,
            'nms_eta': nms_eta,
            'keep_top_k': keep_top_k,
            'nms_eta': nms_eta,
            'normalized': normalized
        },
        outputs={'Out': output})
    output.stop_gradient = True
J
jerrywgz 已提交
2224 2225

    return output
2226 2227 2228 2229 2230 2231 2232 2233 2234


def distribute_fpn_proposals(fpn_rois,
                             min_level,
                             max_level,
                             refer_level,
                             refer_scale,
                             name=None):
    """
J
jerrywgz 已提交
2235 2236 2237 2238 2239 2240
    In Feature Pyramid Networks (FPN) models, it is needed to distribute all 
    proposals into different FPN level, with respect to scale of the proposals,
    the referring scale and the referring level. Besides, to restore the order
    of proposals, we return an array which indicates the original index of rois
    in current proposals. To compute FPN level for each roi, the formula is 
    given as follows:
2241
    
J
jerrywgz 已提交
2242
    .. math::
2243

J
jerrywgz 已提交
2244
        roi\_scale &= \sqrt{BBoxArea(fpn\_roi)}
2245

J
jerrywgz 已提交
2246 2247 2248
        level = floor(&\log(\\frac{roi\_scale}{refer\_scale}) + refer\_level)

    where BBoxArea is a function to compute the area of each roi.
2249 2250

    Args:
J
jerrywgz 已提交
2251
        fpn_rois(variable): The input fpn_rois, the second dimension is 4.
2252 2253 2254 2255 2256 2257
        min_level(int): The lowest level of FPN layer where the proposals come 
                        from.
        max_level(int): The highest level of FPN layer where the proposals
                        come from.
        refer_level(int): The referring level of FPN layer with specified scale.
        refer_scale(int): The referring scale of FPN layer with specified level.
J
jerrywgz 已提交
2258 2259
        name(str|None): The name of this operator.        

2260
    Returns:
J
jerrywgz 已提交
2261 2262 2263 2264 2265
        tuple: 
               A tuple(multi_rois, restore_ind) is returned. The multi_rois is 
               a list of segmented tensor variables. The restore_ind is a 2D 
               Tensor with shape [N, 1], N is the number of total rois. It is
               used to restore the order of fpn_rois.
2266 2267 2268 2269 2270 2271 2272

    Examples:
        .. code-block:: python

            fpn_rois = fluid.layers.data(
                name='data', shape=[4], dtype='float32', lod_level=1)
            multi_rois, restore_ind = fluid.layers.distribute_fpn_proposals(
2273 2274 2275
                fpn_rois=fpn_rois,
                min_level=2,
                max_level=5,
2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298
                refer_level=4,
                refer_scale=224)
    """

    helper = LayerHelper('distribute_fpn_proposals', **locals())
    dtype = helper.input_dtype()
    num_lvl = max_level - min_level + 1
    multi_rois = [
        helper.create_variable_for_type_inference(dtype) for i in range(num_lvl)
    ]
    restore_ind = helper.create_variable_for_type_inference(dtype='int32')
    helper.append_op(
        type='distribute_fpn_proposals',
        inputs={'FpnRois': fpn_rois},
        outputs={'MultiFpnRois': multi_rois,
                 'RestoreIndex': restore_ind},
        attrs={
            'min_level': min_level,
            'max_level': max_level,
            'refer_level': refer_level,
            'refer_scale': refer_scale
        })
    return multi_rois, restore_ind
2299 2300


2301
@templatedoc()
J
jerrywgz 已提交
2302 2303 2304 2305 2306 2307
def box_decoder_and_assign(prior_box,
                           prior_box_var,
                           target_box,
                           box_score,
                           box_clip,
                           name=None):
2308 2309 2310 2311 2312 2313 2314
    """
    ${comment}
    Args:
        prior_box(${prior_box_type}): ${prior_box_comment}
        prior_box_var(${prior_box_var_type}): ${prior_box_var_comment}
        target_box(${target_box_type}): ${target_box_comment}
        box_score(${box_score_type}): ${box_score_comment}
J
jerrywgz 已提交
2315
        box_clip(${box_clip_type}): ${box_clip_comment}
J
jerrywgz 已提交
2316
        name(str|None): The name of this operator
2317
    Returns:
J
jerrywgz 已提交
2318 2319 2320 2321 2322 2323 2324
        decode_box(Variable), output_assign_box(Variable):

            two variables:

            - decode_box(${decode_box_type}): ${decode_box_comment}
            - output_assign_box(${output_assign_box_type}): ${output_assign_box_comment}

2325 2326 2327
    Examples:
        .. code-block:: python

J
jerrywgz 已提交
2328 2329 2330 2331 2332 2333 2334 2335
            pb = fluid.layers.data(
                name='prior_box', shape=[20, 4], dtype='float32')
            pbv = fluid.layers.data(
                name='prior_box_var', shape=[1, 4], dtype='float32')
            loc = fluid.layers.data(
                name='target_box', shape=[20, 4*81], dtype='float32')
            scores = fluid.layers.data(
                name='scores', shape=[20, 81], dtype='float32')
J
jerrywgz 已提交
2336
            decoded_box, output_assign_box = fluid.layers.box_decoder_and_assign(
J
jerrywgz 已提交
2337
                pb, pbv, loc, scores, 4.135)
2338 2339 2340 2341

    """
    helper = LayerHelper("box_decoder_and_assign", **locals())

J
jerrywgz 已提交
2342
    decoded_box = helper.create_variable_for_type_inference(
2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356
        dtype=prior_box.dtype)
    output_assign_box = helper.create_variable_for_type_inference(
        dtype=prior_box.dtype)

    helper.append_op(
        type="box_decoder_and_assign",
        inputs={
            "PriorBox": prior_box,
            "PriorBoxVar": prior_box_var,
            "TargetBox": target_box,
            "BoxScore": box_score
        },
        attrs={"box_clip": box_clip},
        outputs={
J
jerrywgz 已提交
2357
            "DecodeBox": decoded_box,
2358 2359
            "OutputAssignBox": output_assign_box
        })
J
jerrywgz 已提交
2360
    return decoded_box, output_assign_box