Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
8ea2288e
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8ea2288e
编写于
2月 12, 2018
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
差异文件
remove conflict
上级
84d9c690
057efd17
变更
52
隐藏空白更改
内联
并排
Showing
52 changed file
with
685 addition
and
207 deletion
+685
-207
cmake/inference_lib.cmake
cmake/inference_lib.cmake
+8
-10
paddle/fluid/framework/op_registry_test.cc
paddle/fluid/framework/op_registry_test.cc
+8
-2
paddle/fluid/framework/operator.cc
paddle/fluid/framework/operator.cc
+14
-2
paddle/fluid/framework/operator.h
paddle/fluid/framework/operator.h
+10
-5
paddle/fluid/framework/operator_test.cc
paddle/fluid/framework/operator_test.cc
+8
-3
paddle/fluid/operators/array_to_lod_tensor_op.cc
paddle/fluid/operators/array_to_lod_tensor_op.cc
+4
-2
paddle/fluid/operators/assign_op.cc
paddle/fluid/operators/assign_op.cc
+4
-2
paddle/fluid/operators/beam_search_decode_op.cc
paddle/fluid/operators/beam_search_decode_op.cc
+4
-2
paddle/fluid/operators/beam_search_op.h
paddle/fluid/operators/beam_search_op.h
+3
-2
paddle/fluid/operators/concat_op.h
paddle/fluid/operators/concat_op.h
+2
-2
paddle/fluid/operators/cond_op.cc
paddle/fluid/operators/cond_op.cc
+1
-1
paddle/fluid/operators/cond_op.h
paddle/fluid/operators/cond_op.h
+3
-2
paddle/fluid/operators/conditional_block_op.cc
paddle/fluid/operators/conditional_block_op.cc
+8
-4
paddle/fluid/operators/create_reader_op.cc
paddle/fluid/operators/create_reader_op.cc
+12
-6
paddle/fluid/operators/feed_op.cc
paddle/fluid/operators/feed_op.cc
+4
-2
paddle/fluid/operators/fetch_op.cc
paddle/fluid/operators/fetch_op.cc
+3
-2
paddle/fluid/operators/fill_constant_op.cc
paddle/fluid/operators/fill_constant_op.cc
+4
-2
paddle/fluid/operators/fill_op.cc
paddle/fluid/operators/fill_op.cc
+4
-2
paddle/fluid/operators/get_places_op.cc
paddle/fluid/operators/get_places_op.cc
+4
-2
paddle/fluid/operators/increment_op.cc
paddle/fluid/operators/increment_op.cc
+3
-2
paddle/fluid/operators/is_empty_op.cc
paddle/fluid/operators/is_empty_op.cc
+3
-2
paddle/fluid/operators/load_combine_op.cc
paddle/fluid/operators/load_combine_op.cc
+4
-2
paddle/fluid/operators/load_op.cc
paddle/fluid/operators/load_op.cc
+4
-2
paddle/fluid/operators/lod_array_length_op.cc
paddle/fluid/operators/lod_array_length_op.cc
+4
-2
paddle/fluid/operators/lod_rank_table_op.cc
paddle/fluid/operators/lod_rank_table_op.cc
+4
-2
paddle/fluid/operators/lod_tensor_to_array_op.cc
paddle/fluid/operators/lod_tensor_to_array_op.cc
+4
-2
paddle/fluid/operators/max_sequence_len_op.cc
paddle/fluid/operators/max_sequence_len_op.cc
+3
-2
paddle/fluid/operators/merge_lod_tensor_op.cc
paddle/fluid/operators/merge_lod_tensor_op.cc
+4
-2
paddle/fluid/operators/mine_hard_examples_op.cc
paddle/fluid/operators/mine_hard_examples_op.cc
+2
-0
paddle/fluid/operators/nccl_op.cc
paddle/fluid/operators/nccl_op.cc
+3
-2
paddle/fluid/operators/net_op.h
paddle/fluid/operators/net_op.h
+14
-14
paddle/fluid/operators/net_op_test.cc
paddle/fluid/operators/net_op_test.cc
+4
-1
paddle/fluid/operators/parallel_do_op.cc
paddle/fluid/operators/parallel_do_op.cc
+6
-4
paddle/fluid/operators/print_op.cc
paddle/fluid/operators/print_op.cc
+3
-2
paddle/fluid/operators/read_op.cc
paddle/fluid/operators/read_op.cc
+4
-2
paddle/fluid/operators/recurrent_op.cc
paddle/fluid/operators/recurrent_op.cc
+6
-4
paddle/fluid/operators/reorder_lod_tensor_by_rank_op.cc
paddle/fluid/operators/reorder_lod_tensor_by_rank_op.cc
+4
-2
paddle/fluid/operators/rnn_memory_helper_op.cc
paddle/fluid/operators/rnn_memory_helper_op.cc
+8
-4
paddle/fluid/operators/save_combine_op.cc
paddle/fluid/operators/save_combine_op.cc
+4
-2
paddle/fluid/operators/save_op.cc
paddle/fluid/operators/save_op.cc
+4
-2
paddle/fluid/operators/shrink_rnn_memory_op.cc
paddle/fluid/operators/shrink_rnn_memory_op.cc
+6
-4
paddle/fluid/operators/split_lod_tensor_op.cc
paddle/fluid/operators/split_lod_tensor_op.cc
+4
-2
paddle/fluid/operators/split_op.h
paddle/fluid/operators/split_op.h
+1
-1
paddle/fluid/operators/strided_memcpy.h
paddle/fluid/operators/strided_memcpy.h
+4
-4
paddle/fluid/operators/tensor_array_read_write_op.cc
paddle/fluid/operators/tensor_array_read_write_op.cc
+7
-4
paddle/fluid/operators/while_op.cc
paddle/fluid/operators/while_op.cc
+6
-4
paddle/scripts/docker/build.sh
paddle/scripts/docker/build.sh
+12
-0
python/paddle/v2/fluid/distribute_transpiler.py
python/paddle/v2/fluid/distribute_transpiler.py
+27
-46
python/paddle/v2/fluid/framework.py
python/paddle/v2/fluid/framework.py
+0
-3
python/paddle/v2/fluid/layers/__init__.py
python/paddle/v2/fluid/layers/__init__.py
+0
-3
python/paddle/v2/fluid/layers/detection.py
python/paddle/v2/fluid/layers/detection.py
+352
-20
python/paddle/v2/fluid/tests/test_detection.py
python/paddle/v2/fluid/tests/test_detection.py
+63
-4
未找到文件。
cmake/inference_lib.cmake
浏览文件 @
8ea2288e
...
...
@@ -16,12 +16,10 @@ function(copy TARGET)
foreach
(
index RANGE
${
len
}
)
list
(
GET copy_lib_SRCS
${
index
}
src
)
list
(
GET copy_lib_DSTS
${
index
}
dst
)
add_custom_command
(
TARGET
${
TARGET
}
PRE_BUILD COMMAND mkdir -p
"
${
dst
}
"
)
if
(
IS_DIRECTORY
${
src
}
)
add_custom_command
(
TARGET
${
TARGET
}
PRE_BUILD COMMAND cp -r
"
${
src
}
"
"
${
dst
}
"
)
else
()
add_custom_command
(
TARGET
${
TARGET
}
PRE_BUILD COMMAND cp
"
${
src
}
"
"
${
dst
}
"
)
endif
()
add_custom_command
(
TARGET
${
TARGET
}
PRE_BUILD
COMMAND mkdir -p
"
${
dst
}
"
COMMAND cp -r
"
${
src
}
"
"
${
dst
}
"
COMMENT
"copying
${
src
}
->
${
dst
}
"
)
endforeach
()
endfunction
()
...
...
@@ -53,11 +51,11 @@ IF(NOT PROTOBUF_FOUND)
ENDIF
(
NOT PROTOBUF_FOUND
)
# paddle fluid module
set
(
src_dir
"
${
PADDLE_SOURCE_DIR
}
/paddle"
)
set
(
dst_dir
"
${
CMAKE_INSTALL_PREFIX
}
/paddle"
)
set
(
src_dir
"
${
PADDLE_SOURCE_DIR
}
/paddle
/fluid
"
)
set
(
dst_dir
"
${
CMAKE_INSTALL_PREFIX
}
/paddle
/fluid
"
)
set
(
module
"framework"
)
copy
(
framework_lib DEPS framework_py_proto
SRCS
${
src_dir
}
/
${
module
}
/*.h
${
src_dir
}
/
${
module
}
/details/*.h
${
PADDLE_BINARY_DIR
}
/paddle/framework/framework.pb.h
SRCS
${
src_dir
}
/
${
module
}
/*.h
${
src_dir
}
/
${
module
}
/details/*.h
${
PADDLE_BINARY_DIR
}
/paddle/f
luid/f
ramework/framework.pb.h
DSTS
${
dst_dir
}
/
${
module
}
${
dst_dir
}
/
${
module
}
/details
${
dst_dir
}
/
${
module
}
)
...
...
@@ -69,7 +67,7 @@ copy(memory_lib
set
(
module
"inference"
)
copy
(
inference_lib DEPENDS paddle_fluid_shared
SRCS
${
src_dir
}
/
${
module
}
/*.h
${
PADDLE_BINARY_DIR
}
/paddle/inference/libpaddle_fluid.so
SRCS
${
src_dir
}
/
${
module
}
/*.h
${
PADDLE_BINARY_DIR
}
/paddle/
fluid/
inference/libpaddle_fluid.so
DSTS
${
dst_dir
}
/
${
module
}
${
dst_dir
}
/
${
module
}
)
...
...
paddle/fluid/framework/op_registry_test.cc
浏览文件 @
8ea2288e
...
...
@@ -25,7 +25,10 @@ namespace framework {
class
CosineOp
:
public
OperatorBase
{
public:
using
OperatorBase
::
OperatorBase
;
void
Run
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{}
private:
void
RunImpl
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{}
};
class
CosineOpProtoAndCheckerMaker
:
public
OpProtoAndCheckerMaker
{
...
...
@@ -44,7 +47,10 @@ class CosineOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker {
class
MyTestOp
:
public
OperatorBase
{
public:
using
OperatorBase
::
OperatorBase
;
void
Run
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{}
private:
void
RunImpl
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{}
};
class
MyTestOpProtoAndCheckerMaker
:
public
OpProtoAndCheckerMaker
{
...
...
paddle/fluid/framework/operator.cc
浏览文件 @
8ea2288e
...
...
@@ -64,6 +64,18 @@ static LoD GetLoD(const Scope& scope, const std::string& name) {
}
}
void
OperatorBase
::
Run
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
{
if
(
platform
::
is_gpu_place
(
place
))
{
#ifndef PADDLE_WITH_CUDA
PADDLE_THROW
(
"Cannot run operator on place %s"
,
place
);
#else
auto
dev_id
=
boost
::
get
<
platform
::
CUDAPlace
>
(
place
).
device
;
platform
::
SetDeviceId
(
dev_id
);
#endif
}
RunImpl
(
scope
,
place
);
}
std
::
string
OperatorBase
::
Input
(
const
std
::
string
&
name
)
const
{
auto
&
ins
=
Inputs
(
name
);
PADDLE_ENFORCE_LE
(
ins
.
size
(),
1UL
,
...
...
@@ -479,8 +491,8 @@ class RuntimeInferShapeContext : public InferShapeContext {
const
Scope
&
scope_
;
};
void
OperatorWithKernel
::
Run
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
{
void
OperatorWithKernel
::
Run
Impl
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
{
RuntimeInferShapeContext
infer_shape_ctx
(
*
this
,
scope
);
this
->
InferShape
(
&
infer_shape_ctx
);
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
...
...
paddle/fluid/framework/operator.h
浏览文件 @
8ea2288e
...
...
@@ -89,8 +89,9 @@ class OperatorBase {
std
::
string
DebugString
()
const
{
return
DebugStringEx
(
nullptr
);
}
/// Net will call this function to Run an op.
virtual
void
Run
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
=
0
;
/// Net will call this interface function to Run an op.
// The implementation should be written at RunImpl
void
Run
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
);
// FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
virtual
void
Stop
()
{}
...
...
@@ -144,6 +145,8 @@ class OperatorBase {
private:
void
GenerateTemporaryNames
();
void
CheckAllInputOutputSet
()
const
;
virtual
void
RunImpl
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
=
0
;
};
// Macro for define a clone method.
...
...
@@ -168,10 +171,13 @@ class OperatorBase {
class
NOP
:
public
OperatorBase
{
public:
using
OperatorBase
::
OperatorBase
;
void
Run
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{}
std
::
unique_ptr
<
OperatorBase
>
Clone
()
const
override
{
return
std
::
unique_ptr
<
OperatorBase
>
(
new
NOP
(
*
this
));
}
private:
void
RunImpl
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{}
};
class
ExecutionContext
{
...
...
@@ -363,8 +369,6 @@ class OperatorWithKernel : public OperatorBase {
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
final
;
static
std
::
unordered_map
<
std
::
string
/* op_type */
,
OpKernelMap
>&
AllOpKernels
()
{
static
std
::
unordered_map
<
std
::
string
,
OpKernelMap
>
g_all_op_kernels
;
...
...
@@ -393,6 +397,7 @@ class OperatorWithKernel : public OperatorBase {
// indicate kernel DataType by input data. Defaultly all input data must be
// same.
proto
::
DataType
IndicateDataType
(
const
ExecutionContext
&
ctx
)
const
;
void
RunImpl
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
final
;
};
extern
bool
OpSupportGPU
(
const
std
::
string
&
op_type
);
...
...
paddle/fluid/framework/operator_test.cc
浏览文件 @
8ea2288e
...
...
@@ -28,7 +28,10 @@ class OpWithoutKernelTest : public OperatorBase {
OpWithoutKernelTest
(
const
std
::
string
&
type
,
const
VariableNameMap
&
inputs
,
const
VariableNameMap
&
outputs
,
const
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
),
x
(
1
)
{}
void
Run
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
private:
void
RunImpl
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
++
op_run_num
;
ASSERT_EQ
(
static_cast
<
int
>
(
inputs_
.
size
()),
1
);
ASSERT_EQ
(
static_cast
<
int
>
(
outputs_
.
size
()),
1
);
...
...
@@ -259,8 +262,10 @@ class OperatorClone : public paddle::framework::OperatorBase {
const
paddle
::
framework
::
VariableNameMap
&
outputs
,
const
paddle
::
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
paddle
::
framework
::
Scope
&
scope
,
const
paddle
::
platform
::
Place
&
place
)
const
override
{}
private:
void
RunImpl
(
const
paddle
::
framework
::
Scope
&
scope
,
const
paddle
::
platform
::
Place
&
place
)
const
override
{}
};
TEST
(
Operator
,
Clone
)
{
...
...
paddle/fluid/operators/array_to_lod_tensor_op.cc
浏览文件 @
8ea2288e
...
...
@@ -31,8 +31,10 @@ class ArrayToLoDTensorOp : public framework::OperatorBase {
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
auto
&
x
=
scope
.
FindVar
(
Input
(
"X"
))
->
Get
<
framework
::
LoDTensorArray
>
();
auto
&
rank_table
=
scope
.
FindVar
(
Input
(
"RankTable"
))
->
Get
<
framework
::
LoDRankTable
>
();
...
...
paddle/fluid/operators/assign_op.cc
浏览文件 @
8ea2288e
...
...
@@ -71,8 +71,10 @@ class AssignOp : public framework::OperatorBase {
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
*
x
=
scope
.
FindVar
(
Input
(
"X"
));
if
(
x
==
nullptr
)
{
return
;
...
...
paddle/fluid/operators/beam_search_decode_op.cc
浏览文件 @
8ea2288e
...
...
@@ -55,8 +55,10 @@ class BeamSearchDecodeOp : public framework::OperatorBase {
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
dev_ctx
=
*
pool
.
Get
(
dev_place
);
...
...
paddle/fluid/operators/beam_search_op.h
浏览文件 @
8ea2288e
...
...
@@ -204,8 +204,9 @@ class BeamSearchOp : public framework::OperatorBase {
PADDLE_THROW
(
"Not Implemented"
);
}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
auto
ids_var
=
scope
.
FindVar
(
Input
(
"ids"
));
auto
scores_var
=
scope
.
FindVar
(
Input
(
"scores"
));
auto
pre_ids_var
=
scope
.
FindVar
(
Input
(
"pre_ids"
));
...
...
paddle/fluid/operators/concat_op.h
浏览文件 @
8ea2288e
...
...
@@ -38,7 +38,7 @@ class ConcatKernel : public framework::OpKernel<T> {
auto
in_stride
=
framework
::
stride_numel
(
in
->
dims
());
StridedNumelCopyWithAxis
<
T
>
(
ctx
.
device_context
(),
axis
,
out
->
data
<
T
>
()
+
output_offset
,
out_stride
,
in
->
data
<
T
>
(),
in_stride
);
in
->
data
<
T
>
(),
in_stride
,
in_stride
[
axis
]
);
output_offset
+=
in_stride
[
axis
];
}
}
...
...
@@ -59,7 +59,7 @@ class ConcatGradKernel : public framework::OpKernel<T> {
auto
out_stride
=
framework
::
stride_numel
(
out
->
dims
());
StridedNumelCopyWithAxis
<
T
>
(
ctx
.
device_context
(),
axis
,
out
->
data
<
T
>
(),
out_stride
,
in
->
data
<
T
>
()
+
input_offset
,
in_stride
);
in_stride
,
out_stride
[
axis
]
);
input_offset
+=
out_stride
[
axis
];
}
}
...
...
paddle/fluid/operators/cond_op.cc
浏览文件 @
8ea2288e
...
...
@@ -193,7 +193,7 @@ void CondOp::MergeDataFromSubnet(const framework::Scope& scope,
}
}
void
CondOp
::
Run
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
{
void
CondOp
::
Run
Impl
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
{
// get device context from pool
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
dev_ctx
=
*
pool
.
Get
(
place
);
...
...
paddle/fluid/operators/cond_op.h
浏览文件 @
8ea2288e
...
...
@@ -77,8 +77,9 @@ class CondOp : public framework::OperatorBase {
sub_net_op_
[
FALSE_BRANCH
]
=
std
::
move
(
net
);
}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
;
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
;
private:
const
int
TRUE_BRANCH
=
0
;
...
...
paddle/fluid/operators/conditional_block_op.cc
浏览文件 @
8ea2288e
...
...
@@ -65,8 +65,10 @@ class ConditionalBlockOp : public ConditionalOp {
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
ConditionalOp
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
auto
xs
=
InputTensors
(
scope
);
bool
need_run
;
...
...
@@ -128,8 +130,10 @@ class ConditionalBlockGradOp : public ConditionalOp {
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
ConditionalOp
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
auto
xs
=
this
->
InputTensors
(
scope
);
bool
need_run
;
...
...
paddle/fluid/operators/create_reader_op.cc
浏览文件 @
8ea2288e
...
...
@@ -106,8 +106,10 @@ template <typename T>
class
CreateRandomDataGeneratorOp
:
public
framework
::
OperatorBase
{
public:
using
framework
::
OperatorBase
::
OperatorBase
;
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
const
auto
&
shape_concat
=
Attr
<
std
::
vector
<
int
>>
(
"shape_concat"
);
const
auto
&
ranks
=
Attr
<
std
::
vector
<
int
>>
(
"ranks"
);
PADDLE_ENFORCE
(
!
shape_concat
.
empty
()
&&
!
ranks
.
empty
());
...
...
@@ -155,8 +157,10 @@ class CreateRandomDataGeneratorOpMaker
class
CreateShuffleReaderOp
:
public
framework
::
OperatorBase
{
public:
using
framework
::
OperatorBase
::
OperatorBase
;
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
const
auto
&
underlying_reader
=
scope
.
FindVar
(
Input
(
"UnderlyingReader"
))
->
Get
<
framework
::
ReaderHolder
>
();
auto
*
out
=
scope
.
FindVar
(
Output
(
"Out"
))
...
...
@@ -187,8 +191,10 @@ class CreateShuffleReaderOpMaker : public framework::OpProtoAndCheckerMaker {
class
CreateBatchReaderOp
:
public
framework
::
OperatorBase
{
public:
using
framework
::
OperatorBase
::
OperatorBase
;
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
const
auto
&
underlying_reader
=
scope
.
FindVar
(
Input
(
"UnderlyingReader"
))
->
Get
<
framework
::
ReaderHolder
>
();
auto
*
out
=
scope
.
FindVar
(
Output
(
"Out"
))
...
...
paddle/fluid/operators/feed_op.cc
浏览文件 @
8ea2288e
...
...
@@ -24,8 +24,10 @@ class FeedOp : public framework::OperatorBase {
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
feed_var_name
=
Input
(
"X"
);
auto
*
feed_var
=
scope
.
FindVar
(
feed_var_name
);
...
...
paddle/fluid/operators/fetch_op.cc
浏览文件 @
8ea2288e
...
...
@@ -26,8 +26,9 @@ class FetchOp : public framework::OperatorBase {
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
fetch_var_name
=
Input
(
"X"
);
auto
*
fetch_var
=
scope
.
FindVar
(
fetch_var_name
);
PADDLE_ENFORCE
(
fetch_var
!=
nullptr
,
...
...
paddle/fluid/operators/fill_constant_op.cc
浏览文件 @
8ea2288e
...
...
@@ -33,8 +33,10 @@ class FillConstantInferShape : public framework::InferShapeBase {
class
FillConstantOp
:
public
framework
::
OperatorBase
{
public:
using
framework
::
OperatorBase
::
OperatorBase
;
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
auto
data_type
=
static_cast
<
framework
::
proto
::
DataType
>
(
Attr
<
int
>
(
"dtype"
));
auto
value
=
Attr
<
float
>
(
"value"
);
...
...
paddle/fluid/operators/fill_op.cc
浏览文件 @
8ea2288e
...
...
@@ -42,8 +42,10 @@ class FillOp : public framework::OperatorBase {
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
&
out
=
detail
::
Ref
(
detail
::
Ref
(
scope
.
FindVar
(
Output
(
"Out"
)),
"Cannot find variable %s"
,
Output
(
"Out"
))
...
...
paddle/fluid/operators/get_places_op.cc
浏览文件 @
8ea2288e
...
...
@@ -37,8 +37,10 @@ class GetPlacesOp : public framework::OperatorBase {
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
bool
is_gpu
;
if
(
Attr
<
std
::
string
>
(
"device_type"
)
==
"AUTO"
)
{
is_gpu
=
platform
::
is_gpu_place
(
place
);
...
...
paddle/fluid/operators/increment_op.cc
浏览文件 @
8ea2288e
...
...
@@ -51,8 +51,9 @@ class IncrementOp : public framework::OperatorBase {
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
&
x
=
scope
.
FindVar
(
Input
(
"X"
))
->
Get
<
framework
::
LoDTensor
>
();
auto
&
out
=
*
scope
.
FindVar
(
Output
(
"Out"
))
->
GetMutable
<
framework
::
LoDTensor
>
();
...
...
paddle/fluid/operators/is_empty_op.cc
浏览文件 @
8ea2288e
...
...
@@ -28,8 +28,9 @@ class IsEmptyOp : public framework::OperatorBase {
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
// get input
auto
*
var
=
scope
.
FindVar
(
Input
(
kInput
));
PADDLE_ENFORCE_NOT_NULL
(
var
);
...
...
paddle/fluid/operators/load_combine_op.cc
浏览文件 @
8ea2288e
...
...
@@ -26,8 +26,10 @@ class LoadCombineOp : public framework::OperatorBase {
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
filename
=
Attr
<
std
::
string
>
(
"file_path"
);
std
::
ifstream
fin
(
filename
);
...
...
paddle/fluid/operators/load_op.cc
浏览文件 @
8ea2288e
...
...
@@ -25,8 +25,10 @@ class LoadOp : public framework::OperatorBase {
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
filename
=
Attr
<
std
::
string
>
(
"file_path"
);
std
::
ifstream
fin
(
filename
);
PADDLE_ENFORCE
(
static_cast
<
bool
>
(
fin
),
"Cannot open file %s for load op"
,
...
...
paddle/fluid/operators/lod_array_length_op.cc
浏览文件 @
8ea2288e
...
...
@@ -25,8 +25,10 @@ class LoDArrayLengthOp : public framework::OperatorBase {
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
&
x
=
scope
.
FindVar
(
Input
(
"X"
))
->
Get
<
framework
::
LoDTensorArray
>
();
auto
&
out
=
*
scope
.
FindVar
(
Output
(
"Out"
))
->
GetMutable
<
framework
::
LoDTensor
>
();
...
...
paddle/fluid/operators/lod_rank_table_op.cc
浏览文件 @
8ea2288e
...
...
@@ -23,8 +23,10 @@ class LoDRankTableOp : public framework::OperatorBase {
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
auto
x
=
scope
.
FindVar
(
Input
(
"X"
))
->
Get
<
framework
::
LoDTensor
>
();
auto
*
out
=
scope
.
FindVar
(
Output
(
"Out"
))
->
GetMutable
<
framework
::
LoDRankTable
>
();
...
...
paddle/fluid/operators/lod_tensor_to_array_op.cc
浏览文件 @
8ea2288e
...
...
@@ -32,8 +32,10 @@ class LoDTensorToArrayOp : public framework::OperatorBase {
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
&
x
=
detail
::
Ref
(
scope
.
FindVar
(
Input
(
"X"
)),
"Cannot find input %s"
,
Input
(
"X"
))
.
Get
<
framework
::
LoDTensor
>
();
...
...
paddle/fluid/operators/max_sequence_len_op.cc
浏览文件 @
8ea2288e
...
...
@@ -27,8 +27,9 @@ class MaxSeqenceLenOp : public framework::OperatorBase {
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
auto
&
rank_table
=
scope
.
FindVar
(
Input
(
"RankTable"
))
->
Get
<
framework
::
LoDRankTable
>
();
auto
*
out
=
...
...
paddle/fluid/operators/merge_lod_tensor_op.cc
浏览文件 @
8ea2288e
...
...
@@ -27,8 +27,10 @@ class MergeLoDTensorOp : public framework::OperatorBase {
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
// get device context from pool
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
dev_ctx
=
*
pool
.
Get
(
dev_place
);
...
...
paddle/fluid/operators/mine_hard_examples_op.cc
浏览文件 @
8ea2288e
...
...
@@ -237,6 +237,8 @@ class MineHardExamplesOp : public framework::OperatorWithKernel {
}
ctx
->
SetOutputDim
(
"UpdatedMatchIndices"
,
idx_dims
);
// The first dimension of NegIndices will be set correcttly in Compute.
ctx
->
SetOutputDim
(
"NegIndices"
,
{
-
1
,
1
});
}
protected:
...
...
paddle/fluid/operators/nccl_op.cc
浏览文件 @
8ea2288e
...
...
@@ -26,8 +26,9 @@ class NCCLInitOp : public framework::OperatorBase {
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
const
auto
&
name
=
Output
(
"Communicator"
);
PADDLE_ENFORCE_NOT_NULL
(
scope
.
FindVar
(
name
),
"Can not find variable '%s' in the scope."
,
name
);
...
...
paddle/fluid/operators/net_op.h
浏览文件 @
8ea2288e
...
...
@@ -57,20 +57,6 @@ class NetOp : public framework::OperatorBase {
this
->
CompleteAddOp
();
}
/**
* @brief Run the network.
*
* Run all the operators with the `scope`, if no scope is provided, default
* scope will be used instead. If no OpContext is provicded, default context
* will be used.
*/
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
for
(
auto
&
op
:
ops_
)
{
op
->
Run
(
scope
,
place
);
}
}
bool
SupportGPU
()
const
override
{
for
(
auto
&
op
:
ops_
)
{
if
(
!
op
->
SupportGPU
())
{
...
...
@@ -117,6 +103,20 @@ class NetOp : public framework::OperatorBase {
std
::
vector
<
std
::
unique_ptr
<
framework
::
OperatorBase
>>
ops_
;
private:
/**
* @brief Run the network.
*
* Run all the operators with the `scope`, if no scope is provided, default
* scope will be used instead. If no OpContext is provicded, default context
* will be used.
*/
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
for
(
auto
&
op
:
ops_
)
{
op
->
Run
(
scope
,
place
);
}
}
bool
add_op_done_
{
false
};
std
::
set
<
std
::
string
>
intermediate_outputs_
;
...
...
paddle/fluid/operators/net_op_test.cc
浏览文件 @
8ea2288e
...
...
@@ -26,7 +26,10 @@ class TestOp : public framework::OperatorBase {
public:
using
framework
::
OperatorBase
::
OperatorBase
;
DEFINE_OP_CLONE_METHOD
(
TestOp
);
void
Run
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
private:
void
RunImpl
(
const
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
++
run_cnt
;
}
};
...
...
paddle/fluid/operators/parallel_do_op.cc
浏览文件 @
8ea2288e
...
...
@@ -118,8 +118,9 @@ class ParallelDoOp : public framework::OperatorBase {
const
framework
::
AttributeMap
&
attrs
)
:
framework
::
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
// get device context from pool
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
dev_ctx
=
*
pool
.
Get
(
place
);
...
...
@@ -207,8 +208,9 @@ class ParallelDoGradOp : public framework::OperatorBase {
const
framework
::
AttributeMap
&
attrs
)
:
framework
::
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
*
block
=
Attr
<
framework
::
BlockDesc
*>
(
kParallelBlock
);
auto
*
program
=
block
->
Program
();
...
...
paddle/fluid/operators/print_op.cc
浏览文件 @
8ea2288e
...
...
@@ -130,8 +130,9 @@ class TensorPrintOp : public framework::OperatorBase {
PADDLE_THROW
(
"Not implemented."
);
}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
const
framework
::
Variable
*
in_var_ptr
=
nullptr
;
std
::
string
phase
=
kForward
;
std
::
string
printed_var_name
=
""
;
...
...
paddle/fluid/operators/read_op.cc
浏览文件 @
8ea2288e
...
...
@@ -54,8 +54,10 @@ class ReadInferVarType : public framework::VarTypeInference {
class
ReadOp
:
public
framework
::
OperatorBase
{
public:
using
framework
::
OperatorBase
::
OperatorBase
;
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
framework
::
ReaderHolder
*
reader
=
scope
.
FindVar
(
Input
(
"Reader"
))
->
GetMutable
<
framework
::
ReaderHolder
>
();
if
(
!
reader
->
HasNext
())
{
...
...
paddle/fluid/operators/recurrent_op.cc
浏览文件 @
8ea2288e
...
...
@@ -226,8 +226,9 @@ class RecurrentOp : public RecurrentBase {
const
framework
::
AttributeMap
&
attrs
)
:
RecurrentBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
seq_len
=
static_cast
<
size_t
>
(
this
->
GetSequenceLength
(
scope
));
VLOG
(
3
)
<<
"Static RNN input sequence length = "
<<
seq_len
;
StepScopes
scopes
=
CreateStepScopes
(
scope
,
seq_len
);
...
...
@@ -315,8 +316,9 @@ class RecurrentGradOp : public RecurrentBase {
const
framework
::
AttributeMap
&
attrs
)
:
RecurrentBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
seq_len
=
static_cast
<
size_t
>
(
GetSequenceLength
(
scope
));
StepScopes
scopes
=
CreateStepScopes
(
scope
,
seq_len
);
auto
reverse
=
Attr
<
bool
>
(
kReverse
);
...
...
paddle/fluid/operators/reorder_lod_tensor_by_rank_op.cc
浏览文件 @
8ea2288e
...
...
@@ -75,8 +75,10 @@ class ReorderLoDTensorByRankTableBase : public framework::OperatorBase {
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
&
x
=
detail
::
Ref
(
scope
.
FindVar
(
Input
(
"X"
)),
"Cannot find input lod tensor variable %s"
,
Input
(
"X"
))
...
...
paddle/fluid/operators/rnn_memory_helper_op.cc
浏览文件 @
8ea2288e
...
...
@@ -24,8 +24,10 @@ class RNNMemoryHelperOp : public framework::OperatorBase {
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
auto
mem_var_name
=
Input
(
"X"
);
auto
*
mem_var
=
scope
.
FindVar
(
mem_var_name
);
PADDLE_ENFORCE
(
mem_var
!=
nullptr
,
...
...
@@ -76,8 +78,10 @@ class RNNMemoryHelperGradOp : public framework::OperatorBase {
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
auto
out_grad_var_name
=
Input
(
framework
::
GradVarName
(
"Out"
));
auto
*
out_grad_var
=
scope
.
FindVar
(
out_grad_var_name
);
...
...
paddle/fluid/operators/save_combine_op.cc
浏览文件 @
8ea2288e
...
...
@@ -63,8 +63,10 @@ class SaveCombineOp : public framework::OperatorBase {
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
filename
=
Attr
<
std
::
string
>
(
"file_path"
);
auto
overwrite
=
Attr
<
bool
>
(
"overwrite"
);
...
...
paddle/fluid/operators/save_op.cc
浏览文件 @
8ea2288e
...
...
@@ -62,8 +62,10 @@ class SaveOp : public framework::OperatorBase {
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
filename
=
Attr
<
std
::
string
>
(
"file_path"
);
auto
overwrite
=
Attr
<
bool
>
(
"overwrite"
);
...
...
paddle/fluid/operators/shrink_rnn_memory_op.cc
浏览文件 @
8ea2288e
...
...
@@ -27,8 +27,9 @@ class ShrinkRNNMemoryOp : public ArrayOp {
const
framework
::
AttributeMap
&
attrs
)
:
ArrayOp
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
*
x_var
=
scope
.
FindVar
(
Input
(
"X"
));
PADDLE_ENFORCE
(
x_var
!=
nullptr
,
"Input X must be set"
);
auto
&
x_tensor
=
x_var
->
Get
<
framework
::
LoDTensor
>
();
...
...
@@ -108,8 +109,9 @@ class ShrinkRNNMemoryGradOp : public ArrayOp {
const
framework
::
AttributeMap
&
attrs
)
:
ArrayOp
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
*
dout_var
=
scope
.
FindVar
(
Input
(
framework
::
GradVarName
(
"Out"
)));
auto
*
dx_var
=
scope
.
FindVar
(
Output
(
framework
::
GradVarName
(
"X"
)));
PADDLE_ENFORCE
(
dx_var
!=
nullptr
,
"Input Gradient should not be nullptr"
);
...
...
paddle/fluid/operators/split_lod_tensor_op.cc
浏览文件 @
8ea2288e
...
...
@@ -33,8 +33,10 @@ class SplitLoDTensorOp : public framework::OperatorBase {
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
auto
&
x
=
scope
.
FindVar
(
Input
(
"X"
))
->
Get
<
framework
::
LoDTensor
>
();
auto
&
mask
=
scope
.
FindVar
(
Input
(
"Mask"
))
->
Get
<
framework
::
LoDTensor
>
();
auto
*
out_true
=
...
...
paddle/fluid/operators/split_op.h
浏览文件 @
8ea2288e
...
...
@@ -38,7 +38,7 @@ class SplitOpKernel : public framework::OpKernel<T> {
auto
out_stride
=
framework
::
stride_numel
(
out
->
dims
());
StridedNumelCopyWithAxis
<
T
>
(
ctx
.
device_context
(),
axis
,
out
->
data
<
T
>
(),
out_stride
,
in
->
data
<
T
>
()
+
input_offset
,
in_stride
);
in_stride
,
out_stride
[
axis
]
);
input_offset
+=
out_stride
[
axis
];
}
}
...
...
paddle/fluid/operators/strided_memcpy.h
浏览文件 @
8ea2288e
...
...
@@ -54,7 +54,8 @@ inline void StridedNumelCopyWithAxis(const platform::DeviceContext& ctx,
int64_t
axis
,
T
*
dst
,
const
framework
::
DDim
&
dst_stride_numel
,
const
T
*
src
,
const
framework
::
DDim
&
src_stride_numel
)
{
const
framework
::
DDim
&
src_stride_numel
,
int64_t
size
)
{
int64_t
before
=
dst_stride_numel
[
0
]
/
dst_stride_numel
[
axis
];
int64_t
src_after
=
src_stride_numel
[
axis
];
int64_t
dst_after
=
dst_stride_numel
[
axis
];
...
...
@@ -82,15 +83,14 @@ inline void StridedNumelCopyWithAxis(const platform::DeviceContext& ctx,
if
(
platform
::
is_cpu_place
(
place
))
{
auto
&
cpu_place
=
boost
::
get
<
platform
::
CPUPlace
>
(
place
);
memory
::
Copy
(
cpu_place
,
dst
+
i
*
dst_after
,
cpu_place
,
src
+
i
*
src_after
,
sizeof
(
T
)
*
s
rc_after
);
src
+
i
*
src_after
,
sizeof
(
T
)
*
s
ize
);
}
else
{
#ifdef PADDLE_WITH_CUDA
auto
&
gpu_place
=
boost
::
get
<
platform
::
CUDAPlace
>
(
place
);
auto
&
cuda_ctx
=
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
ctx
);
memory
::
Copy
(
gpu_place
,
dst
+
i
*
dst_after
,
gpu_place
,
src
+
i
*
src_after
,
sizeof
(
T
)
*
src_after
,
cuda_ctx
.
stream
());
src
+
i
*
src_after
,
sizeof
(
T
)
*
size
,
cuda_ctx
.
stream
());
#else
PADDLE_THROW
(
"Paddle is not compiled with GPU"
);
#endif
...
...
paddle/fluid/operators/tensor_array_read_write_op.cc
浏览文件 @
8ea2288e
...
...
@@ -24,8 +24,9 @@ class WriteToArrayOp : public ArrayOp {
const
framework
::
AttributeMap
&
attrs
)
:
ArrayOp
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
*
x
=
scope
.
FindVar
(
Input
(
"X"
));
if
(
x
==
nullptr
)
return
;
auto
&
x_tensor
=
x
->
Get
<
framework
::
LoDTensor
>
();
...
...
@@ -122,8 +123,10 @@ class ReadFromArrayOp : public ArrayOp {
const
framework
::
VariableNameMap
&
outputs
,
const
framework
::
AttributeMap
&
attrs
)
:
ArrayOp
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
place
)
const
override
{
auto
*
x
=
scope
.
FindVar
(
Input
(
"X"
));
PADDLE_ENFORCE
(
x
!=
nullptr
,
"X must be set"
);
auto
&
x_array
=
x
->
Get
<
framework
::
LoDTensorArray
>
();
...
...
paddle/fluid/operators/while_op.cc
浏览文件 @
8ea2288e
...
...
@@ -39,8 +39,9 @@ class WhileOp : public framework::OperatorBase {
const
framework
::
AttributeMap
&
attrs
)
:
framework
::
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
PADDLE_ENFORCE_NOT_NULL
(
scope
.
FindVar
(
Input
(
kCondition
)));
auto
&
cond
=
scope
.
FindVar
(
Input
(
kCondition
))
->
Get
<
LoDTensor
>
();
PADDLE_ENFORCE_EQ
(
cond
.
dims
(),
paddle
::
framework
::
make_ddim
({
1
}));
...
...
@@ -99,8 +100,9 @@ class WhileGradOp : public framework::OperatorBase {
const
framework
::
AttributeMap
&
attrs
)
:
framework
::
OperatorBase
(
type
,
inputs
,
outputs
,
attrs
)
{}
void
Run
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
private:
void
RunImpl
(
const
framework
::
Scope
&
scope
,
const
platform
::
Place
&
dev_place
)
const
override
{
// get device context from pool
platform
::
DeviceContextPool
&
pool
=
platform
::
DeviceContextPool
::
Instance
();
auto
&
dev_ctx
=
*
pool
.
Get
(
dev_place
);
...
...
paddle/scripts/docker/build.sh
浏览文件 @
8ea2288e
...
...
@@ -204,6 +204,17 @@ function gen_capi_package() {
fi
}
function
gen_fluid_inference_lib
()
{
if
[
${
WITH_C_API
:-
OFF
}
==
"OFF"
]
;
then
cat
<<
EOF
========================================
Building fluid inference library ...
========================================
EOF
make inference_lib_dist
fi
}
set
-xe
cmake_gen
${
PYTHON_ABI
:-
""
}
...
...
@@ -212,6 +223,7 @@ run_test
gen_docs
gen_dockerfile
gen_capi_package
gen_fluid_inference_lib
if
[[
${
WITH_C_API
:-
OFF
}
==
"ON"
]]
;
then
printf
"PaddlePaddle C-API libraries was generated on build/paddle.tgz
\n
"
...
...
python/paddle/v2/fluid/distribute_transpiler.py
浏览文件 @
8ea2288e
...
...
@@ -121,6 +121,7 @@ def split_dense_variable(var_list,
block_size
+=
dim1
-
remains
# update split_count after aligning
split_count
=
int
(
math
.
ceil
(
var_numel
/
float
(
block_size
)))
print
(
"###split var "
,
var
.
name
,
var
.
shape
,
block_size
,
split_count
)
for
block_id
in
xrange
(
split_count
):
curr_block_size
=
min
(
block_size
,
var_numel
-
(
(
block_id
)
*
block_size
))
...
...
@@ -191,7 +192,6 @@ class DistributeTranspiler:
for
b
in
param_blocks
:
varname
,
block_id
,
_
=
b
.
split
(
":"
)
send_outputs
.
append
(
param_var_mapping
[
varname
][
int
(
block_id
)])
# let send_op know which endpoint to send which var to, eplist has the same
# order as send_inputs.
eplist
=
split_method
(
send_inputs
,
pserver_endpoints
)
...
...
@@ -230,21 +230,6 @@ class DistributeTranspiler:
outputs
=
{
"Out"
:
[
orig_param
]},
attrs
=
{
"axis"
:
0
})
self
.
lr_param_mapping
=
self
.
_create_lr_param_mapping
()
def
_create_lr_param_mapping
(
self
):
lr_mapping
=
dict
()
for
_
,
opt_op
in
enumerate
(
self
.
optimize_ops
):
if
not
opt_op
.
inputs
or
not
opt_op
.
inputs
.
has_key
(
"LearningRate"
)
\
or
not
opt_op
.
inputs
.
has_key
(
"Param"
):
continue
lr
=
opt_op
.
inputs
[
"LearningRate"
].
name
param
=
opt_op
.
inputs
[
"Param"
].
name
if
not
lr_mapping
.
has_key
(
lr
):
lr_mapping
.
update
({
lr
:
list
()})
lr_mapping
[
lr
].
append
(
param
)
return
lr_mapping
def
_create_vars_from_blocklist
(
self
,
program
,
block_list
):
# Create respective variables using the block_list
block_map
=
dict
()
...
...
@@ -271,6 +256,7 @@ class DistributeTranspiler:
splited_shape
=
[
rows
]
if
len
(
orig_shape
)
>=
2
:
splited_shape
.
extend
(
orig_shape
[
1
:])
print
(
"###splited: "
,
size
,
rows
,
splited_shape
)
var
=
program
.
global_block
().
create_var
(
name
=
"%s.block%d"
%
(
varname
,
i
),
psersistable
=
False
,
...
...
@@ -278,6 +264,7 @@ class DistributeTranspiler:
type
=
orig_var
.
type
,
shape
=
splited_shape
)
# flattend splited var
var_mapping
[
varname
].
append
(
var
)
print
(
"###created split var "
,
var
)
return
var_mapping
def
_clone_var
(
self
,
block
,
var
):
...
...
@@ -369,18 +356,9 @@ class DistributeTranspiler:
pass
return
orig_shape
def
_fetch_var_names
(
self
,
param_dict
):
res
=
[]
if
not
param_dict
:
return
res
for
_
,
values
in
param_dict
.
iteritems
():
if
not
isinstance
(
values
,
list
):
values
=
[
values
]
res
+=
[
v
.
name
for
v
in
values
]
return
res
def
_append_pserver_ops
(
self
,
optimize_block
,
opt_op
,
endpoint
):
program
=
optimize_block
.
program
pserver_block
=
program
.
global_block
()
new_inputs
=
dict
()
# update param/grad shape first, then other inputs like
# moment can use the updated shape
...
...
@@ -395,11 +373,11 @@ class DistributeTranspiler:
# do not append this op if current endpoint
# is not dealing with this grad block
return
merged_var
=
p
rogram
.
global_block
()
.
vars
[
grad_block
.
name
]
merged_var
=
p
server_block
.
vars
[
grad_block
.
name
]
# append merging ops if trainers > 1
if
self
.
trainers
>
1
:
vars2merge
=
self
.
_create_var_for_trainers
(
p
rogram
.
global_block
()
,
grad_block
,
self
.
trainers
)
p
server_block
,
grad_block
,
self
.
trainers
)
optimize_block
.
append_op
(
type
=
"sum"
,
inputs
=
{
"X"
:
vars2merge
},
...
...
@@ -419,29 +397,27 @@ class DistributeTranspiler:
break
if
not
param_block
:
return
tmpvar
=
p
rogram
.
global_block
()
.
create_var
(
tmpvar
=
p
server_block
.
create_var
(
name
=
param_block
.
name
,
persistable
=
True
,
dtype
=
param_block
.
dtype
,
shape
=
param_block
.
shape
)
new_inputs
[
key
]
=
tmpvar
elif
key
==
"LearningRate"
:
# leraning rate variable has already be created by non-optimize op,
# don't create it once again.
new_inputs
[
key
]
=
program
.
global_block
().
vars
[
opt_op
.
input
(
key
)[
0
]]
new_inputs
[
key
]
=
pserver_block
.
vars
[
opt_op
.
input
(
key
)[
0
]]
for
key
in
opt_op
.
input_names
:
new_shape
=
None
if
key
in
[
"Param"
,
"Grad"
,
"LearningRate"
]:
continue
var
=
program
.
global_block
().
vars
[
opt_op
.
input
(
key
)[
0
]]
var
=
self
.
program
.
global_block
().
vars
[
opt_op
.
input
(
key
)[
0
]]
# update accumulator variable shape
param_shape
=
new_inputs
[
"Param"
].
shape
new_shape
=
self
.
_get_optimizer_input_shape
(
opt_op
.
type
,
key
,
var
.
shape
,
param_shape
)
tmpvar
=
p
rogram
.
global_block
()
.
create_var
(
tmpvar
=
p
server_block
.
create_var
(
name
=
var
.
name
,
persistable
=
var
.
persistable
,
dtype
=
var
.
dtype
,
...
...
@@ -449,11 +425,14 @@ class DistributeTranspiler:
new_inputs
[
key
]
=
tmpvar
# change output's ParamOut variable
opt_op
.
outputs
[
"ParamOut"
]
=
new_inputs
[
"Param"
]
outputs
=
self
.
_get_output_map_from_op
(
self
.
program
.
global_block
().
vars
,
opt_op
)
outputs
[
"ParamOut"
]
=
new_inputs
[
"Param"
]
optimize_block
.
append_op
(
type
=
opt_op
.
type
,
inputs
=
new_inputs
,
outputs
=
o
pt_op
.
o
utputs
,
outputs
=
outputs
,
attrs
=
opt_op
.
attrs
)
def
_append_pserver_non_opt_ops
(
self
,
optimize_block
,
opt_op
):
...
...
@@ -497,11 +476,12 @@ class DistributeTranspiler:
# If one op's input is another op's output or
# one op's output is another op's input, we say
# the two operator is connected.
op1_input_names
=
self
.
_fetch_var_names
(
op1
.
inputs
)
op1_output_names
=
self
.
_fetch_var_names
(
op1
.
outputs
)
op1_input_names
=
op1
.
desc
.
input_arg_names
()
op1_output_names
=
op1
.
desc
.
output_arg_names
()
op2_input_names
=
op2
.
desc
.
input_arg_names
()
op2_output_names
=
op2
.
desc
.
output_arg_names
()
op2_input_names
=
self
.
_fetch_var_names
(
op2
.
inputs
)
op2_output_names
=
self
.
_fetch_var_names
(
op2
.
outputs
)
if
set
(
op1_output_names
)
&
set
(
op2_input_names
)
or
\
set
(
op1_input_names
)
&
set
(
op2_output_names
):
return
True
...
...
@@ -521,8 +501,8 @@ class DistributeTranspiler:
def
_is_opt_op
(
self
,
op
):
# NOTE: It's a HACK implement.
# optimize op: SGDOptimize, MomentumOptimizer, AdamOptimizer and etc...
if
op
.
inputs
and
op
.
inputs
.
has_key
(
"Param"
)
\
and
op
.
inputs
.
has_key
(
"LearningRate"
)
:
if
"Param"
in
op
.
input_names
and
\
"LearningRate"
in
op
.
input_names
:
return
True
return
False
...
...
@@ -530,12 +510,12 @@ class DistributeTranspiler:
param_names
=
[
p
.
name
for
p
in
self
.
param_grad_ep_mapping
[
endpoint
][
"params"
]
]
if
op
.
input
s
[
"Param"
].
name
in
param_names
:
if
op
.
input
(
"Param"
)
in
param_names
:
return
True
else
:
for
n
in
param_names
:
param
=
op
.
input
s
[
"Param"
].
name
if
same_or_split_var
(
n
,
param
)
and
n
!=
op
.
inputs
[
"Param"
].
name
:
param
=
op
.
input
(
"Param"
)[
0
]
if
same_or_split_var
(
n
,
param
)
and
n
!=
param
:
return
True
return
False
return
False
...
...
@@ -551,6 +531,8 @@ class DistributeTranspiler:
"""
# step5
pserver_program
=
Program
()
print
(
"param mapping on pserver: #### "
,
self
.
param_grad_ep_mapping
[
endpoint
][
"params"
])
for
v
in
self
.
param_grad_ep_mapping
[
endpoint
][
"params"
]:
self
.
_clone_var
(
pserver_program
.
global_block
(),
v
)
for
v
in
self
.
param_grad_ep_mapping
[
endpoint
][
"grads"
]:
...
...
@@ -564,7 +546,6 @@ class DistributeTranspiler:
persistable
=
True
,
dtype
=
v
.
dtype
,
shape
=
v
.
shape
)
# step6
optimize_block
=
pserver_program
.
create_block
(
0
)
# step 6.1
...
...
python/paddle/v2/fluid/framework.py
浏览文件 @
8ea2288e
...
...
@@ -400,9 +400,6 @@ class Operator(object):
"""
self
.
block
=
block
self
.
desc
=
desc
# for clone a new operator
self
.
inputs
=
inputs
self
.
outputs
=
outputs
self
.
attrs
=
attrs
if
len
(
self
.
desc
.
type
())
!=
0
:
return
...
...
python/paddle/v2/fluid/layers/__init__.py
浏览文件 @
8ea2288e
...
...
@@ -16,8 +16,6 @@ import ops
from
ops
import
*
import
nn
from
nn
import
*
import
detection
from
detection
import
*
import
io
from
io
import
*
import
tensor
...
...
@@ -33,7 +31,6 @@ from detection import *
__all__
=
[]
__all__
+=
math_op_patch
.
__all__
__all__
+=
detection
.
__all__
__all__
+=
nn
.
__all__
__all__
+=
io
.
__all__
__all__
+=
tensor
.
__all__
...
...
python/paddle/v2/fluid/layers/detection.py
浏览文件 @
8ea2288e
#
Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved
.
#
Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve
.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#
http://www.apache.org/licenses/LICENSE-2.0
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
...
...
@@ -15,20 +15,32 @@
All layers just related to the detection neural network.
"""
from
layer_function_generator
import
generate_layer_fn
from
..layer_helper
import
LayerHelper
from
..param_attr
import
ParamAttr
from
..framework
import
Variable
import
tensor
import
ops
import
nn
import
math
__all__
=
[
'detection_output'
,
'prior_box'
,
'multi_box_head'
,
'bipartite_match'
,
'target_assign'
,
'detection_output'
,
'ssd_loss'
,
]
__auto__
=
[
'iou_similarity'
,
'box_coder'
,
]
__all__
+=
__auto__
for
_OP
in
set
(
__auto__
):
globals
()[
_OP
]
=
generate_layer_fn
(
_OP
)
def
detection_output
(
scores
,
loc
,
...
...
@@ -98,18 +110,13 @@ def detection_output(scores,
"""
helper
=
LayerHelper
(
"detection_output"
,
**
locals
())
decoded_box
=
helper
.
create_tmp_variable
(
dtype
=
loc
.
dtype
)
helper
.
append_op
(
type
=
"box_coder"
,
inputs
=
{
'PriorBox'
:
prior_box
,
'PriorBoxVar'
:
prior_box_var
,
'TargetBox'
:
loc
},
outputs
=
{
'OutputBox'
:
decoded_box
},
attrs
=
{
'code_type'
:
'decode_center_size'
})
nmsed_outs
=
helper
.
create_tmp_variable
(
dtype
=
decoded_box
.
dtype
)
decoded_box
=
box_coder
(
prior_box
=
prior_box
,
prior_box_var
=
prior_box_var
,
target_box
=
loc
,
code_type
=
'decode_center_size'
)
nmsed_outs
=
helper
.
create_tmp_variable
(
dtype
=
decoded_box
.
dtype
)
helper
.
append_op
(
type
=
"multiclass_nms"
,
inputs
=
{
'Scores'
:
scores
,
...
...
@@ -280,22 +287,22 @@ def prior_box(inputs,
if
aspect_ratios
:
_is_list_or_tuple_and_equal
(
aspect_ratios
,
num_layer
,
'aspect_ratios should be list and the length of inputs '
'aspect_ratios should be list
or tuple,
and the length of inputs '
'and aspect_ratios should be the same.'
)
if
step_h
:
_is_list_or_tuple_and_equal
(
step_h
,
num_layer
,
'step_h should be list and the length of inputs and '
'step_h should be list
or tuple,
and the length of inputs and '
'step_h should be the same.'
)
if
step_w
:
_is_list_or_tuple_and_equal
(
step_w
,
num_layer
,
'step_w should be list and the length of inputs and '
'step_w should be list
or tuple,
and the length of inputs and '
'step_w should be the same.'
)
if
steps
:
_is_list_or_tuple_and_equal
(
steps
,
num_layer
,
'steps should be list and the length of inputs and '
'steps should be list
or tuple,
and the length of inputs and '
'step_w should be the same.'
)
step_w
=
steps
step_h
=
steps
...
...
@@ -339,6 +346,331 @@ def prior_box(inputs,
return
box
,
var
def
bipartite_match
(
dist_matrix
,
name
=
None
):
"""
**Bipartite matchint operator**
This operator is a greedy bipartite matching algorithm, which is used to
obtain the matching with the maximum distance based on the input
distance matrix. For input 2D matrix, the bipartite matching algorithm can
find the matched column for each row, also can find the matched row for
each column. And this operator only calculate matched indices from column
to row. For each instance, the number of matched indices is the number of
of columns of the input ditance matrix.
There are two outputs to save matched indices and distance.
A simple description, this algothrim matched the best (maximum distance)
row entity to the column entity and the matched indices are not duplicated
in each row of ColToRowMatchIndices. If the column entity is not matched
any row entity, set -1 in ColToRowMatchIndices.
Please note that the input DistMat can be LoDTensor (with LoD) or Tensor.
If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
If Tensor, the height of ColToRowMatchIndices is 1.
Args:
dist_matrix(Variable): This input is a 2-D LoDTensor with shape
[K, M]. It is pair-wise distance matrix between the entities
represented by each row and each column. For example, assumed one
entity is A with shape [K], another entity is B with shape [M]. The
dist_matirx[i][j] is the distance between A[i] and B[j]. The bigger
the distance is, the better macthing the pairs are. Please note,
This tensor can contain LoD information to represent a batch of
inputs. One instance of this batch can contain different numbers of
entities.
Returns:
match_indices(Variable): A 2-D Tensor with shape [N, M] in int type.
N is the batch size. If match_indices[i][j] is -1, it
means B[j] does not match any entity in i-th instance.
Otherwise, it means B[j] is matched to row
match_indices[i][j] in i-th instance. The row number of
i-th instance is saved in match_indices[i][j].
match_distance(Variable): A 2-D Tensor with shape [N, M] in float type.
N is batch size. If match_indices[i][j] is -1,
match_distance[i][j] is also -1.0. Otherwise, assumed
match_distance[i][j] = d, and the row offsets of each instance
are called LoD. Then match_distance[i][j] = dist_matrix[d+LoD[i]][j].
"""
helper
=
LayerHelper
(
'bipartite_match'
,
**
locals
())
match_indices
=
helper
.
create_tmp_variable
(
dtype
=
'int32'
)
match_distance
=
helper
.
create_tmp_variable
(
dtype
=
dist_matrix
.
dtype
)
helper
.
append_op
(
type
=
'bipartite_match'
,
inputs
=
{
'DistMat'
:
dist_matrix
},
outputs
=
{
'ColToRowMatchIndices'
:
match_indices
,
'ColToRowMatchDist'
:
match_distance
})
return
match_indices
,
match_distance
def
target_assign
(
input
,
matched_indices
,
negative_indices
=
None
,
mismatch_value
=
None
,
name
=
None
):
"""
**Target assigner operator**
This operator can be, for given the target bounding boxes or labels,
to assign classification and regression targets to each prediction as well as
weights to prediction. The weights is used to specify which prediction would
not contribute to training loss.
For each instance, the output `out` and`out_weight` are assigned based on
`match_indices` and `negative_indices`.
Assumed that the row offset for each instance in `input` is called lod,
this operator assigns classification/regression targets by performing the
following steps:
1. Assigning all outpts based on `match_indices`:
If id = match_indices[i][j] > 0,
out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
out_weight[i][j] = 1.
Otherwise,
out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
out_weight[i][j] = 0.
2. Assigning out_weight based on `neg_indices` if `neg_indices` is provided:
Assumed that the row offset for each instance in `neg_indices` is called neg_lod,
for i-th instance and each `id` of neg_indices in this instance:
out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
out_weight[i][id] = 1.0
Args:
inputs (Variable): This input is a 3D LoDTensor with shape [M, P, K].
matched_indices (Variable): Tensor<int>), The input matched indices
is 2D Tenosr<int32> with shape [N, P], If MatchIndices[i][j] is -1,
the j-th entity of column is not matched to any entity of row in
i-th instance.
negative_indices (Variable): The input negative example indices are
an optional input with shape [Neg, 1] and int32 type, where Neg is
the total number of negative example indices.
mismatch_value (float32): Fill this value to the mismatched location.
Returns:
out (Variable): The output is a 3D Tensor with shape [N, P, K],
N and P is the same as they are in `neg_indices`, K is the
same as it in input of X. If `match_indices[i][j]`.
out_weight (Variable): The weight for output with the shape of [N, P, 1].
"""
helper
=
LayerHelper
(
'target_assign'
,
**
locals
())
out
=
helper
.
create_tmp_variable
(
dtype
=
input
.
dtype
)
out_weight
=
helper
.
create_tmp_variable
(
dtype
=
'float32'
)
helper
.
append_op
(
type
=
'target_assign'
,
inputs
=
{
'X'
:
input
,
'MatchIndices'
:
matched_indices
,
'NegIndices'
:
negative_indices
},
outputs
=
{
'Out'
:
out
,
'OutWeight'
:
out_weight
},
attrs
=
{
'mismatch_value'
:
mismatch_value
})
return
out
,
out_weight
def
ssd_loss
(
location
,
confidence
,
gt_box
,
gt_label
,
prior_box
,
prior_box_var
=
None
,
background_label
=
0
,
overlap_threshold
=
0.5
,
neg_pos_ratio
=
3.0
,
neg_overlap
=
0.5
,
loc_loss_weight
=
1.0
,
conf_loss_weight
=
1.0
,
match_type
=
'per_prediction'
,
mining_type
=
'max_negative'
,
sample_size
=
None
):
"""
**Multi-box loss layer for object dection algorithm of SSD**
This layer is to compute dection loss for SSD given the location offset
predictions, confidence predictions, prior boxes and ground-truth boudding
boxes and labels, and the type of hard example mining. The returned loss
is a weighted sum of the localization loss (or regression loss) and
confidence loss (or classification loss) by performing the following steps:
1. Find matched boundding box by bipartite matching algorithm.
1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
1.2 Compute matched boundding box by bipartite matching algorithm.
2. Compute confidence for mining hard examples
2.1. Get the target label based on matched indices.
2.2. Compute confidence loss.
3. Apply hard example mining to get the negative example indices and update
the matched indices.
4. Assign classification and regression targets
4.1. Encoded bbox according to the prior boxes.
4.2. Assign regression targets.
4.3. Assign classification targets.
5. Compute the overall objective loss.
5.1 Compute confidence loss.
5.1 Compute localization loss.
5.3 Compute the overall weighted loss.
Args:
location (Variable): The location predictions are a 3D Tensor with
shape [N, Np, 4], N is the batch size, Np is total number of
predictions for each instance. 4 is the number of coordinate values,
the layout is [xmin, ymin, xmax, ymax].
confidence (Variable): The confidence predictions are a 3D Tensor
with shape [N, Np, C], N and Np are the same as they are in
`location`, C is the class number.
gt_box (Variable): The ground-truth boudding boxes (bboxes) are a 2D
LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
bboxes of mini-batch input.
gt_label (Variable): The ground-truth labels are a 2D LoDTensor
with shape [Ng, 1].
prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4].
prior_box_var (Variable): The variance of prior boxes are a 2D Tensor
with shape [Np, 4].
background_label (int): The index of background label, 0 by default.
overlap_threshold (float): If match_type is 'per_prediction', use
`overlap_threshold` to determine the extra matching bboxes when
finding matched boxes. 0.5 by default.
neg_pos_ratio (float): The ratio of the negative boxes to the positive
boxes, used only when mining_type is max_negative, 3.0 by defalut.
neg_overlap (float): The negative overlap upper bound for the unmatched
predictions. Use only when mining_type is max_negative,
0.5 by default.
sample_size (int): The max sample size of negative box, used only when
mining_type is hard_example.
loc_loss_weight (float): Weight for localization loss, 1.0 by default.
conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
match_type (str): The type of matching method during training, should
be 'bipartite' or 'per_prediction'.
mining_type (str): The hard example mining type, should be 'hard_example'
or 'max_negative', now only support `max_negative`.
Returns:
Variable: The weighted sum of the localization loss and confidence loss,
with shape [N * Np, 1], N and Np are the same as they are
in `location`.
Raises:
ValueError: If mining_type is 'hard_example', now only support
mining type of `max_negative`.
Examples:
.. code-block:: python
pb = layers.data(
name='prior_box',
shape=[10, 4],
append_batch_size=False,
dtype='float32')
pbv = layers.data(
name='prior_box_var',
shape=[10, 4],
append_batch_size=False,
dtype='float32')
loc = layers.data(name='target_box', shape=[10, 4], dtype='float32')
scores = layers.data(name='scores', shape=[10, 21], dtype='float32')
gt_box = layers.data(
name='gt_box', shape=[4], lod_level=1, dtype='float32')
gt_label = layers.data(
name='gt_label', shape=[1], lod_level=1, dtype='float32')
loss = layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
"""
helper
=
LayerHelper
(
'ssd_loss'
,
**
locals
())
if
mining_type
!=
'max_negative'
:
raise
ValueError
(
"Only support mining_type == max_negative now."
)
num
,
num_prior
,
num_class
=
confidence
.
shape
def
__reshape_to_2d
(
var
):
return
ops
.
reshape
(
x
=
var
,
shape
=
[
-
1
,
var
.
shape
[
-
1
]])
# 1. Find matched boundding box by prior box.
# 1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
iou
=
iou_similarity
(
x
=
gt_box
,
y
=
prior_box
)
# 1.2 Compute matched boundding box by bipartite matching algorithm.
matched_indices
,
matched_dist
=
bipartite_match
(
iou
)
# 2. Compute confidence for mining hard examples
# 2.1. Get the target label based on matched indices
gt_label
=
ops
.
reshape
(
x
=
gt_label
,
shape
=
gt_label
.
shape
+
(
1
,
))
target_label
,
_
=
target_assign
(
gt_label
,
matched_indices
,
mismatch_value
=
background_label
)
# 2.2. Compute confidence loss.
# Reshape confidence to 2D tensor.
confidence
=
__reshape_to_2d
(
confidence
)
target_label
=
tensor
.
cast
(
x
=
target_label
,
dtype
=
'int64'
)
target_label
=
__reshape_to_2d
(
target_label
)
conf_loss
=
nn
.
softmax_with_cross_entropy
(
confidence
,
target_label
)
# 3. Mining hard examples
conf_loss
=
ops
.
reshape
(
x
=
conf_loss
,
shape
=
(
num
,
num_prior
))
neg_indices
=
helper
.
create_tmp_variable
(
dtype
=
'int32'
)
dtype
=
matched_indices
.
dtype
updated_matched_indices
=
helper
.
create_tmp_variable
(
dtype
=
dtype
)
helper
.
append_op
(
type
=
'mine_hard_examples'
,
inputs
=
{
'ClsLoss'
:
conf_loss
,
'LocLoss'
:
None
,
'MatchIndices'
:
matched_indices
,
'MatchDist'
:
matched_dist
,
},
outputs
=
{
'NegIndices'
:
neg_indices
,
'UpdatedMatchIndices'
:
updated_matched_indices
},
attrs
=
{
'neg_pos_ratio'
:
neg_pos_ratio
,
'neg_dist_threshold'
:
neg_pos_ratio
,
'mining_type'
:
mining_type
,
'sample_size'
:
sample_size
,
})
# 4. Assign classification and regression targets
# 4.1. Encoded bbox according to the prior boxes.
encoded_bbox
=
box_coder
(
prior_box
=
prior_box
,
prior_box_var
=
prior_box_var
,
target_box
=
gt_box
,
code_type
=
'encode_center_size'
)
# 4.2. Assign regression targets
target_bbox
,
target_loc_weight
=
target_assign
(
encoded_bbox
,
updated_matched_indices
,
mismatch_value
=
background_label
)
# 4.3. Assign classification targets
target_label
,
target_conf_weight
=
target_assign
(
gt_label
,
updated_matched_indices
,
negative_indices
=
neg_indices
,
mismatch_value
=
background_label
)
# 5. Compute loss.
# 5.1 Compute confidence loss.
target_label
=
__reshape_to_2d
(
target_label
)
target_label
=
tensor
.
cast
(
x
=
target_label
,
dtype
=
'int64'
)
conf_loss
=
nn
.
softmax_with_cross_entropy
(
confidence
,
target_label
)
target_conf_weight
=
__reshape_to_2d
(
target_conf_weight
)
conf_loss
=
conf_loss
*
target_conf_weight
# 5.2 Compute regression loss.
location
=
__reshape_to_2d
(
location
)
target_bbox
=
__reshape_to_2d
(
target_bbox
)
loc_loss
=
nn
.
smooth_l1
(
location
,
target_bbox
)
target_loc_weight
=
__reshape_to_2d
(
target_loc_weight
)
loc_loss
=
loc_loss
*
target_loc_weight
# 5.3 Compute overall weighted loss.
loss
=
conf_loss_weight
*
conf_loss
+
loc_loss_weight
*
loc_loss
return
loss
def
multi_box_head
(
inputs
,
num_classes
,
min_sizes
=
None
,
...
...
python/paddle/v2/fluid/tests/test_detection.py
浏览文件 @
8ea2288e
...
...
@@ -15,12 +15,11 @@
from
__future__
import
print_function
import
paddle.v2.fluid
as
fluid
import
paddle.v2.fluid.layers
as
layers
import
paddle.v2.fluid.layers.detection
as
detection
from
paddle.v2.fluid.framework
import
Program
,
program_guard
import
unittest
class
Test
Book
(
unittest
.
TestCase
):
class
Test
Detection
(
unittest
.
TestCase
):
def
test_detection_output
(
self
):
program
=
Program
()
with
program_guard
(
program
):
...
...
@@ -47,7 +46,67 @@ class TestBook(unittest.TestCase):
out
=
layers
.
detection_output
(
scores
=
scores
,
loc
=
loc
,
prior_box
=
pb
,
prior_box_var
=
pbv
)
self
.
assertIsNotNone
(
out
)
# print(str(program))
self
.
assertEqual
(
out
.
shape
[
-
1
],
6
)
print
(
str
(
program
))
def
test_detection_api
(
self
):
program
=
Program
()
with
program_guard
(
program
):
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
4
],
dtype
=
'float32'
)
y
=
layers
.
data
(
name
=
'y'
,
shape
=
[
4
],
dtype
=
'float32'
)
z
=
layers
.
data
(
name
=
'z'
,
shape
=
[
4
],
dtype
=
'float32'
,
lod_level
=
1
)
iou
=
layers
.
iou_similarity
(
x
=
x
,
y
=
y
)
bcoder
=
layers
.
box_coder
(
prior_box
=
x
,
prior_box_var
=
y
,
target_box
=
z
,
code_type
=
'encode_center_size'
)
self
.
assertIsNotNone
(
iou
)
self
.
assertIsNotNone
(
bcoder
)
matched_indices
,
matched_dist
=
layers
.
bipartite_match
(
iou
)
self
.
assertIsNotNone
(
matched_indices
)
self
.
assertIsNotNone
(
matched_dist
)
gt
=
layers
.
data
(
name
=
'gt'
,
shape
=
[
1
,
1
],
dtype
=
'int32'
,
lod_level
=
1
)
trg
,
trg_weight
=
layers
.
target_assign
(
gt
,
matched_indices
,
mismatch_value
=
0
)
self
.
assertIsNotNone
(
trg
)
self
.
assertIsNotNone
(
trg_weight
)
gt2
=
layers
.
data
(
name
=
'gt2'
,
shape
=
[
10
,
4
],
dtype
=
'float32'
,
lod_level
=
1
)
trg
,
trg_weight
=
layers
.
target_assign
(
gt2
,
matched_indices
,
mismatch_value
=
0
)
self
.
assertIsNotNone
(
trg
)
self
.
assertIsNotNone
(
trg_weight
)
print
(
str
(
program
))
def
test_ssd_loss
(
self
):
program
=
Program
()
with
program_guard
(
program
):
pb
=
layers
.
data
(
name
=
'prior_box'
,
shape
=
[
10
,
4
],
append_batch_size
=
False
,
dtype
=
'float32'
)
pbv
=
layers
.
data
(
name
=
'prior_box_var'
,
shape
=
[
10
,
4
],
append_batch_size
=
False
,
dtype
=
'float32'
)
loc
=
layers
.
data
(
name
=
'target_box'
,
shape
=
[
10
,
4
],
dtype
=
'float32'
)
scores
=
layers
.
data
(
name
=
'scores'
,
shape
=
[
10
,
21
],
dtype
=
'float32'
)
gt_box
=
layers
.
data
(
name
=
'gt_box'
,
shape
=
[
4
],
lod_level
=
1
,
dtype
=
'float32'
)
gt_label
=
layers
.
data
(
name
=
'gt_label'
,
shape
=
[
1
],
lod_level
=
1
,
dtype
=
'int32'
)
loss
=
layers
.
ssd_loss
(
loc
,
scores
,
gt_box
,
gt_label
,
pb
,
pbv
)
self
.
assertIsNotNone
(
loss
)
self
.
assertEqual
(
loss
.
shape
[
-
1
],
1
)
print
(
str
(
program
))
class
TestPriorBox
(
unittest
.
TestCase
):
...
...
@@ -68,7 +127,7 @@ class TestPriorBox(unittest.TestCase):
conv4
=
fluid
.
layers
.
conv2d
(
conv3
,
3
,
3
,
2
)
conv5
=
fluid
.
layers
.
conv2d
(
conv4
,
3
,
3
,
2
)
box
,
var
=
detection
.
prior_box
(
box
,
var
=
layers
.
prior_box
(
inputs
=
[
conv1
,
conv2
,
conv3
,
conv4
,
conv5
,
conv5
],
image
=
images
,
min_ratio
=
20
,
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录