detection.py 67.7 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
2 3 4 5 6
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
7
#    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14 15 16 17
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
All layers just related to the detection neural network.
"""

18 19
from __future__ import print_function

20 21
from .layer_function_generator import generate_layer_fn
from .layer_function_generator import autodoc, templatedoc
22
from ..layer_helper import LayerHelper
D
dengkaipeng 已提交
23
from ..framework import Variable
24 25
from . import tensor
from . import nn
26
from . import ops
M
minqiyang 已提交
27
from ... import compat as cpt
C
chengduoZH 已提交
28
import math
M
minqiyang 已提交
29
import six
30
import numpy
31
from functools import reduce
32

C
chengduoZH 已提交
33
__all__ = [
34
    'prior_box',
C
chengduoZH 已提交
35
    'multi_box_head',
36 37 38 39
    'bipartite_match',
    'target_assign',
    'detection_output',
    'ssd_loss',
40
    'detection_map',
Y
Yuan Gao 已提交
41
    'rpn_target_assign',
42
    'anchor_generator',
W
whs 已提交
43
    'roi_perspective_transform',
44
    'generate_proposal_labels',
45
    'generate_proposals',
46 47
    'iou_similarity',
    'box_coder',
B
Bai Yifan 已提交
48
    'polygon_box_transform',
D
dengkaipeng 已提交
49
    'yolov3_loss',
C
chengduoZH 已提交
50
]
51 52


53 54
def rpn_target_assign(bbox_pred,
                      cls_logits,
Y
Yuan Gao 已提交
55
                      anchor_box,
56
                      anchor_var,
57 58 59
                      gt_boxes,
                      is_crowd,
                      im_info,
Y
Yuan Gao 已提交
60
                      rpn_batch_size_per_im=256,
61 62
                      rpn_straddle_thresh=0.0,
                      rpn_fg_fraction=0.5,
Y
Yuan Gao 已提交
63
                      rpn_positive_overlap=0.7,
64 65
                      rpn_negative_overlap=0.3,
                      use_random=True):
Y
Yuan Gao 已提交
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    """
    ** Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection. **

    This layer can be, for given the  Intersection-over-Union (IoU) overlap
    between anchors and ground truth boxes, to assign classification and
    regression targets to each each anchor, these target labels are used for
    train RPN. The classification targets is a binary class label (of being
    an object or not). Following the paper of Faster-RCNN, the positive labels
    are two kinds of anchors: (i) the anchor/anchors with the highest IoU
    overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap
    higher than rpn_positive_overlap(0.7) with any ground-truth box. Note
    that a single ground-truth box may assign positive labels to multiple
    anchors. A non-positive anchor is when its IoU ratio is lower than
    rpn_negative_overlap (0.3) for all ground-truth boxes. Anchors that are
    neither positive nor negative do not contribute to the training objective.
    The regression targets are the encoded ground-truth boxes associated with
    the positive anchors.

    Args:
85
        bbox_pred(Variable): A 3-D Tensor with shape [N, M, 4] represents the
Y
Yuan Gao 已提交
86 87 88
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
89 90 91
        cls_logits(Variable): A 3-D Tensor with shape [N, M, 1] represents the
            predicted confidence predictions. N is the batch size, 1 is the
            frontground and background sigmoid, M is number of bounding boxes.
Y
Yuan Gao 已提交
92 93 94 95 96 97
        anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
98 99
        anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded 
            variances of anchors.
100
        gt_boxes (Variable): The ground-truth boudding boxes (bboxes) are a 2D
Y
Yuan Gao 已提交
101 102
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
103 104 105
        is_crowd (Variable): A 1-D LoDTensor which indicates groud-truth is crowd.
        im_info (Variable): A 2-D LoDTensor with shape [N, 3]. N is the batch size,
        3 is the height, width and scale.
Y
Yuan Gao 已提交
106
        rpn_batch_size_per_im(int): Total number of RPN examples per image.
107 108 109
        rpn_straddle_thresh(float): Remove RPN anchors that go outside the image
            by straddle_thresh pixels.
        rpn_fg_fraction(float): Target fraction of RoI minibatch that is labeled
Y
Yuan Gao 已提交
110 111 112 113 114 115 116 117 118
            foreground (i.e. class > 0), 0-th class is background.
        rpn_positive_overlap(float): Minimum overlap required between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a positive
            example.
        rpn_negative_overlap(float): Maximum overlap allowed between an anchor
            and ground-truth box for the (anchor, gt box) pair to be a negative
            examples.

    Returns:
M
minqiyang 已提交
119
        tuple:
Y
Yuan Gao 已提交
120
               A tuple(predicted_scores, predicted_location, target_label,
J
jerrywgz 已提交
121 122
               target_bbox, bbox_inside_weight) is returned. The predicted_scores 
               and predicted_location is the predicted result of the RPN.
Y
Yuan Gao 已提交
123 124 125 126 127 128 129
               The target_label and target_bbox is the ground truth,
               respectively. The predicted_location is a 2D Tensor with shape
               [F, 4], and the shape of target_bbox is same as the shape of
               the predicted_location, F is the number of the foreground
               anchors. The predicted_scores is a 2D Tensor with shape
               [F + B, 1], and the shape of target_label is same as the shape
               of the predicted_scores, B is the number of the background
M
minqiyang 已提交
130
               anchors, the F and B is depends on the input of this operator.
J
jerrywgz 已提交
131 132
               Bbox_inside_weight represents whether the predicted loc is fake_fg
               or not and the shape is [F, 4].
Y
Yuan Gao 已提交
133 134 135 136

    Examples:
        .. code-block:: python

137
        bbox_pred = layers.data(name='bbox_pred', shape=[100, 4],
Y
Yuan Gao 已提交
138
                          append_batch_size=False, dtype='float32')
139
        cls_logits = layers.data(name='cls_logits', shape=[100, 1],
Y
Yuan Gao 已提交
140 141 142
                          append_batch_size=False, dtype='float32')
        anchor_box = layers.data(name='anchor_box', shape=[20, 4],
                          append_batch_size=False, dtype='float32')
143
        gt_boxes = layers.data(name='gt_boxes', shape=[10, 4],
Y
Yuan Gao 已提交
144
                         append_batch_size=False, dtype='float32')
J
jerrywgz 已提交
145
        loc_pred, score_pred, loc_target, score_target, bbox_inside_weight =
146 147
            fluid.layers.rpn_target_assign(bbox_pred=bbox_pred,
                                          cls_logits=cls_logits,
Y
Yuan Gao 已提交
148
                                          anchor_box=anchor_box,
149
                                          gt_boxes=gt_boxes)
Y
Yuan Gao 已提交
150 151 152
    """

    helper = LayerHelper('rpn_target_assign', **locals())
153
    # Assign target label to anchors
J
jerrywgz 已提交
154 155 156 157 158 159 160
    loc_index = helper.create_variable_for_type_inference(dtype='int32')
    score_index = helper.create_variable_for_type_inference(dtype='int32')
    target_label = helper.create_variable_for_type_inference(dtype='int32')
    target_bbox = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
    bbox_inside_weight = helper.create_variable_for_type_inference(
        dtype=anchor_box.dtype)
Y
Yuan Gao 已提交
161 162
    helper.append_op(
        type="rpn_target_assign",
163 164 165 166 167 168
        inputs={
            'Anchor': anchor_box,
            'GtBoxes': gt_boxes,
            'IsCrowd': is_crowd,
            'ImInfo': im_info
        },
Y
Yuan Gao 已提交
169 170 171
        outputs={
            'LocationIndex': loc_index,
            'ScoreIndex': score_index,
172
            'TargetLabel': target_label,
J
jerrywgz 已提交
173
            'TargetBBox': target_bbox,
J
jerrywgz 已提交
174
            'BBoxInsideWeight': bbox_inside_weight
Y
Yuan Gao 已提交
175 176 177
        },
        attrs={
            'rpn_batch_size_per_im': rpn_batch_size_per_im,
178
            'rpn_straddle_thresh': rpn_straddle_thresh,
Y
Yuan Gao 已提交
179 180
            'rpn_positive_overlap': rpn_positive_overlap,
            'rpn_negative_overlap': rpn_negative_overlap,
181 182
            'rpn_fg_fraction': rpn_fg_fraction,
            'use_random': use_random
Y
Yuan Gao 已提交
183 184
        })

185 186 187 188
    loc_index.stop_gradient = True
    score_index.stop_gradient = True
    target_label.stop_gradient = True
    target_bbox.stop_gradient = True
J
jerrywgz 已提交
189
    bbox_inside_weight.stop_gradient = True
Y
Yuan Gao 已提交
190

191 192 193 194
    cls_logits = nn.reshape(x=cls_logits, shape=(-1, 1))
    bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4))
    predicted_cls_logits = nn.gather(cls_logits, score_index)
    predicted_bbox_pred = nn.gather(bbox_pred, loc_index)
195

J
jerrywgz 已提交
196
    return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight
Y
Yuan Gao 已提交
197 198


Y
Yuan Gao 已提交
199 200
def detection_output(loc,
                     scores,
201 202 203 204 205 206 207 208 209
                     prior_box,
                     prior_box_var,
                     background_label=0,
                     nms_threshold=0.3,
                     nms_top_k=400,
                     keep_top_k=200,
                     score_threshold=0.01,
                     nms_eta=1.0):
    """
210
    **Detection Output Layer for Single Shot Multibox Detector (SSD).**
211

212 213
    This operation is to get the detection results by performing following
    two steps:
C
caoying03 已提交
214

215 216 217 218 219 220
    1. Decode input bounding box predictions according to the prior boxes.
    2. Get the final detection results by applying multi-class non maximum
       suppression (NMS).

    Please note, this operation doesn't clip the final output bounding boxes
    to the image window.
221 222 223 224 225 226

    Args:
        loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the
            predicted locations of M bounding bboxes. N is the batch size,
            and each bounding box has four coordinate values and the layout
            is [xmin, ymin, xmax, ymax].
Y
Yuan Gao 已提交
227 228 229 230
        scores(Variable): A 3-D Tensor with shape [N, M, C] represents the
            predicted confidence predictions. N is the batch size, C is the
            class number, M is number of bounding boxes. For each category
            there are total M scores which corresponding M bounding boxes.
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
        prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes,
            each box is represented as [xmin, ymin, xmax, ymax],
            [xmin, ymin] is the left top coordinate of the anchor box,
            if the input is image feature map, they are close to the origin
            of the coordinate system. [xmax, ymax] is the right bottom
            coordinate of the anchor box.
        prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group
            of variance.
        background_label(float): The index of background label,
            the background label will be ignored. If set to -1, then all
            categories will be considered.
        nms_threshold(float): The threshold to be used in NMS.
        nms_top_k(int): Maximum number of detections to be kept according
            to the confidences aftern the filtering detections based on
            score_threshold.
        keep_top_k(int): Number of total bboxes to be kept per image after
            NMS step. -1 means keeping all bboxes after NMS step.
        score_threshold(float): Threshold to filter out bounding boxes with
            low confidence score. If not provided, consider all boxes.
        nms_eta(float): The parameter for adaptive NMS.

    Returns:
M
minqiyang 已提交
253 254
        Variable:

255
            The detection outputs is a LoDTensor with shape [No, 6].
256 257 258 259 260 261 262 263
            Each row has six values: [label, confidence, xmin, ymin, xmax, ymax].
            `No` is the total number of detections in this mini-batch. For each
            instance, the offsets in first dimension are called LoD, the offset
            number is N + 1, N is the batch size. The i-th image has
            `LoD[i + 1] - LoD[i]` detected results, if it is 0, the i-th image
            has no detected results. If all images have not detected results,
            all the elements in LoD are 0, and output tensor only contains one
            value, which is -1.
264 265 266 267

    Examples:
        .. code-block:: python

268
            pb = layers.data(name='prior_box', shape=[10, 4],
269
                         append_batch_size=False, dtype='float32')
270
            pbv = layers.data(name='prior_box_var', shape=[10, 4],
271
                          append_batch_size=False, dtype='float32')
272
            loc = layers.data(name='target_box', shape=[2, 21, 4],
273
                          append_batch_size=False, dtype='float32')
274
            scores = layers.data(name='scores', shape=[2, 21, 10],
275
                          append_batch_size=False, dtype='float32')
276
            nmsed_outs = fluid.layers.detection_output(scores=scores,
277 278 279 280 281
                                       loc=loc,
                                       prior_box=pb,
                                       prior_box_var=pbv)
    """
    helper = LayerHelper("detection_output", **locals())
282 283 284 285 286
    decoded_box = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=loc,
        code_type='decode_center_size')
287
    compile_shape = scores.shape
G
merge  
gongweibao 已提交
288
    run_shape = nn.shape(scores)
289
    scores = nn.flatten(x=scores, axis=2)
290
    scores = nn.softmax(input=scores)
291
    scores = nn.reshape(x=scores, shape=compile_shape, actual_shape=run_shape)
Y
Yuan Gao 已提交
292
    scores = nn.transpose(scores, perm=[0, 2, 1])
293
    scores.stop_gradient = True
X
Xin Pan 已提交
294 295
    nmsed_outs = helper.create_variable_for_type_inference(
        dtype=decoded_box.dtype)
296 297 298 299 300 301 302 303 304 305 306 307 308
    helper.append_op(
        type="multiclass_nms",
        inputs={'Scores': scores,
                'BBoxes': decoded_box},
        outputs={'Out': nmsed_outs},
        attrs={
            'background_label': 0,
            'nms_threshold': nms_threshold,
            'nms_top_k': nms_top_k,
            'keep_top_k': keep_top_k,
            'score_threshold': score_threshold,
            'nms_eta': 1.0
        })
309
    nmsed_outs.stop_gradient = True
310
    return nmsed_outs
C
chengduoZH 已提交
311 312


X
Xin Pan 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326
@templatedoc()
def iou_similarity(x, y, name=None):
    """
    ${comment}

    Args:
        x(${x_type}): ${x_comment}
        y(${y_type}): ${y_comment}

    Returns:
        out(${out_type}): ${out_comment}
    """
    helper = LayerHelper("iou_similarity", **locals())
    if name is None:
X
Xin Pan 已提交
327
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
X
Xin Pan 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363
    else:
        out = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    helper.append_op(
        type="iou_similarity",
        inputs={"X": x,
                "Y": y},
        attrs={},
        outputs={"Out": out})
    return out


@templatedoc()
def box_coder(prior_box,
              prior_box_var,
              target_box,
              code_type="encode_center_size",
              box_normalized=True,
              name=None):
    """
    ${comment}

    Args:
        prior_box(${prior_box_type}): ${prior_box_comment}
        prior_box_var(${prior_box_var_type}): ${prior_box_var_comment}
        target_box(${target_box_type}): ${target_box_comment}
        code_type(${code_type_type}): ${code_type_comment}
        box_normalized(${box_normalized_type}): ${box_normalized_comment}

    Returns:
        output_box(${output_box_type}): ${output_box_comment}
    """
    helper = LayerHelper("box_coder", **locals())

    if name is None:
X
Xin Pan 已提交
364 365
        output_box = helper.create_variable_for_type_inference(
            dtype=prior_box.dtype)
X
Xin Pan 已提交
366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395
    else:
        output_box = helper.create_variable(
            name=name, dtype=prior_box.dtype, persistable=False)

    helper.append_op(
        type="box_coder",
        inputs={
            "PriorBox": prior_box,
            "PriorBoxVar": prior_box_var,
            "TargetBox": target_box
        },
        attrs={"code_type": code_type,
               "box_normalized": box_normalized},
        outputs={"OutputBox": output_box})
    return output_box


@templatedoc()
def polygon_box_transform(input, name=None):
    """
    ${comment}

    Args:
        input(${input_type}): ${input_comment}

    Returns:
        output(${output_type}): ${output_comment}
    """
    helper = LayerHelper("polygon_box_transform", **locals())
    if name is None:
X
Xin Pan 已提交
396
        output = helper.create_variable_for_type_inference(dtype=input.dtype)
X
Xin Pan 已提交
397 398 399 400 401 402 403 404 405 406 407 408
    else:
        output = helper.create_variable(
            name=name, dtype=prior_box.input, persistable=False)

    helper.append_op(
        type="polygon_box_transform",
        inputs={"Input": input},
        attrs={},
        outputs={"Output": output})
    return output


D
dengkaipeng 已提交
409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
@templatedoc(op_type="yolov3_loss")
def yolov3_loss(x,
                gtbox,
                anchors,
                class_num,
                ignore_thresh,
                lambda_xy=None,
                lambda_wh=None,
                lambda_conf_obj=None,
                lambda_conf_noobj=None,
                lambda_class=None,
                name=None):
    """
    ${comment}

    Args:
        x (Variable): ${x_comment}
        gtbox (Variable): groud truth boxes, shoulb be in shape of [N, B, 5],
                          in the third dimenstion, class_id, x, y, w, h should
                          be stored and x, y, w, h should be relative valud of
                          input image.
        anchors (list|tuple): ${anchors_comment}
        class_num (int): ${class_num_comment}
        ignore_thresh (float): ${ignore_thresh_comment}
        lambda_xy (float|None): ${lambda_xy_comment}
        lambda_wh (float|None): ${lambda_wh_comment}
        lambda_conf_obj (float|None): ${lambda_conf_obj_comment}
        lambda_conf_noobj (float|None): ${lambda_conf_noobj_comment}
        lambda_class (float|None): ${lambda_class_comment}
        name (string): the name of yolov3 loss

    Returns:
        Variable: A 1-D tensor with shape [1], the value of yolov3 loss

    Raises:
        TypeError: Input x of yolov3_loss must be Variable
        TypeError: Input gtbox of yolov3_loss must be Variable"
        TypeError: Attr anchors of yolov3_loss must be list or tuple
        TypeError: Attr class_num of yolov3_loss must be an integer
        TypeError: Attr ignore_thresh of yolov3_loss must be a float number

    Examples:
    .. code-block:: python

        x = fluid.layers.data(name='x', shape=[10, 255, 13, 13], dtype='float32')
        gtbox = fluid.layers.data(name='gtbox', shape=[10, 6, 5], dtype='float32')
        anchors = [10, 13, 16, 30, 33, 23]
        loss = fluid.layers.yolov3_loss(x=x, gtbox=gtbox, class_num=80
                                        anchors=anchors, ignore_thresh=0.5)
    """
    helper = LayerHelper('yolov3_loss', **locals())

    if not isinstance(x, Variable):
        raise TypeError("Input x of yolov3_loss must be Variable")
    if not isinstance(gtbox, Variable):
        raise TypeError("Input gtbox of yolov3_loss must be Variable")
    if not isinstance(anchors, list) and not isinstance(anchors, tuple):
        raise TypeError("Attr anchors of yolov3_loss must be list or tuple")
    if not isinstance(class_num, int):
        raise TypeError("Attr class_num of yolov3_loss must be an integer")
    if not isinstance(ignore_thresh, float):
        raise TypeError(
            "Attr ignore_thresh of yolov3_loss must be a float number")

    if name is None:
        loss = helper.create_variable_for_type_inference(dtype=x.dtype)
    else:
        loss = helper.create_variable(
            name=name, dtype=x.dtype, persistable=False)

    attrs = {
        "anchors": anchors,
        "class_num": class_num,
        "ignore_thresh": ignore_thresh,
    }

    if lambda_xy is not None and isinstance(lambda_xy, float):
        self.attrs['lambda_xy'] = lambda_xy
    if lambda_wh is not None and isinstance(lambda_wh, float):
        self.attrs['lambda_wh'] = lambda_wh
    if lambda_conf_obj is not None and isinstance(lambda_conf_obj, float):
        self.attrs['lambda_conf_obj'] = lambda_conf_obj
    if lambda_conf_noobj is not None and isinstance(lambda_conf_noobj, float):
        self.attrs['lambda_conf_noobj'] = lambda_conf_noobj
    if lambda_class is not None and isinstance(lambda_class, float):
        self.attrs['lambda_class'] = lambda_class

    helper.append_op(
        type='yolov3_loss',
        inputs={'X': x,
                "GTBox": gtbox},
        outputs={'Loss': loss},
        attrs=attrs)
    return loss


X
Xin Pan 已提交
505
@templatedoc()
506 507
def detection_map(detect_res,
                  label,
508 509
                  class_num,
                  background_label=0,
510 511
                  overlap_threshold=0.3,
                  evaluate_difficult=True,
512 513 514 515
                  has_state=None,
                  input_states=None,
                  out_states=None,
                  ap_version='integral'):
X
Xin Pan 已提交
516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
    """
    ${comment}

    Args:
        detect_res: ${detect_res_comment}
        label:  ${label_comment}
        class_num: ${class_num_comment}
        background_label: ${background_label_comment}
        overlap_threshold: ${overlap_threshold_comment}
        evaluate_difficult: ${evaluate_difficult_comment}
        has_state: ${has_state_comment}
        input_states: If not None, It contains 3 elements:
            1. pos_count ${pos_count_comment}.
            2. true_pos ${true_pos_comment}.
            3. false_pos ${false_pos_comment}.
        out_states: If not None, it contains 3 elements.
            1. accum_pos_count ${accum_pos_count_comment}.
            2. accum_true_pos ${accum_true_pos_comment}.
            3. accum_false_pos ${accum_false_pos_comment}.
        ap_version: ${ap_type_comment}

    Returns:
        ${map_comment}


    Examples:
          .. code-block:: python

            detect_res = fluid.layers.data(
                name='detect_res',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')
            label = fluid.layers.data(
                name='label',
                shape=[10, 6],
                append_batch_size=False,
                dtype='float32')

            map_out = fluid.layers.detection_map(detect_res, label, 21)
    """
557 558
    helper = LayerHelper("detection_map", **locals())

559
    def __create_var(type):
X
Xin Pan 已提交
560
        return helper.create_variable_for_type_inference(dtype=type)
561 562 563 564 565 566 567 568 569 570 571 572

    map_out = __create_var('float32')
    accum_pos_count_out = out_states[0] if out_states else __create_var('int32')
    accum_true_pos_out = out_states[1] if out_states else __create_var(
        'float32')
    accum_false_pos_out = out_states[2] if out_states else __create_var(
        'float32')

    pos_count = input_states[0] if input_states else None
    true_pos = input_states[1] if input_states else None
    false_pos = input_states[2] if input_states else None

573 574 575 576 577
    helper.append_op(
        type="detection_map",
        inputs={
            'Label': label,
            'DetectRes': detect_res,
578
            'HasState': has_state,
579 580 581 582 583 584 585 586 587 588 589 590 591
            'PosCount': pos_count,
            'TruePos': true_pos,
            'FalsePos': false_pos
        },
        outputs={
            'MAP': map_out,
            'AccumPosCount': accum_pos_count_out,
            'AccumTruePos': accum_true_pos_out,
            'AccumFalsePos': accum_false_pos_out
        },
        attrs={
            'overlap_threshold': overlap_threshold,
            'evaluate_difficult': evaluate_difficult,
592 593
            'ap_type': ap_version,
            'class_num': class_num,
594
        })
595
    return map_out
596 597


598 599 600 601
def bipartite_match(dist_matrix,
                    match_type=None,
                    dist_threshold=None,
                    name=None):
602
    """
Y
yuyang18 已提交
603 604
    This operator implements a greedy bipartite matching algorithm, which is
    used to obtain the matching with the maximum distance based on the input
605
    distance matrix. For input 2D matrix, the bipartite matching algorithm can
Y
yuyang18 已提交
606 607 608 609 610 611 612 613
    find the matched column for each row (matched means the largest distance),
    also can find the matched row for each column. And this operator only
    calculate matched indices from column to row. For each instance,
    the number of matched indices is the column number of the input distance
    matrix.

    There are two outputs, matched indices and distance.
    A simple description, this algorithm matched the best (maximum distance)
614 615 616
    row entity to the column entity and the matched indices are not duplicated
    in each row of ColToRowMatchIndices. If the column entity is not matched
    any row entity, set -1 in ColToRowMatchIndices.
C
chengduoZH 已提交
617

Y
yuyang18 已提交
618
    NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor.
619 620 621
    If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
    If Tensor, the height of ColToRowMatchIndices is 1.

Y
yuyang18 已提交
622 623 624
    NOTE: This API is a very low level API. It is used by :code:`ssd_loss`
    layer. Please consider to use :code:`ssd_loss` instead.

625 626 627 628 629
    Args:
        dist_matrix(Variable): This input is a 2-D LoDTensor with shape
            [K, M]. It is pair-wise distance matrix between the entities
            represented by each row and each column. For example, assumed one
            entity is A with shape [K], another entity is B with shape [M]. The
Y
yuyang18 已提交
630 631 632 633 634 635
            dist_matrix[i][j] is the distance between A[i] and B[j]. The bigger
            the distance is, the better matching the pairs are.

            NOTE: This tensor can contain LoD information to represent a batch
            of inputs. One instance of this batch can contain different numbers
            of entities.
636
        match_type(string|None): The type of matching method, should be
Y
yuyang18 已提交
637
           'bipartite' or 'per_prediction'. [default 'bipartite'].
638 639
        dist_threshold(float|None): If `match_type` is 'per_prediction',
            this threshold is to determine the extra matching bboxes based
Y
yuyang18 已提交
640
            on the maximum distance, 0.5 by default.
641
    Returns:
Y
yuyang18 已提交
642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
        tuple: a tuple with two elements is returned. The first is
        matched_indices, the second is matched_distance.

        The matched_indices is a 2-D Tensor with shape [N, M] in int type.
        N is the batch size. If match_indices[i][j] is -1, it
        means B[j] does not match any entity in i-th instance.
        Otherwise, it means B[j] is matched to row
        match_indices[i][j] in i-th instance. The row number of
        i-th instance is saved in match_indices[i][j].

        The matched_distance is a 2-D Tensor with shape [N, M] in float type
        . N is batch size. If match_indices[i][j] is -1,
        match_distance[i][j] is also -1.0. Otherwise, assumed
        match_distance[i][j] = d, and the row offsets of each instance
        are called LoD. Then match_distance[i][j] =
        dist_matrix[d+LoD[i]][j].

    Examples:

        >>> x = fluid.layers.data(name='x', shape=[4], dtype='float32')
        >>> y = fluid.layers.data(name='y', shape=[4], dtype='float32')
        >>> iou = fluid.layers.iou_similarity(x=x, y=y)
        >>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
665 666
    """
    helper = LayerHelper('bipartite_match', **locals())
X
Xin Pan 已提交
667 668 669
    match_indices = helper.create_variable_for_type_inference(dtype='int32')
    match_distance = helper.create_variable_for_type_inference(
        dtype=dist_matrix.dtype)
670 671 672
    helper.append_op(
        type='bipartite_match',
        inputs={'DistMat': dist_matrix},
673 674 675 676
        attrs={
            'match_type': match_type,
            'dist_threshold': dist_threshold,
        },
677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693
        outputs={
            'ColToRowMatchIndices': match_indices,
            'ColToRowMatchDist': match_distance
        })
    return match_indices, match_distance


def target_assign(input,
                  matched_indices,
                  negative_indices=None,
                  mismatch_value=None,
                  name=None):
    """
    This operator can be, for given the target bounding boxes or labels,
    to assign classification and regression targets to each prediction as well as
    weights to prediction. The weights is used to specify which prediction would
    not contribute to training loss.
C
chengduoZH 已提交
694

695 696 697 698 699
    For each instance, the output `out` and`out_weight` are assigned based on
    `match_indices` and `negative_indices`.
    Assumed that the row offset for each instance in `input` is called lod,
    this operator assigns classification/regression targets by performing the
    following steps:
C
chengduoZH 已提交
700

701
    1. Assigning all outpts based on `match_indices`:
C
chengduoZH 已提交
702

703 704 705
    .. code-block:: text

        If id = match_indices[i][j] > 0,
C
chengduoZH 已提交
706

707 708
            out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
            out_weight[i][j] = 1.
C
chengduoZH 已提交
709

710
        Otherwise,
C
chengduoZH 已提交
711

712 713
            out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
            out_weight[i][j] = 0.
C
chengduoZH 已提交
714

715
    2. Assigning out_weight based on `neg_indices` if `neg_indices` is provided:
C
chengduoZH 已提交
716

717 718
    Assumed that the row offset for each instance in `neg_indices` is called neg_lod,
    for i-th instance and each `id` of neg_indices in this instance:
M
minqiyang 已提交
719

720
    .. code-block:: text
C
chengduoZH 已提交
721

722 723 724 725 726 727 728 729 730 731 732 733 734 735 736
        out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
        out_weight[i][id] = 1.0

    Args:
       inputs (Variable): This input is a 3D LoDTensor with shape [M, P, K].
       matched_indices (Variable): Tensor<int>), The input matched indices
           is 2D Tenosr<int32> with shape [N, P], If MatchIndices[i][j] is -1,
           the j-th entity of column is not matched to any entity of row in
           i-th instance.
       negative_indices (Variable): The input negative example indices are
           an optional input with shape [Neg, 1] and int32 type, where Neg is
           the total number of negative example indices.
       mismatch_value (float32): Fill this value to the mismatched location.

    Returns:
M
minqiyang 已提交
737 738 739 740 741
        tuple:
               A tuple(out, out_weight) is returned. out is a 3D Tensor with
               shape [N, P, K], N and P is the same as they are in
               `neg_indices`, K is the same as it in input of X. If
               `match_indices[i][j]`. out_weight is the weight for output with
742 743 744 745 746 747 748 749 750 751 752
               the shape of [N, P, 1].

    Examples:

        .. code-block:: python

            matched_indices, matched_dist = fluid.layers.bipartite_match(iou)
            gt = layers.data(
                        name='gt', shape=[1, 1], dtype='int32', lod_level=1)
            trg, trg_weight = layers.target_assign(
                            gt, matched_indices, mismatch_value=0)
753 754
    """
    helper = LayerHelper('target_assign', **locals())
X
Xin Pan 已提交
755 756
    out = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_weight = helper.create_variable_for_type_inference(dtype='float32')
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
    helper.append_op(
        type='target_assign',
        inputs={
            'X': input,
            'MatchIndices': matched_indices,
            'NegIndices': negative_indices
        },
        outputs={'Out': out,
                 'OutWeight': out_weight},
        attrs={'mismatch_value': mismatch_value})
    return out, out_weight


def ssd_loss(location,
             confidence,
             gt_box,
             gt_label,
             prior_box,
             prior_box_var=None,
             background_label=0,
             overlap_threshold=0.5,
             neg_pos_ratio=3.0,
             neg_overlap=0.5,
             loc_loss_weight=1.0,
             conf_loss_weight=1.0,
             match_type='per_prediction',
             mining_type='max_negative',
784
             normalize=True,
785 786
             sample_size=None):
    """
Y
yuyang18 已提交
787
    **Multi-box loss layer for object detection algorithm of SSD**
788 789 790 791 792 793 794

    This layer is to compute dection loss for SSD given the location offset
    predictions, confidence predictions, prior boxes and ground-truth boudding
    boxes and labels, and the type of hard example mining. The returned loss
    is a weighted sum of the localization loss (or regression loss) and
    confidence loss (or classification loss) by performing the following steps:

Y
yuyang18 已提交
795
    1. Find matched bounding box by bipartite matching algorithm.
Y
yuyang18 已提交
796

797
      1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
Y
yuyang18 已提交
798

799
      1.2 Compute matched boundding box by bipartite matching algorithm.
Y
yuyang18 已提交
800

801
    2. Compute confidence for mining hard examples
Y
yuyang18 已提交
802

803
      2.1. Get the target label based on matched indices.
Y
yuyang18 已提交
804

805
      2.2. Compute confidence loss.
Y
yuyang18 已提交
806

807 808
    3. Apply hard example mining to get the negative example indices and update
       the matched indices.
Y
yuyang18 已提交
809

810
    4. Assign classification and regression targets
Y
yuyang18 已提交
811

812
      4.1. Encoded bbox according to the prior boxes.
Y
yuyang18 已提交
813

814
      4.2. Assign regression targets.
Y
yuyang18 已提交
815

816
      4.3. Assign classification targets.
Y
yuyang18 已提交
817

818
    5. Compute the overall objective loss.
Y
yuyang18 已提交
819

820
      5.1 Compute confidence loss.
Y
yuyang18 已提交
821

822
      5.1 Compute localization loss.
Y
yuyang18 已提交
823

824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846
      5.3 Compute the overall weighted loss.

    Args:
        location (Variable): The location predictions are a 3D Tensor with
            shape [N, Np, 4], N is the batch size, Np is total number of
            predictions for each instance. 4 is the number of coordinate values,
            the layout is [xmin, ymin, xmax, ymax].
        confidence (Variable): The confidence predictions are a 3D Tensor
            with shape [N, Np, C], N and Np are the same as they are in
            `location`, C is the class number.
        gt_box (Variable): The ground-truth boudding boxes (bboxes) are a 2D
            LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth
            bboxes of mini-batch input.
        gt_label (Variable): The ground-truth labels are a 2D LoDTensor
            with shape [Ng, 1].
        prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4].
        prior_box_var (Variable): The variance of prior boxes are a 2D Tensor
            with shape [Np, 4].
        background_label (int): The index of background label, 0 by default.
        overlap_threshold (float): If match_type is 'per_prediction', use
            `overlap_threshold` to determine the extra matching bboxes when
             finding matched boxes. 0.5 by default.
        neg_pos_ratio (float): The ratio of the negative boxes to the positive
847
            boxes, used only when mining_type is 'max_negative', 3.0 by defalut.
848
        neg_overlap (float): The negative overlap upper bound for the unmatched
849
            predictions. Use only when mining_type is 'max_negative',
850 851 852 853
            0.5 by default.
        loc_loss_weight (float): Weight for localization loss, 1.0 by default.
        conf_loss_weight (float): Weight for confidence loss, 1.0 by default.
        match_type (str): The type of matching method during training, should
854
            be 'bipartite' or 'per_prediction', 'per_prediction' by defalut.
855 856
        mining_type (str): The hard example mining type, should be 'hard_example'
            or 'max_negative', now only support `max_negative`.
857
        normalize (bool): Whether to normalize the SSD loss by the total number
Y
yuyang18 已提交
858
            of output locations, True by default.
859 860
        sample_size (int): The max sample size of negative box, used only when
            mining_type is 'hard_example'.
861 862

    Returns:
Y
yuyang18 已提交
863 864
        The weighted sum of the localization loss and confidence loss, with \
        shape [N * Np, 1], N and Np are the same as they are in `location`.
865 866

    Raises:
Y
yuyang18 已提交
867 868
        ValueError: If mining_type is 'hard_example', now only support mining \
        type of `max_negative`.
Y
yuyang18 已提交
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887

    Examples:
        >>> pb = fluid.layers.data(
        >>>                   name='prior_box',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> pbv = fluid.layers.data(
        >>>                   name='prior_box_var',
        >>>                   shape=[10, 4],
        >>>                   append_batch_size=False,
        >>>                   dtype='float32')
        >>> loc = fluid.layers.data(name='target_box', shape=[10, 4], dtype='float32')
        >>> scores = fluid.layers.data(name='scores', shape=[10, 21], dtype='float32')
        >>> gt_box = fluid.layers.data(
        >>>         name='gt_box', shape=[4], lod_level=1, dtype='float32')
        >>> gt_label = fluid.layers.data(
        >>>         name='gt_label', shape=[1], lod_level=1, dtype='float32')
        >>> loss = fluid.layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv)
888 889 890 891 892 893 894
    """

    helper = LayerHelper('ssd_loss', **locals())
    if mining_type != 'max_negative':
        raise ValueError("Only support mining_type == max_negative now.")

    num, num_prior, num_class = confidence.shape
G
merge  
gongweibao 已提交
895
    conf_shape = nn.shape(confidence)
896 897

    def __reshape_to_2d(var):
898
        return nn.flatten(x=var, axis=2)
899 900 901 902 903

    # 1. Find matched boundding box by prior box.
    #   1.1 Compute IOU similarity between ground-truth boxes and prior boxes.
    iou = iou_similarity(x=gt_box, y=prior_box)
    #   1.2 Compute matched boundding box by bipartite matching algorithm.
904 905
    matched_indices, matched_dist = bipartite_match(iou, match_type,
                                                    overlap_threshold)
906 907 908

    # 2. Compute confidence for mining hard examples
    # 2.1. Get the target label based on matched indices
909 910
    gt_label = nn.reshape(
        x=gt_label, shape=(len(gt_label.shape) - 1) * (0, ) + (-1, 1))
911
    gt_label.stop_gradient = True
912 913 914 915 916 917 918
    target_label, _ = target_assign(
        gt_label, matched_indices, mismatch_value=background_label)
    # 2.2. Compute confidence loss.
    # Reshape confidence to 2D tensor.
    confidence = __reshape_to_2d(confidence)
    target_label = tensor.cast(x=target_label, dtype='int64')
    target_label = __reshape_to_2d(target_label)
919
    target_label.stop_gradient = True
920 921
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    # 3. Mining hard examples
G
merge  
gongweibao 已提交
922
    actual_shape = nn.slice(conf_shape, axes=[0], starts=[0], ends=[2])
923
    actual_shape.stop_gradient = True
924
    conf_loss = nn.reshape(
925
        x=conf_loss, shape=(num, num_prior), actual_shape=actual_shape)
926
    conf_loss.stop_gradient = True
X
Xin Pan 已提交
927
    neg_indices = helper.create_variable_for_type_inference(dtype='int32')
928
    dtype = matched_indices.dtype
X
Xin Pan 已提交
929 930
    updated_matched_indices = helper.create_variable_for_type_inference(
        dtype=dtype)
931 932 933 934 935 936 937 938 939 940 941 942 943 944
    helper.append_op(
        type='mine_hard_examples',
        inputs={
            'ClsLoss': conf_loss,
            'LocLoss': None,
            'MatchIndices': matched_indices,
            'MatchDist': matched_dist,
        },
        outputs={
            'NegIndices': neg_indices,
            'UpdatedMatchIndices': updated_matched_indices
        },
        attrs={
            'neg_pos_ratio': neg_pos_ratio,
B
Bai Yifan 已提交
945
            'neg_dist_threshold': neg_overlap,
946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
            'mining_type': mining_type,
            'sample_size': sample_size,
        })

    # 4. Assign classification and regression targets
    # 4.1. Encoded bbox according to the prior boxes.
    encoded_bbox = box_coder(
        prior_box=prior_box,
        prior_box_var=prior_box_var,
        target_box=gt_box,
        code_type='encode_center_size')
    # 4.2. Assign regression targets
    target_bbox, target_loc_weight = target_assign(
        encoded_bbox, updated_matched_indices, mismatch_value=background_label)
    # 4.3. Assign classification targets
    target_label, target_conf_weight = target_assign(
        gt_label,
        updated_matched_indices,
        negative_indices=neg_indices,
        mismatch_value=background_label)

    # 5. Compute loss.
    # 5.1 Compute confidence loss.
    target_label = __reshape_to_2d(target_label)
    target_label = tensor.cast(x=target_label, dtype='int64')
971

972 973 974 975
    conf_loss = nn.softmax_with_cross_entropy(confidence, target_label)
    target_conf_weight = __reshape_to_2d(target_conf_weight)
    conf_loss = conf_loss * target_conf_weight

976 977 978 979
    # the target_label and target_conf_weight do not have gradient.
    target_label.stop_gradient = True
    target_conf_weight.stop_gradient = True

980 981 982 983 984 985 986 987
    # 5.2 Compute regression loss.
    location = __reshape_to_2d(location)
    target_bbox = __reshape_to_2d(target_bbox)

    loc_loss = nn.smooth_l1(location, target_bbox)
    target_loc_weight = __reshape_to_2d(target_loc_weight)
    loc_loss = loc_loss * target_loc_weight

988 989 990 991
    # the target_bbox and target_loc_weight do not have gradient.
    target_bbox.stop_gradient = True
    target_loc_weight.stop_gradient = True

992 993
    # 5.3 Compute overall weighted loss.
    loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss
994
    # reshape to [N, Np], N is the batch size and Np is the prior box number.
995
    loss = nn.reshape(x=loss, shape=(num, num_prior), actual_shape=actual_shape)
996 997 998 999 1000
    loss = nn.reduce_sum(loss, dim=1, keep_dim=True)
    if normalize:
        normalizer = nn.reduce_sum(target_loc_weight)
        loss = loss / normalizer

1001
    return loss
C
chengduoZH 已提交
1002 1003


1004 1005 1006 1007
def prior_box(input,
              image,
              min_sizes,
              max_sizes=None,
1008
              aspect_ratios=[1.],
1009 1010 1011 1012 1013
              variance=[0.1, 0.1, 0.2, 0.2],
              flip=False,
              clip=False,
              steps=[0.0, 0.0],
              offset=0.5,
1014 1015
              name=None,
              min_max_aspect_ratios_order=False):
1016
    """
Q
update  
qiaolongfei 已提交
1017
    **Prior Box Operator**
1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028

    Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm.
    Each position of the input produce N prior boxes, N is determined by
    the count of min_sizes, max_sizes and aspect_ratios, The size of the
    box is in range(min_size, max_size) interval, which is generated in
    sequence according to the aspect_ratios.

    Args:
       input(Variable): The Input Variables, the format is NCHW.
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
1029
       min_sizes(list|tuple|float value): min sizes of generated prior boxes.
1030 1031
       max_sizes(list|tuple|None): max sizes of generated prior boxes.
            Default: None.
1032 1033
       aspect_ratios(list|tuple|float value): the aspect ratios of generated
            prior boxes. Default: [1.].
1034 1035 1036 1037
       variance(list|tuple): the variances to be encoded in prior boxes.
            Default:[0.1, 0.1, 0.2, 0.2].
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
1038
       step(list|turple): Prior boxes step across width and height, If
1039
            step[0] == 0.0/step[1] == 0.0, the prior boxes step across
1040 1041
            height/weight of the input will be automatically calculated.
            Default: [0., 0.]
1042 1043
       offset(float): Prior boxes center offset. Default: 0.5
       name(str): Name of the prior box op. Default: None.
1044
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1045
            in order of [min, max, aspect_ratios], which is consistent with
1046 1047 1048
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the final
            detection results. Default: False.
1049 1050

    Returns:
Q
update  
qiaolongfei 已提交
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
        tuple: A tuple with two Variable (boxes, variances)

        boxes: the output prior boxes of PriorBox.
        The layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input,
        num_priors is the total
        box count of each position of input.

        variances: the expanded variances of PriorBox.
        The layout is [H, W, num_priors, 4].
        H is the height of input, W is the width of input
        num_priors is the total
        box count of each position of input
1064 1065 1066 1067


    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1068 1069 1070 1071 1072 1073 1074

            box, var = fluid.layers.prior_box(
                input=conv1,
                image=images,
                min_sizes=[100.],
                flip=True,
                clip=True)
1075 1076 1077 1078
    """
    helper = LayerHelper("prior_box", **locals())
    dtype = helper.input_dtype()

1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(min_sizes):
        min_sizes = [min_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(steps) and len(steps) == 2):
        raise ValueError('steps should be a list or tuple ',
                         'with length 2, (step_width, step_height).')

    min_sizes = list(map(float, min_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    steps = list(map(float, steps))

1094 1095 1096 1097 1098 1099 1100 1101
    attrs = {
        'min_sizes': min_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'flip': flip,
        'clip': clip,
        'step_w': steps[0],
        'step_h': steps[1],
1102 1103
        'offset': offset,
        'min_max_aspect_ratios_order': min_max_aspect_ratios_order
1104 1105
    }
    if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0:
1106 1107
        if not _is_list_or_tuple_(max_sizes):
            max_sizes = [max_sizes]
1108 1109
        attrs['max_sizes'] = max_sizes

X
Xin Pan 已提交
1110 1111
    box = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123
    helper.append_op(
        type="prior_box",
        inputs={"Input": input,
                "Image": image},
        outputs={"Boxes": box,
                 "Variances": var},
        attrs=attrs, )
    box.stop_gradient = True
    var.stop_gradient = True
    return box, var


C
chengduoZH 已提交
1124
def multi_box_head(inputs,
C
chengduoZH 已提交
1125 1126
                   image,
                   base_size,
C
chengduoZH 已提交
1127
                   num_classes,
C
chengduoZH 已提交
1128
                   aspect_ratios,
1129 1130
                   min_ratio=None,
                   max_ratio=None,
C
chengduoZH 已提交
1131 1132
                   min_sizes=None,
                   max_sizes=None,
C
chengduoZH 已提交
1133 1134 1135 1136
                   steps=None,
                   step_w=None,
                   step_h=None,
                   offset=0.5,
1137 1138
                   variance=[0.1, 0.1, 0.2, 0.2],
                   flip=True,
C
chengduoZH 已提交
1139
                   clip=False,
C
chengduoZH 已提交
1140
                   kernel_size=1,
C
chengduoZH 已提交
1141
                   pad=0,
C
chengduoZH 已提交
1142
                   stride=1,
1143 1144
                   name=None,
                   min_max_aspect_ratios_order=False):
C
chengduoZH 已提交
1145
    """
C
chengduoZH 已提交
1146 1147
    Generate prior boxes for SSD(Single Shot MultiBox Detector)
    algorithm. The details of this algorithm, please refer the
Q
update  
qiaolongfei 已提交
1148
    section 2.2 of SSD paper `SSD: Single Shot MultiBox Detector
C
chengduoZH 已提交
1149
    <https://arxiv.org/abs/1512.02325>`_ .
C
chengduoZH 已提交
1150 1151

    Args:
1152
       inputs(list|tuple): The list of input Variables, the format
C
chengduoZH 已提交
1153
            of all Variables is NCHW.
C
chengduoZH 已提交
1154 1155
       image(Variable): The input image data of PriorBoxOp,
            the layout is NCHW.
C
chengduoZH 已提交
1156 1157
       base_size(int): the base_size is used to get min_size
            and max_size according to min_ratio and max_ratio.
C
chengduoZH 已提交
1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
       num_classes(int): The number of classes.
       aspect_ratios(list|tuple): the aspect ratios of generated prior
            boxes. The length of input and aspect_ratios must be equal.
       min_ratio(int): the min ratio of generated prior boxes.
       max_ratio(int): the max ratio of generated prior boxes.
       min_sizes(list|tuple|None): If `len(inputs) <=2`,
            min_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       max_sizes(list|tuple|None): If `len(inputs) <=2`,
            max_sizes must be set up, and the length of min_sizes
            should equal to the length of inputs. Default: None.
       steps(list|tuple): If step_w and step_h are the same,
            step_w and step_h can be replaced by steps.
       step_w(list|tuple): Prior boxes step
            across width. If step_w[i] == 0.0, the prior boxes step
            across width of the inputs[i] will be automatically
            calculated. Default: None.
       step_h(list|tuple): Prior boxes step across height, If
            step_h[i] == 0.0, the prior boxes step across height of
            the inputs[i] will be automatically calculated. Default: None.
       offset(float): Prior boxes center offset. Default: 0.5
       variance(list|tuple): the variances to be encoded in prior boxes.
1180
            Default:[0.1, 0.1, 0.2, 0.2].
C
chengduoZH 已提交
1181 1182 1183 1184 1185 1186
       flip(bool): Whether to flip aspect ratios. Default:False.
       clip(bool): Whether to clip out-of-boundary boxes. Default: False.
       kernel_size(int): The kernel size of conv2d. Default: 1.
       pad(int|list|tuple): The padding of conv2d. Default:0.
       stride(int|list|tuple): The stride of conv2d. Default:1,
       name(str): Name of the prior box layer. Default: None.
1187
       min_max_aspect_ratios_order(bool): If set True, the output prior box is
M
minqiyang 已提交
1188
            in order of [min, max, aspect_ratios], which is consistent with
1189 1190 1191
            Caffe. Please note, this order affects the weights order of
            convolution layer followed by and does not affect the fininal
            detection results. Default: False.
C
chengduoZH 已提交
1192 1193

    Returns:
Q
update  
qiaolongfei 已提交
1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
        tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances)

        mbox_loc: The predicted boxes' location of the inputs. The layout
        is [N, H*W*Priors, 4]. where Priors is the number of predicted
        boxes each position of each input.

        mbox_conf: The predicted boxes' confidence of the inputs. The layout
        is [N, H*W*Priors, C]. where Priors is the number of predicted boxes
        each position of each input and C is the number of Classes.

        boxes: the output prior boxes of PriorBox. The layout is [num_priors, 4].
        num_priors is the total box count of each position of inputs.

        variances: the expanded variances of PriorBox. The layout is
        [num_priors, 4]. num_priors is the total box count of each position of inputs
C
chengduoZH 已提交
1209

C
chengduoZH 已提交
1210 1211 1212

    Examples:
        .. code-block:: python
Q
update  
qiaolongfei 已提交
1213 1214

          mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head(
C
chengduoZH 已提交
1215 1216 1217 1218 1219 1220 1221 1222 1223 1224
            inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
            image=images,
            num_classes=21,
            min_ratio=20,
            max_ratio=90,
            aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
            base_size=300,
            offset=0.5,
            flip=True,
            clip=True)
C
chengduoZH 已提交
1225 1226
    """

C
chengduoZH 已提交
1227
    def _reshape_with_axis_(input, axis=1):
1228
        out = nn.flatten(x=input, axis=axis)
C
chengduoZH 已提交
1229
        return out
1230

1231 1232
    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))
1233

C
chengduoZH 已提交
1234 1235 1236 1237
    def _is_list_or_tuple_and_equal(data, length, err_info):
        if not (_is_list_or_tuple_(data) and len(data) == length):
            raise ValueError(err_info)

1238 1239
    if not _is_list_or_tuple_(inputs):
        raise ValueError('inputs should be a list or tuple.')
C
chengduoZH 已提交
1240

C
chengduoZH 已提交
1241 1242 1243 1244 1245
    num_layer = len(inputs)

    if num_layer <= 2:
        assert min_sizes is not None and max_sizes is not None
        assert len(min_sizes) == num_layer and len(max_sizes) == num_layer
1246
    elif min_sizes is None and max_sizes is None:
C
chengduoZH 已提交
1247 1248 1249
        min_sizes = []
        max_sizes = []
        step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2)))
M
minqiyang 已提交
1250
        for ratio in six.moves.range(min_ratio, max_ratio + 1, step):
C
chengduoZH 已提交
1251 1252 1253 1254 1255
            min_sizes.append(base_size * ratio / 100.)
            max_sizes.append(base_size * (ratio + step) / 100.)
        min_sizes = [base_size * .10] + min_sizes
        max_sizes = [base_size * .20] + max_sizes

C
chengduoZH 已提交
1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278
    if aspect_ratios:
        _is_list_or_tuple_and_equal(
            aspect_ratios, num_layer,
            'aspect_ratios should be list or tuple, and the length of inputs '
            'and aspect_ratios should be the same.')
    if step_h:
        _is_list_or_tuple_and_equal(
            step_h, num_layer,
            'step_h should be list or tuple, and the length of inputs and '
            'step_h should be the same.')
    if step_w:
        _is_list_or_tuple_and_equal(
            step_w, num_layer,
            'step_w should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
    if steps:
        _is_list_or_tuple_and_equal(
            steps, num_layer,
            'steps should be list or tuple, and the length of inputs and '
            'step_w should be the same.')
        step_w = steps
        step_h = steps

C
chengduoZH 已提交
1279 1280
    mbox_locs = []
    mbox_confs = []
C
chengduoZH 已提交
1281 1282
    box_results = []
    var_results = []
C
chengduoZH 已提交
1283 1284
    for i, input in enumerate(inputs):
        min_size = min_sizes[i]
C
chengduoZH 已提交
1285 1286
        max_size = max_sizes[i]

1287
        if not _is_list_or_tuple_(min_size):
C
chengduoZH 已提交
1288
            min_size = [min_size]
C
chengduoZH 已提交
1289 1290
        if not _is_list_or_tuple_(max_size):
            max_size = [max_size]
C
chengduoZH 已提交
1291 1292 1293 1294

        aspect_ratio = []
        if aspect_ratios is not None:
            aspect_ratio = aspect_ratios[i]
1295
            if not _is_list_or_tuple_(aspect_ratio):
C
chengduoZH 已提交
1296
                aspect_ratio = [aspect_ratio]
1297
        step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0]
C
chengduoZH 已提交
1298

1299
        box, var = prior_box(input, image, min_size, max_size, aspect_ratio,
1300 1301
                             variance, flip, clip, step, offset, None,
                             min_max_aspect_ratios_order)
C
chengduoZH 已提交
1302 1303 1304 1305 1306

        box_results.append(box)
        var_results.append(var)

        num_boxes = box.shape[2]
C
chengduoZH 已提交
1307

1308
        # get loc
Y
Yuan Gao 已提交
1309
        num_loc_output = num_boxes * 4
1310
        mbox_loc = nn.conv2d(
C
chengduoZH 已提交
1311
            input=input,
1312 1313 1314 1315 1316
            num_filters=num_loc_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)

1317
        mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1])
1318
        compile_shape = [
1319
            mbox_loc.shape[0], cpt.floor_division(
M
minqiyang 已提交
1320
                mbox_loc.shape[1] * mbox_loc.shape[2] * mbox_loc.shape[3], 4), 4
Y
Yuan Gao 已提交
1321
        ]
1322 1323 1324
        run_shape = tensor.assign(numpy.array([0, -1, 4]).astype("int32"))
        mbox_loc_flatten = nn.reshape(
            mbox_loc, shape=compile_shape, actual_shape=run_shape)
Y
Yuan Gao 已提交
1325
        mbox_locs.append(mbox_loc_flatten)
C
chengduoZH 已提交
1326

1327
        # get conf
C
chengduoZH 已提交
1328
        num_conf_output = num_boxes * num_classes
1329
        conf_loc = nn.conv2d(
C
chengduoZH 已提交
1330
            input=input,
1331 1332 1333 1334
            num_filters=num_conf_output,
            filter_size=kernel_size,
            padding=pad,
            stride=stride)
1335
        conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1])
1336 1337
        new_shape = [0, -1, num_classes]
        compile_shape = [
1338 1339 1340
            conf_loc.shape[0],
            cpt.floor_division(conf_loc.shape[1] * conf_loc.shape[2] *
                               conf_loc.shape[3], num_classes), num_classes
Y
Yuan Gao 已提交
1341
        ]
1342 1343 1344 1345
        run_shape = tensor.assign(
            numpy.array([0, -1, num_classes]).astype("int32"))
        conf_loc_flatten = nn.reshape(
            conf_loc, shape=compile_shape, actual_shape=run_shape)
Y
Yuan Gao 已提交
1346
        mbox_confs.append(conf_loc_flatten)
C
chengduoZH 已提交
1347

C
chengduoZH 已提交
1348 1349 1350
    if len(box_results) == 1:
        box = box_results[0]
        var = var_results[0]
Y
Yuan Gao 已提交
1351 1352
        mbox_locs_concat = mbox_locs[0]
        mbox_confs_concat = mbox_confs[0]
C
chengduoZH 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361
    else:
        reshaped_boxes = []
        reshaped_vars = []
        for i in range(len(box_results)):
            reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3))
            reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3))

        box = tensor.concat(reshaped_boxes)
        var = tensor.concat(reshaped_vars)
Y
Yuan Gao 已提交
1362 1363
        mbox_locs_concat = tensor.concat(mbox_locs, axis=1)
        mbox_confs_concat = tensor.concat(mbox_confs, axis=1)
C
chengduoZH 已提交
1364

1365 1366
    box.stop_gradient = True
    var.stop_gradient = True
Y
Yuan Gao 已提交
1367
    return mbox_locs_concat, mbox_confs_concat, box, var
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448


def anchor_generator(input,
                     anchor_sizes=None,
                     aspect_ratios=None,
                     variance=[0.1, 0.1, 0.2, 0.2],
                     stride=None,
                     offset=0.5,
                     name=None):
    """
    **Anchor generator operator**

    Generate anchors for Faster RCNN algorithm.
    Each position of the input produce N anchors, N =
    size(anchor_sizes) * size(aspect_ratios). The order of generated anchors
    is firstly aspect_ratios loop then anchor_sizes loop.

    Args:
       input(Variable): The input feature map, the format is NCHW.
       anchor_sizes(list|tuple|float): The anchor sizes of generated anchors,
       given in absolute pixels e.g. [64., 128., 256., 512.].
       For instance, the anchor size of 64 means the area of this anchor equals to 64**2.
       aspect_ratios(list|tuple|float): The height / width ratios of generated
            anchors, e.g. [0.5, 1.0, 2.0].
       variance(list|tuple): The variances to be used in box regression deltas.
            Default:[0.1, 0.1, 0.2, 0.2].
       stride(list|turple): The anchors stride across width and height,
            e.g. [16.0, 16.0]
       offset(float): Prior boxes center offset. Default: 0.5
       name(str): Name of the prior box op. Default: None.

    Returns:
        Anchors(Variable):  The output anchors with a layout of [H, W, num_anchors, 4].
              H is the height of input, W is the width of input,
              num_anchors is the box count of each position.
              Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
        Variances(Variable): The expanded variances of anchors
              with a layout of [H, W, num_priors, 4].
              H is the height of input, W is the width of input
              num_anchors is the box count of each position.
              Each variance is in (xcenter, ycenter, w, h) format.


    Examples:

        .. code-block:: python

            anchor, var = anchor_generator(
                input=conv1,
                anchor_sizes=[64, 128, 256, 512],
                aspect_ratios=[0.5, 1.0, 2.0],
                variance=[0.1, 0.1, 0.2, 0.2],
                stride=[16.0, 16.0],
                offset=0.5)
    """
    helper = LayerHelper("anchor_generator", **locals())
    dtype = helper.input_dtype()

    def _is_list_or_tuple_(data):
        return (isinstance(data, list) or isinstance(data, tuple))

    if not _is_list_or_tuple_(anchor_sizes):
        anchor_sizes = [anchor_sizes]
    if not _is_list_or_tuple_(aspect_ratios):
        aspect_ratios = [aspect_ratios]
    if not (_is_list_or_tuple_(stride) and len(stride) == 2):
        raise ValueError('stride should be a list or tuple ',
                         'with length 2, (stride_width, stride_height).')

    anchor_sizes = list(map(float, anchor_sizes))
    aspect_ratios = list(map(float, aspect_ratios))
    stride = list(map(float, stride))

    attrs = {
        'anchor_sizes': anchor_sizes,
        'aspect_ratios': aspect_ratios,
        'variances': variance,
        'stride': stride,
        'offset': offset
    }

X
Xin Pan 已提交
1449 1450
    anchor = helper.create_variable_for_type_inference(dtype)
    var = helper.create_variable_for_type_inference(dtype)
1451 1452 1453 1454 1455 1456 1457 1458 1459
    helper.append_op(
        type="anchor_generator",
        inputs={"Input": input},
        outputs={"Anchors": anchor,
                 "Variances": var},
        attrs=attrs, )
    anchor.stop_gradient = True
    var.stop_gradient = True
    return anchor, var
1460 1461


W
whs 已提交
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495
def roi_perspective_transform(input,
                              rois,
                              transformed_height,
                              transformed_width,
                              spatial_scale=1.0):
    """
    ROI perspective transform op.

    Args:
        input (Variable): The input of ROIPerspectiveTransformOp. The format of 
                          input tensor is NCHW. Where N is batch size, C is the
                          number of input channels, H is the height of the feature,
                          and W is the width of the feature.
        rois (Variable):  ROIs (Regions of Interest) to be transformed. It should be
                          a 2-D LoDTensor of shape (num_rois, 8). Given as 
                          [[x1, y1, x2, y2, x3, y3, x4, y4], ...], (x1, y1) is the 
                          top left coordinates, and (x2, y2) is the top right 
                          coordinates, and (x3, y3) is the bottom right coordinates, 
                          and (x4, y4) is the bottom left coordinates.
        transformed_height (integer): The height of transformed output.
        transformed_height (integer): The width of transformed output.
        spatial_scale (float): Spatial scale factor to scale ROI coords. Default: 1.0

    Returns:
        Variable: The output of ROIPerspectiveTransformOp which is a 4-D tensor with shape 
                  (num_rois, channels, transformed_h, transformed_w).

    Examples:
        .. code-block:: python

            out = fluid.layers.roi_perspective_transform(input, rois, 7, 7, 1.0)
    """
    helper = LayerHelper('roi_perspective_transform', **locals())
    dtype = helper.input_dtype()
X
Xin Pan 已提交
1496
    out = helper.create_variable_for_type_inference(dtype)
W
whs 已提交
1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
    helper.append_op(
        type="roi_perspective_transform",
        inputs={"X": input,
                "ROIs": rois},
        outputs={"Out": out},
        attrs={
            "transformed_height": transformed_height,
            "transformed_width": transformed_width,
            "spatial_scale": spatial_scale
        })
    return out


1510 1511
def generate_proposal_labels(rpn_rois,
                             gt_classes,
1512
                             is_crowd,
1513
                             gt_boxes,
1514
                             im_info,
1515 1516 1517 1518 1519 1520
                             batch_size_per_im=256,
                             fg_fraction=0.25,
                             fg_thresh=0.25,
                             bg_thresh_hi=0.5,
                             bg_thresh_lo=0.0,
                             bbox_reg_weights=[0.1, 0.1, 0.2, 0.2],
1521 1522
                             class_nums=None,
                             use_random=True):
1523 1524
    """
    ** Generate proposal labels Faster-RCNN **
B
buxingyuan 已提交
1525
    This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth,
B
buxingyuan 已提交
1526
    to sample foreground boxes and background boxes, and compute loss target.
B
buxingyuan 已提交
1527 1528 1529

    RpnRois is the output boxes of RPN and was processed by generate_proposal_op, these boxes
    were combined with groundtruth boxes and sampled according to batch_size_per_im and fg_fraction,
B
buxingyuan 已提交
1530
    If an instance with a groundtruth overlap greater than fg_thresh, then it was considered as a foreground sample.
B
buxingyuan 已提交
1531 1532
    If an instance with a groundtruth overlap greater than bg_thresh_lo and lower than bg_thresh_hi,
    then it was considered as a background sample.
B
buxingyuan 已提交
1533
    After all foreground and background boxes are chosen (so called Rois),
B
buxingyuan 已提交
1534
    then we apply random sampling to make sure
B
buxingyuan 已提交
1535
    the number of foreground boxes is no more than batch_size_per_im * fg_fraction.
B
buxingyuan 已提交
1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554

    For each box in Rois, we assign the classification (class label) and regression targets (box label) to it.
    Finally BboxInsideWeights and BboxOutsideWeights are used to specify whether it would contribute to training loss.

    Args:
        rpn_rois(Variable): A 2-D LoDTensor with shape [N, 4]. N is the number of the GenerateProposalOp's output, each element is a bounding box with [xmin, ymin, xmax, ymax] format.
        gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a class label of groundtruth.
        is_crowd(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a flag indicates whether a groundtruth is crowd.
        gt_boxes(Variable): A 2-D LoDTensor with shape [M, 4]. M is the number of groundtruth, each element is a bounding box with [xmin, ymin, xmax, ymax] format.
        im_info(Variable): A 2-D LoDTensor with shape [B, 3]. B is the number of input images, each element consists of im_height, im_width, im_scale.

        batch_size_per_im(int): Batch size of rois per images.
        fg_fraction(float): Foreground fraction in total batch_size_per_im.
        fg_thresh(float): Overlap threshold which is used to chose foreground sample.
        bg_thresh_hi(float): Overlap threshold upper bound which is used to chose background sample.
        bg_thresh_lo(float): Overlap threshold lower bound which is used to chose background sample.
        bbox_reg_weights(list|tuple): Box regression weights.
        class_nums(int): Class number.
        use_random(bool): Use random sampling to choose foreground and background boxes.
1555 1556 1557 1558
    """

    helper = LayerHelper('generate_proposal_labels', **locals())

X
Xin Pan 已提交
1559 1560 1561 1562 1563 1564 1565 1566 1567
    rois = helper.create_variable_for_type_inference(dtype=rpn_rois.dtype)
    labels_int32 = helper.create_variable_for_type_inference(
        dtype=gt_classes.dtype)
    bbox_targets = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_inside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
    bbox_outside_weights = helper.create_variable_for_type_inference(
        dtype=rpn_rois.dtype)
1568 1569 1570 1571 1572 1573

    helper.append_op(
        type="generate_proposal_labels",
        inputs={
            'RpnRois': rpn_rois,
            'GtClasses': gt_classes,
1574
            'IsCrowd': is_crowd,
1575
            'GtBoxes': gt_boxes,
1576
            'ImInfo': im_info
1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591
        },
        outputs={
            'Rois': rois,
            'LabelsInt32': labels_int32,
            'BboxTargets': bbox_targets,
            'BboxInsideWeights': bbox_inside_weights,
            'BboxOutsideWeights': bbox_outside_weights
        },
        attrs={
            'batch_size_per_im': batch_size_per_im,
            'fg_fraction': fg_fraction,
            'fg_thresh': fg_thresh,
            'bg_thresh_hi': bg_thresh_hi,
            'bg_thresh_lo': bg_thresh_lo,
            'bbox_reg_weights': bbox_reg_weights,
1592 1593
            'class_nums': class_nums,
            'use_random': use_random
1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604
        })

    rois.stop_gradient = True
    labels_int32.stop_gradient = True
    bbox_targets.stop_gradient = True
    bbox_inside_weights.stop_gradient = True
    bbox_outside_weights.stop_gradient = True

    return rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights


1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616
def generate_proposals(scores,
                       bbox_deltas,
                       im_info,
                       anchors,
                       variances,
                       pre_nms_top_n=6000,
                       post_nms_top_n=1000,
                       nms_thresh=0.5,
                       min_size=0.1,
                       eta=1.0,
                       name=None):
    """
B
buxingyuan 已提交
1617
    ** Generate proposal Faster-RCNN **
1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648
	
	This operation proposes RoIs according to each box with their probability to be a foreground object and 
	the box can be calculated by anchors. Bbox_deltais and scores to be an object are the output of RPN. Final proposals
	could be used to train detection net.

	For generating proposals, this operation performs following steps:

	1. Transposes and resizes scores and bbox_deltas in size of (H*W*A, 1) and (H*W*A, 4)
 	2. Calculate box locations as proposals candidates. 
	3. Clip boxes to image
	4. Remove predicted boxes with small area. 
	5. Apply NMS to get final proposals as output.
	
      
	Args:
		scores(Variable): A 4-D Tensor with shape [N, A, H, W] represents the probability for each box to be an object.
			N is batch size, A is number of anchors, H and W are height and width of the feature map.
		bbox_deltas(Variable): A 4-D Tensor with shape [N, 4*A, H, W] represents the differece between predicted box locatoin and anchor location. 
		im_info(Variable): A 2-D Tensor with shape [N, 3] represents origin image information for N batch. Info contains height, width and scale
			between origin image size and the size of feature map.
		anchors(Variable):   A 4-D Tensor represents the anchors with a layout of [H, W, A, 4]. H and W are height and width of the feature map,
              		num_anchors is the box count of each position. Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
		variances(Variable): The expanded variances of anchors with a layout of [H, W, num_priors, 4]. Each variance is in (xcenter, ycenter, w, h) format.
		pre_nms_top_n(float): Number of total bboxes to be kept per image before NMS. 6000 by default.
		post_nms_top_n(float): Number of total bboxes to be kept per image after NMS. 1000 by default.
		nms_thresh(float): Threshold in NMS, 0.5 by default.
		min_size(float): Remove predicted boxes with either height or width < min_size. 0.1 by default.
		eta(float): Apply in adaptive NMS, if adaptive threshold > 0.5, adaptive_threshold = adaptive_threshold * eta in each iteration.
    """
    helper = LayerHelper('generate_proposals', **locals())

X
Xin Pan 已提交
1649 1650 1651 1652
    rpn_rois = helper.create_variable_for_type_inference(
        dtype=bbox_deltas.dtype)
    rpn_roi_probs = helper.create_variable_for_type_inference(
        dtype=scores.dtype)
1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674
    helper.append_op(
        type="generate_proposals",
        inputs={
            'Scores': scores,
            'BboxDeltas': bbox_deltas,
            'ImInfo': im_info,
            'Anchors': anchors,
            'Variances': variances
        },
        attrs={
            'pre_nms_topN': pre_nms_top_n,
            'post_nms_topN': post_nms_top_n,
            'nms_thresh': nms_thresh,
            'min_size': min_size,
            'eta': eta
        },
        outputs={'RpnRois': rpn_rois,
                 'RpnRoiProbs': rpn_roi_probs})
    rpn_rois.stop_gradient = True
    rpn_roi_probs.stop_gradient = True

    return rpn_rois, rpn_roi_probs