Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
f115eb0d
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f115eb0d
编写于
11月 15, 2018
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
enhance api. test=develop
上级
95d5060d
变更
7
隐藏空白更改
内联
并排
Showing
7 changed file
with
199 addition
and
159 deletion
+199
-159
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-1
paddle/fluid/operators/yolov3_loss_op.cc
paddle/fluid/operators/yolov3_loss_op.cc
+33
-17
paddle/fluid/operators/yolov3_loss_op.h
paddle/fluid/operators/yolov3_loss_op.h
+69
-60
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+39
-28
python/paddle/fluid/tests/test_detection.py
python/paddle/fluid/tests/test_detection.py
+13
-0
python/paddle/fluid/tests/unittests/test_layers.py
python/paddle/fluid/tests/unittests/test_layers.py
+0
-9
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
+44
-44
未找到文件。
paddle/fluid/API.spec
浏览文件 @
f115eb0d
...
...
@@ -288,7 +288,7 @@ paddle.fluid.layers.generate_proposals ArgSpec(args=['scores', 'bbox_deltas', 'i
paddle.fluid.layers.iou_similarity ArgSpec(args=['x', 'y', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.box_coder ArgSpec(args=['prior_box', 'prior_box_var', 'target_box', 'code_type', 'box_normalized', 'name'], varargs=None, keywords=None, defaults=('encode_center_size', True, None))
paddle.fluid.layers.polygon_box_transform ArgSpec(args=['input', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.yolov3_loss ArgSpec(args=['x', 'gtbox', '
anchors', 'class_num', 'ignore_thresh', 'lambda_xy', 'lambda_wh', 'lambda_conf_obj', 'lambda_conf_noobj', 'lambda
_class', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None))
paddle.fluid.layers.yolov3_loss ArgSpec(args=['x', 'gtbox', '
gtlabel', 'anchors', 'class_num', 'ignore_thresh', 'loss_weight_xy', 'loss_weight_wh', 'loss_weight_conf_target', 'loss_weight_conf_notarget', 'loss_weight
_class', 'name'], varargs=None, keywords=None, defaults=(None, None, None, None, None, None))
paddle.fluid.layers.accuracy ArgSpec(args=['input', 'label', 'k', 'correct', 'total'], varargs=None, keywords=None, defaults=(1, None, None))
paddle.fluid.layers.auc ArgSpec(args=['input', 'label', 'curve', 'num_thresholds', 'topk', 'slide_steps'], varargs=None, keywords=None, defaults=('ROC', 4095, 1, 1))
paddle.fluid.layers.exponential_decay ArgSpec(args=['learning_rate', 'decay_steps', 'decay_rate', 'staircase'], varargs=None, keywords=None, defaults=(False,))
...
...
paddle/fluid/operators/yolov3_loss_op.cc
浏览文件 @
f115eb0d
...
...
@@ -25,11 +25,14 @@ class Yolov3LossOp : public framework::OperatorWithKernel {
"Input(X) of Yolov3LossOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"GTBox"
),
"Input(GTBox) of Yolov3LossOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"GTLabel"
),
"Input(GTLabel) of Yolov3LossOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Loss"
),
"Output(Loss) of Yolov3LossOp should not be null."
);
auto
dim_x
=
ctx
->
GetInputDim
(
"X"
);
auto
dim_gt
=
ctx
->
GetInputDim
(
"GTBox"
);
auto
dim_gtbox
=
ctx
->
GetInputDim
(
"GTBox"
);
auto
dim_gtlabel
=
ctx
->
GetInputDim
(
"GTLabel"
);
auto
anchors
=
ctx
->
Attrs
().
Get
<
std
::
vector
<
int
>>
(
"anchors"
);
auto
class_num
=
ctx
->
Attrs
().
Get
<
int
>
(
"class_num"
);
PADDLE_ENFORCE_EQ
(
dim_x
.
size
(),
4
,
"Input(X) should be a 4-D tensor."
);
...
...
@@ -38,8 +41,15 @@ class Yolov3LossOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE_EQ
(
dim_x
[
1
],
anchors
.
size
()
/
2
*
(
5
+
class_num
),
"Input(X) dim[1] should be equal to (anchor_number * (5 "
"+ class_num))."
);
PADDLE_ENFORCE_EQ
(
dim_gt
.
size
(),
3
,
"Input(GTBox) should be a 3-D tensor"
);
PADDLE_ENFORCE_EQ
(
dim_gt
[
2
],
5
,
"Input(GTBox) dim[2] should be 5"
);
PADDLE_ENFORCE_EQ
(
dim_gtbox
.
size
(),
3
,
"Input(GTBox) should be a 3-D tensor"
);
PADDLE_ENFORCE_EQ
(
dim_gtbox
[
2
],
4
,
"Input(GTBox) dim[2] should be 5"
);
PADDLE_ENFORCE_EQ
(
dim_gtlabel
.
size
(),
2
,
"Input(GTBox) should be a 2-D tensor"
);
PADDLE_ENFORCE_EQ
(
dim_gtlabel
[
0
],
dim_gtbox
[
0
],
"Input(GTBox) and Input(GTLabel) dim[0] should be same"
);
PADDLE_ENFORCE_EQ
(
dim_gtlabel
[
1
],
dim_gtbox
[
1
],
"Input(GTBox) and Input(GTLabel) dim[1] should be same"
);
PADDLE_ENFORCE_GT
(
anchors
.
size
(),
0
,
"Attr(anchors) length should be greater then 0."
);
PADDLE_ENFORCE_EQ
(
anchors
.
size
()
%
2
,
0
,
...
...
@@ -73,11 +83,15 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
"The input tensor of ground truth boxes, "
"This is a 3-D tensor with shape of [N, max_box_num, 5], "
"max_box_num is the max number of boxes in each image, "
"In the third dimention, stores label, x, y, w, h, "
"label is an integer to specify box class, x, y is the "
"center cordinate of boxes and w, h is the width and height"
"and x, y, w, h should be divided by input image height to "
"scale to [0, 1]."
);
"In the third dimention, stores x, y, w, h coordinates, "
"x, y is the center cordinate of boxes and w, h is the "
"width and height and x, y, w, h should be divided by "
"input image height to scale to [0, 1]."
);
AddInput
(
"GTLabel"
,
"The input tensor of ground truth label, "
"This is a 2-D tensor with shape of [N, max_box_num], "
"and each element shoudl be an integer to indicate the "
"box class id."
);
AddOutput
(
"Loss"
,
"The output yolov3 loss tensor, "
"This is a 1-D tensor with shape of [1]"
);
...
...
@@ -88,19 +102,19 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
"it will be parsed pair by pair."
);
AddAttr
<
float
>
(
"ignore_thresh"
,
"The ignore threshold to ignore confidence loss."
);
AddAttr
<
float
>
(
"l
ambda
_xy"
,
"The weight of x, y location loss."
)
AddAttr
<
float
>
(
"l
oss_weight
_xy"
,
"The weight of x, y location loss."
)
.
SetDefault
(
1.0
);
AddAttr
<
float
>
(
"l
ambda
_wh"
,
"The weight of w, h location loss."
)
AddAttr
<
float
>
(
"l
oss_weight
_wh"
,
"The weight of w, h location loss."
)
.
SetDefault
(
1.0
);
AddAttr
<
float
>
(
"l
ambda_conf_obj
"
,
"l
oss_weight_conf_target
"
,
"The weight of confidence score loss in locations with target object."
)
.
SetDefault
(
1.0
);
AddAttr
<
float
>
(
"l
ambda_conf_noobj
"
,
AddAttr
<
float
>
(
"l
oss_weight_conf_notarget
"
,
"The weight of confidence score loss in locations without "
"target object."
)
.
SetDefault
(
1.0
);
AddAttr
<
float
>
(
"l
ambda
_class"
,
"The weight of classification loss."
)
AddAttr
<
float
>
(
"l
oss_weight
_class"
,
"The weight of classification loss."
)
.
SetDefault
(
1.0
);
AddComment
(
R"DOC(
This operator generate yolov3 loss by given predict result and ground
...
...
@@ -141,10 +155,10 @@ class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
Final loss will be represented as follow.
$$
loss = \l
ambda_{xy} * loss_{xy} + \lambda
_{wh} * loss_{wh}
+ \l
ambda_{conf_obj} * loss_{conf_obj
}
+ \l
ambda_{conf_noobj} * loss_{conf_noobj
}
+ \l
ambda
_{class} * loss_{class}
loss = \l
oss_weight_{xy} * loss_{xy} + \loss_weight
_{wh} * loss_{wh}
+ \l
oss_weight_{conf_target} * loss_{conf_target
}
+ \l
oss_weight_{conf_notarget} * loss_{conf_notarget
}
+ \l
oss_weight
_{class} * loss_{class}
$$
)DOC"
);
}
...
...
@@ -182,12 +196,14 @@ class Yolov3LossGradMaker : public framework::SingleGradOpDescMaker {
op
->
SetType
(
"yolov3_loss_grad"
);
op
->
SetInput
(
"X"
,
Input
(
"X"
));
op
->
SetInput
(
"GTBox"
,
Input
(
"GTBox"
));
op
->
SetInput
(
"GTLabel"
,
Input
(
"GTLabel"
));
op
->
SetInput
(
framework
::
GradVarName
(
"Loss"
),
OutputGrad
(
"Loss"
));
op
->
SetAttrMap
(
Attrs
());
op
->
SetOutput
(
framework
::
GradVarName
(
"X"
),
InputGrad
(
"X"
));
op
->
SetOutput
(
framework
::
GradVarName
(
"GTBox"
),
{});
op
->
SetOutput
(
framework
::
GradVarName
(
"GTLabel"
),
{});
return
std
::
unique_ptr
<
framework
::
OpDesc
>
(
op
);
}
};
...
...
paddle/fluid/operators/yolov3_loss_op.h
浏览文件 @
f115eb0d
...
...
@@ -186,15 +186,17 @@ static T CalcBoxIoU(std::vector<T> box1, std::vector<T> box2) {
}
template
<
typename
T
>
static
void
PreProcessGTBox
(
const
Tensor
&
gt_boxes
,
const
float
ignore_thresh
,
std
::
vector
<
int
>
anchors
,
const
int
grid_size
,
Tensor
*
obj_mask
,
Tensor
*
noobj_mask
,
Tensor
*
tx
,
Tensor
*
ty
,
Tensor
*
tw
,
Tensor
*
th
,
Tensor
*
tconf
,
static
void
PreProcessGTBox
(
const
Tensor
&
gt_box
,
const
Tensor
&
gt_label
,
const
float
ignore_thresh
,
std
::
vector
<
int
>
anchors
,
const
int
grid_size
,
Tensor
*
obj_mask
,
Tensor
*
noobj_mask
,
Tensor
*
tx
,
Tensor
*
ty
,
Tensor
*
tw
,
Tensor
*
th
,
Tensor
*
tconf
,
Tensor
*
tclass
)
{
const
int
n
=
gt_box
es
.
dims
()[
0
];
const
int
b
=
gt_box
es
.
dims
()[
1
];
const
int
n
=
gt_box
.
dims
()[
0
];
const
int
b
=
gt_box
.
dims
()[
1
];
const
int
anchor_num
=
anchors
.
size
()
/
2
;
auto
gt_boxes_t
=
EigenTensor
<
T
,
3
>::
From
(
gt_boxes
);
auto
gt_box_t
=
EigenTensor
<
T
,
3
>::
From
(
gt_box
);
auto
gt_label_t
=
EigenTensor
<
int
,
2
>::
From
(
gt_label
);
auto
obj_mask_t
=
EigenTensor
<
int
,
4
>::
From
(
*
obj_mask
).
setConstant
(
0
);
auto
noobj_mask_t
=
EigenTensor
<
int
,
4
>::
From
(
*
noobj_mask
).
setConstant
(
1
);
auto
tx_t
=
EigenTensor
<
T
,
4
>::
From
(
*
tx
).
setConstant
(
0.0
);
...
...
@@ -206,28 +208,27 @@ static void PreProcessGTBox(const Tensor& gt_boxes, const float ignore_thresh,
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
for
(
int
j
=
0
;
j
<
b
;
j
++
)
{
if
(
isZero
<
T
>
(
gt_boxes_t
(
i
,
j
,
0
))
&&
isZero
<
T
>
(
gt_boxes_t
(
i
,
j
,
1
))
&&
isZero
<
T
>
(
gt_boxes_t
(
i
,
j
,
2
))
&&
isZero
<
T
>
(
gt_boxes_t
(
i
,
j
,
3
))
&&
isZero
<
T
>
(
gt_boxes_t
(
i
,
j
,
4
)))
{
if
(
isZero
<
T
>
(
gt_box_t
(
i
,
j
,
0
))
&&
isZero
<
T
>
(
gt_box_t
(
i
,
j
,
1
))
&&
isZero
<
T
>
(
gt_box_t
(
i
,
j
,
2
))
&&
isZero
<
T
>
(
gt_box_t
(
i
,
j
,
3
)))
{
continue
;
}
int
gt_label
=
static_cast
<
int
>
(
gt_boxes_t
(
i
,
j
,
0
)
);
T
gx
=
gt_box
es_t
(
i
,
j
,
1
)
*
grid_size
;
T
gy
=
gt_box
es_t
(
i
,
j
,
2
)
*
grid_size
;
T
gw
=
gt_box
es_t
(
i
,
j
,
3
)
*
grid_size
;
T
gh
=
gt_box
es_t
(
i
,
j
,
4
)
*
grid_size
;
int
cur_label
=
gt_label_t
(
i
,
j
);
T
gx
=
gt_box
_t
(
i
,
j
,
0
)
*
grid_size
;
T
gy
=
gt_box
_t
(
i
,
j
,
1
)
*
grid_size
;
T
gw
=
gt_box
_t
(
i
,
j
,
2
)
*
grid_size
;
T
gh
=
gt_box
_t
(
i
,
j
,
3
)
*
grid_size
;
int
gi
=
static_cast
<
int
>
(
gx
);
int
gj
=
static_cast
<
int
>
(
gy
);
T
max_iou
=
static_cast
<
T
>
(
0
);
T
iou
;
int
best_an_index
=
-
1
;
std
::
vector
<
T
>
gt_box
({
0
,
0
,
gw
,
gh
});
std
::
vector
<
T
>
gt_box
_shape
({
0
,
0
,
gw
,
gh
});
for
(
int
an_idx
=
0
;
an_idx
<
anchor_num
;
an_idx
++
)
{
std
::
vector
<
T
>
anchor_shape
({
0
,
0
,
static_cast
<
T
>
(
anchors
[
2
*
an_idx
]),
static_cast
<
T
>
(
anchors
[
2
*
an_idx
+
1
])});
iou
=
CalcBoxIoU
<
T
>
(
gt_box
,
anchor_shape
);
iou
=
CalcBoxIoU
<
T
>
(
gt_box
_shape
,
anchor_shape
);
if
(
iou
>
max_iou
)
{
max_iou
=
iou
;
best_an_index
=
an_idx
;
...
...
@@ -242,7 +243,7 @@ static void PreProcessGTBox(const Tensor& gt_boxes, const float ignore_thresh,
ty_t
(
i
,
best_an_index
,
gj
,
gi
)
=
gy
-
gj
;
tw_t
(
i
,
best_an_index
,
gj
,
gi
)
=
log
(
gw
/
anchors
[
2
*
best_an_index
]);
th_t
(
i
,
best_an_index
,
gj
,
gi
)
=
log
(
gh
/
anchors
[
2
*
best_an_index
+
1
]);
tclass_t
(
i
,
best_an_index
,
gj
,
gi
,
gt
_label
)
=
1
;
tclass_t
(
i
,
best_an_index
,
gj
,
gi
,
cur
_label
)
=
1
;
tconf_t
(
i
,
best_an_index
,
gj
,
gi
)
=
1
;
}
}
...
...
@@ -267,10 +268,10 @@ static void AddAllGradToInputGrad(
Tensor
*
grad
,
T
loss
,
const
Tensor
&
pred_x
,
const
Tensor
&
pred_y
,
const
Tensor
&
pred_conf
,
const
Tensor
&
pred_class
,
const
Tensor
&
grad_x
,
const
Tensor
&
grad_y
,
const
Tensor
&
grad_w
,
const
Tensor
&
grad_h
,
const
Tensor
&
grad_conf_
obj
,
const
Tensor
&
grad_conf_noobj
,
const
Tensor
&
grad_class
,
const
int
class_num
,
const
float
l
ambda
_xy
,
const
float
l
ambda_wh
,
const
float
lambda_conf_obj
,
const
float
l
ambda_conf_noobj
,
const
float
lambda
_class
)
{
const
Tensor
&
grad_conf_
target
,
const
Tensor
&
grad_conf_notarget
,
const
Tensor
&
grad_class
,
const
int
class_num
,
const
float
l
oss_weight
_xy
,
const
float
l
oss_weight_wh
,
const
float
loss_weight_conf_target
,
const
float
l
oss_weight_conf_notarget
,
const
float
loss_weight
_class
)
{
const
int
n
=
pred_x
.
dims
()[
0
];
const
int
an_num
=
pred_x
.
dims
()[
1
];
const
int
h
=
pred_x
.
dims
()[
2
];
...
...
@@ -285,8 +286,8 @@ static void AddAllGradToInputGrad(
auto
grad_y_t
=
EigenTensor
<
T
,
4
>::
From
(
grad_y
);
auto
grad_w_t
=
EigenTensor
<
T
,
4
>::
From
(
grad_w
);
auto
grad_h_t
=
EigenTensor
<
T
,
4
>::
From
(
grad_h
);
auto
grad_conf_
obj_t
=
EigenTensor
<
T
,
4
>::
From
(
grad_conf_obj
);
auto
grad_conf_no
obj_t
=
EigenTensor
<
T
,
4
>::
From
(
grad_conf_noobj
);
auto
grad_conf_
target_t
=
EigenTensor
<
T
,
4
>::
From
(
grad_conf_target
);
auto
grad_conf_no
target_t
=
EigenTensor
<
T
,
4
>::
From
(
grad_conf_notarget
);
auto
grad_class_t
=
EigenTensor
<
T
,
5
>::
From
(
grad_class
);
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
...
...
@@ -295,25 +296,26 @@ static void AddAllGradToInputGrad(
for
(
int
l
=
0
;
l
<
w
;
l
++
)
{
grad_t
(
i
,
j
*
attr_num
,
k
,
l
)
=
grad_x_t
(
i
,
j
,
k
,
l
)
*
pred_x_t
(
i
,
j
,
k
,
l
)
*
(
1.0
-
pred_x_t
(
i
,
j
,
k
,
l
))
*
loss
*
l
ambda
_xy
;
(
1.0
-
pred_x_t
(
i
,
j
,
k
,
l
))
*
loss
*
l
oss_weight
_xy
;
grad_t
(
i
,
j
*
attr_num
+
1
,
k
,
l
)
=
grad_y_t
(
i
,
j
,
k
,
l
)
*
pred_y_t
(
i
,
j
,
k
,
l
)
*
(
1.0
-
pred_y_t
(
i
,
j
,
k
,
l
))
*
loss
*
l
ambda
_xy
;
(
1.0
-
pred_y_t
(
i
,
j
,
k
,
l
))
*
loss
*
l
oss_weight
_xy
;
grad_t
(
i
,
j
*
attr_num
+
2
,
k
,
l
)
=
grad_w_t
(
i
,
j
,
k
,
l
)
*
loss
*
l
ambda
_wh
;
grad_w_t
(
i
,
j
,
k
,
l
)
*
loss
*
l
oss_weight
_wh
;
grad_t
(
i
,
j
*
attr_num
+
3
,
k
,
l
)
=
grad_h_t
(
i
,
j
,
k
,
l
)
*
loss
*
l
ambda
_wh
;
grad_h_t
(
i
,
j
,
k
,
l
)
*
loss
*
l
oss_weight
_wh
;
grad_t
(
i
,
j
*
attr_num
+
4
,
k
,
l
)
=
grad_conf_
obj
_t
(
i
,
j
,
k
,
l
)
*
pred_conf_t
(
i
,
j
,
k
,
l
)
*
(
1.0
-
pred_conf_t
(
i
,
j
,
k
,
l
))
*
loss
*
l
ambda_conf_obj
;
grad_conf_
target
_t
(
i
,
j
,
k
,
l
)
*
pred_conf_t
(
i
,
j
,
k
,
l
)
*
(
1.0
-
pred_conf_t
(
i
,
j
,
k
,
l
))
*
loss
*
l
oss_weight_conf_target
;
grad_t
(
i
,
j
*
attr_num
+
4
,
k
,
l
)
+=
grad_conf_noobj_t
(
i
,
j
,
k
,
l
)
*
pred_conf_t
(
i
,
j
,
k
,
l
)
*
(
1.0
-
pred_conf_t
(
i
,
j
,
k
,
l
))
*
loss
*
lambda_conf_noobj
;
grad_conf_notarget_t
(
i
,
j
,
k
,
l
)
*
pred_conf_t
(
i
,
j
,
k
,
l
)
*
(
1.0
-
pred_conf_t
(
i
,
j
,
k
,
l
))
*
loss
*
loss_weight_conf_notarget
;
for
(
int
c
=
0
;
c
<
class_num
;
c
++
)
{
grad_t
(
i
,
j
*
attr_num
+
5
+
c
,
k
,
l
)
=
grad_class_t
(
i
,
j
,
k
,
l
,
c
)
*
pred_class_t
(
i
,
j
,
k
,
l
,
c
)
*
(
1.0
-
pred_class_t
(
i
,
j
,
k
,
l
,
c
))
*
loss
*
l
ambda
_class
;
(
1.0
-
pred_class_t
(
i
,
j
,
k
,
l
,
c
))
*
loss
*
l
oss_weight
_class
;
}
}
}
...
...
@@ -326,16 +328,18 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
gt_boxes
=
ctx
.
Input
<
Tensor
>
(
"GTBox"
);
auto
*
gt_box
=
ctx
.
Input
<
Tensor
>
(
"GTBox"
);
auto
*
gt_label
=
ctx
.
Input
<
Tensor
>
(
"GTLabel"
);
auto
*
loss
=
ctx
.
Output
<
Tensor
>
(
"Loss"
);
auto
anchors
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchors"
);
int
class_num
=
ctx
.
Attr
<
int
>
(
"class_num"
);
float
ignore_thresh
=
ctx
.
Attr
<
float
>
(
"ignore_thresh"
);
float
lambda_xy
=
ctx
.
Attr
<
float
>
(
"lambda_xy"
);
float
lambda_wh
=
ctx
.
Attr
<
float
>
(
"lambda_wh"
);
float
lambda_conf_obj
=
ctx
.
Attr
<
float
>
(
"lambda_conf_obj"
);
float
lambda_conf_noobj
=
ctx
.
Attr
<
float
>
(
"lambda_conf_noobj"
);
float
lambda_class
=
ctx
.
Attr
<
float
>
(
"lambda_class"
);
float
loss_weight_xy
=
ctx
.
Attr
<
float
>
(
"loss_weight_xy"
);
float
loss_weight_wh
=
ctx
.
Attr
<
float
>
(
"loss_weight_wh"
);
float
loss_weight_conf_target
=
ctx
.
Attr
<
float
>
(
"loss_weight_conf_target"
);
float
loss_weight_conf_notarget
=
ctx
.
Attr
<
float
>
(
"loss_weight_conf_notarget"
);
float
loss_weight_class
=
ctx
.
Attr
<
float
>
(
"loss_weight_class"
);
const
int
n
=
input
->
dims
()[
0
];
const
int
h
=
input
->
dims
()[
2
];
...
...
@@ -363,7 +367,7 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
th
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tconf
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tclass
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
PreProcessGTBox
<
T
>
(
*
gt_box
es
,
ignore_thresh
,
anchors
,
h
,
&
obj_mask
,
PreProcessGTBox
<
T
>
(
*
gt_box
,
*
gt_label
,
ignore_thresh
,
anchors
,
h
,
&
obj_mask
,
&
noobj_mask
,
&
tx
,
&
ty
,
&
tw
,
&
th
,
&
tconf
,
&
tclass
);
Tensor
obj_mask_expand
;
...
...
@@ -375,15 +379,16 @@ class Yolov3LossKernel : public framework::OpKernel<T> {
T
loss_y
=
CalcMSEWithMask
<
T
>
(
pred_y
,
ty
,
obj_mask
);
T
loss_w
=
CalcMSEWithMask
<
T
>
(
pred_w
,
tw
,
obj_mask
);
T
loss_h
=
CalcMSEWithMask
<
T
>
(
pred_h
,
th
,
obj_mask
);
T
loss_conf_
obj
=
CalcBCEWithMask
<
T
>
(
pred_conf
,
tconf
,
obj_mask
);
T
loss_conf_no
obj
=
CalcBCEWithMask
<
T
>
(
pred_conf
,
tconf
,
noobj_mask
);
T
loss_conf_
target
=
CalcBCEWithMask
<
T
>
(
pred_conf
,
tconf
,
obj_mask
);
T
loss_conf_no
target
=
CalcBCEWithMask
<
T
>
(
pred_conf
,
tconf
,
noobj_mask
);
T
loss_class
=
CalcBCEWithMask
<
T
>
(
pred_class
,
tclass
,
obj_mask_expand
);
auto
*
loss_data
=
loss
->
mutable_data
<
T
>
({
1
},
ctx
.
GetPlace
());
loss_data
[
0
]
=
lambda_xy
*
(
loss_x
+
loss_y
)
+
lambda_wh
*
(
loss_w
+
loss_h
)
+
lambda_conf_obj
*
loss_conf_obj
+
lambda_conf_noobj
*
loss_conf_noobj
+
lambda_class
*
loss_class
;
loss_data
[
0
]
=
loss_weight_xy
*
(
loss_x
+
loss_y
)
+
loss_weight_wh
*
(
loss_w
+
loss_h
)
+
loss_weight_conf_target
*
loss_conf_target
+
loss_weight_conf_notarget
*
loss_conf_notarget
+
loss_weight_class
*
loss_class
;
}
};
...
...
@@ -392,18 +397,20 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
public:
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
override
{
auto
*
input
=
ctx
.
Input
<
Tensor
>
(
"X"
);
auto
*
gt_boxes
=
ctx
.
Input
<
Tensor
>
(
"GTBox"
);
auto
*
gt_box
=
ctx
.
Input
<
Tensor
>
(
"GTBox"
);
auto
*
gt_label
=
ctx
.
Input
<
Tensor
>
(
"GTLabel"
);
auto
anchors
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"anchors"
);
int
class_num
=
ctx
.
Attr
<
int
>
(
"class_num"
);
float
ignore_thresh
=
ctx
.
Attr
<
float
>
(
"ignore_thresh"
);
auto
*
input_grad
=
ctx
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
output_grad
=
ctx
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Loss"
));
const
T
loss
=
output_grad
->
data
<
T
>
()[
0
];
float
lambda_xy
=
ctx
.
Attr
<
float
>
(
"lambda_xy"
);
float
lambda_wh
=
ctx
.
Attr
<
float
>
(
"lambda_wh"
);
float
lambda_conf_obj
=
ctx
.
Attr
<
float
>
(
"lambda_conf_obj"
);
float
lambda_conf_noobj
=
ctx
.
Attr
<
float
>
(
"lambda_conf_noobj"
);
float
lambda_class
=
ctx
.
Attr
<
float
>
(
"lambda_class"
);
float
loss_weight_xy
=
ctx
.
Attr
<
float
>
(
"loss_weight_xy"
);
float
loss_weight_wh
=
ctx
.
Attr
<
float
>
(
"loss_weight_wh"
);
float
loss_weight_conf_target
=
ctx
.
Attr
<
float
>
(
"loss_weight_conf_target"
);
float
loss_weight_conf_notarget
=
ctx
.
Attr
<
float
>
(
"loss_weight_conf_notarget"
);
float
loss_weight_class
=
ctx
.
Attr
<
float
>
(
"loss_weight_class"
);
const
int
n
=
input
->
dims
()[
0
];
const
int
c
=
input
->
dims
()[
1
];
...
...
@@ -432,7 +439,7 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
th
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tconf
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
tclass
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
PreProcessGTBox
<
T
>
(
*
gt_box
es
,
ignore_thresh
,
anchors
,
h
,
&
obj_mask
,
PreProcessGTBox
<
T
>
(
*
gt_box
,
*
gt_label
,
ignore_thresh
,
anchors
,
h
,
&
obj_mask
,
&
noobj_mask
,
&
tx
,
&
ty
,
&
tw
,
&
th
,
&
tconf
,
&
tclass
);
Tensor
obj_mask_expand
;
...
...
@@ -441,13 +448,13 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
ExpandObjMaskByClassNum
(
&
obj_mask_expand
,
obj_mask
);
Tensor
grad_x
,
grad_y
,
grad_w
,
grad_h
;
Tensor
grad_conf_
obj
,
grad_conf_noobj
,
grad_class
;
Tensor
grad_conf_
target
,
grad_conf_notarget
,
grad_class
;
grad_x
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
grad_y
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
grad_w
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
grad_h
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
grad_conf_
obj
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
grad_conf_no
obj
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
grad_conf_
target
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
grad_conf_no
target
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
},
ctx
.
GetPlace
());
grad_class
.
mutable_data
<
T
>
({
n
,
an_num
,
h
,
w
,
class_num
},
ctx
.
GetPlace
());
T
obj_mf
=
CalcMaskPointNum
<
int
>
(
obj_mask
);
T
noobj_mf
=
CalcMaskPointNum
<
int
>
(
noobj_mask
);
...
...
@@ -456,8 +463,9 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
CalcMSEGradWithMask
<
T
>
(
&
grad_y
,
pred_y
,
ty
,
obj_mask
,
obj_mf
);
CalcMSEGradWithMask
<
T
>
(
&
grad_w
,
pred_w
,
tw
,
obj_mask
,
obj_mf
);
CalcMSEGradWithMask
<
T
>
(
&
grad_h
,
pred_h
,
th
,
obj_mask
,
obj_mf
);
CalcBCEGradWithMask
<
T
>
(
&
grad_conf_obj
,
pred_conf
,
tconf
,
obj_mask
,
obj_mf
);
CalcBCEGradWithMask
<
T
>
(
&
grad_conf_noobj
,
pred_conf
,
tconf
,
noobj_mask
,
CalcBCEGradWithMask
<
T
>
(
&
grad_conf_target
,
pred_conf
,
tconf
,
obj_mask
,
obj_mf
);
CalcBCEGradWithMask
<
T
>
(
&
grad_conf_notarget
,
pred_conf
,
tconf
,
noobj_mask
,
noobj_mf
);
CalcBCEGradWithMask
<
T
>
(
&
grad_class
,
pred_class
,
tclass
,
obj_mask_expand
,
obj_expand_mf
);
...
...
@@ -465,8 +473,9 @@ class Yolov3LossGradKernel : public framework::OpKernel<T> {
input_grad
->
mutable_data
<
T
>
({
n
,
c
,
h
,
w
},
ctx
.
GetPlace
());
AddAllGradToInputGrad
<
T
>
(
input_grad
,
loss
,
pred_x
,
pred_y
,
pred_conf
,
pred_class
,
grad_x
,
grad_y
,
grad_w
,
grad_h
,
grad_conf_obj
,
grad_conf_noobj
,
grad_class
,
class_num
,
lambda_xy
,
lambda_wh
,
lambda_conf_obj
,
lambda_conf_noobj
,
lambda_class
);
grad_w
,
grad_h
,
grad_conf_target
,
grad_conf_notarget
,
grad_class
,
class_num
,
loss_weight_xy
,
loss_weight_wh
,
loss_weight_conf_target
,
loss_weight_conf_notarget
,
loss_weight_class
);
}
};
...
...
python/paddle/fluid/layers/detection.py
浏览文件 @
f115eb0d
...
...
@@ -409,32 +409,36 @@ def polygon_box_transform(input, name=None):
@
templatedoc
(
op_type
=
"yolov3_loss"
)
def
yolov3_loss
(
x
,
gtbox
,
gtlabel
,
anchors
,
class_num
,
ignore_thresh
,
l
ambda
_xy
=
None
,
l
ambda
_wh
=
None
,
l
ambda_conf_obj
=
None
,
l
ambda_conf_noobj
=
None
,
l
ambda
_class
=
None
,
l
oss_weight
_xy
=
None
,
l
oss_weight
_wh
=
None
,
l
oss_weight_conf_target
=
None
,
l
oss_weight_conf_notarget
=
None
,
l
oss_weight
_class
=
None
,
name
=
None
):
"""
${comment}
Args:
x (Variable): ${x_comment}
gtbox (Variable): groud truth boxes, shoulb be in shape of [N, B, 5],
in the third dimenstion, class_id, x, y, w, h should
be stored and x, y, w, h should be relative valud of
input image.
gtbox (Variable): groud truth boxes, should be in shape of [N, B, 4],
in the third dimenstion, x, y, w, h should be stored
and x, y, w, h should be relative value of input image.
N is the batch number and B is the max box number in
an image.
gtlabel (Variable): class id of ground truth boxes, shoud be ins shape
of [N, B].
anchors (list|tuple): ${anchors_comment}
class_num (int): ${class_num_comment}
ignore_thresh (float): ${ignore_thresh_comment}
l
ambda_xy (float|None): ${lambda
_xy_comment}
l
ambda_wh (float|None): ${lambda
_wh_comment}
l
ambda_conf_obj (float|None): ${lambda_conf_obj
_comment}
l
ambda_conf_noobj (float|None): ${lambda_conf_noobj
_comment}
l
ambda_class (float|None): ${lambda
_class_comment}
l
oss_weight_xy (float|None): ${loss_weight
_xy_comment}
l
oss_weight_wh (float|None): ${loss_weight
_wh_comment}
l
oss_weight_conf_target (float|None): ${loss_weight_conf_target
_comment}
l
oss_weight_conf_notarget (float|None): ${loss_weight_conf_notarget
_comment}
l
oss_weight_class (float|None): ${loss_weight
_class_comment}
name (string): the name of yolov3 loss
Returns:
...
...
@@ -443,6 +447,7 @@ def yolov3_loss(x,
Raises:
TypeError: Input x of yolov3_loss must be Variable
TypeError: Input gtbox of yolov3_loss must be Variable"
TypeError: Input gtlabel of yolov3_loss must be Variable"
TypeError: Attr anchors of yolov3_loss must be list or tuple
TypeError: Attr class_num of yolov3_loss must be an integer
TypeError: Attr ignore_thresh of yolov3_loss must be a float number
...
...
@@ -450,8 +455,9 @@ def yolov3_loss(x,
Examples:
.. code-block:: python
x = fluid.layers.data(name='x', shape=[10, 255, 13, 13], dtype='float32')
gtbox = fluid.layers.data(name='gtbox', shape=[10, 6, 5], dtype='float32')
x = fluid.layers.data(name='x', shape=[255, 13, 13], dtype='float32')
gtbox = fluid.layers.data(name='gtbox', shape=[6, 5], dtype='float32')
gtlabel = fluid.layers.data(name='gtlabel', shape=[6, 1], dtype='int32')
anchors = [10, 13, 16, 30, 33, 23]
loss = fluid.layers.yolov3_loss(x=x, gtbox=gtbox, class_num=80
anchors=anchors, ignore_thresh=0.5)
...
...
@@ -462,6 +468,8 @@ def yolov3_loss(x,
raise
TypeError
(
"Input x of yolov3_loss must be Variable"
)
if
not
isinstance
(
gtbox
,
Variable
):
raise
TypeError
(
"Input gtbox of yolov3_loss must be Variable"
)
if
not
isinstance
(
gtlabel
,
Variable
):
raise
TypeError
(
"Input gtlabel of yolov3_loss must be Variable"
)
if
not
isinstance
(
anchors
,
list
)
and
not
isinstance
(
anchors
,
tuple
):
raise
TypeError
(
"Attr anchors of yolov3_loss must be list or tuple"
)
if
not
isinstance
(
class_num
,
int
):
...
...
@@ -482,21 +490,24 @@ def yolov3_loss(x,
"ignore_thresh"
:
ignore_thresh
,
}
if
lambda_xy
is
not
None
and
isinstance
(
lambda_xy
,
float
):
self
.
attrs
[
'lambda_xy'
]
=
lambda_xy
if
lambda_wh
is
not
None
and
isinstance
(
lambda_wh
,
float
):
self
.
attrs
[
'lambda_wh'
]
=
lambda_wh
if
lambda_conf_obj
is
not
None
and
isinstance
(
lambda_conf_obj
,
float
):
self
.
attrs
[
'lambda_conf_obj'
]
=
lambda_conf_obj
if
lambda_conf_noobj
is
not
None
and
isinstance
(
lambda_conf_noobj
,
float
):
self
.
attrs
[
'lambda_conf_noobj'
]
=
lambda_conf_noobj
if
lambda_class
is
not
None
and
isinstance
(
lambda_class
,
float
):
self
.
attrs
[
'lambda_class'
]
=
lambda_class
if
loss_weight_xy
is
not
None
and
isinstance
(
loss_weight_xy
,
float
):
self
.
attrs
[
'loss_weight_xy'
]
=
loss_weight_xy
if
loss_weight_wh
is
not
None
and
isinstance
(
loss_weight_wh
,
float
):
self
.
attrs
[
'loss_weight_wh'
]
=
loss_weight_wh
if
loss_weight_conf_target
is
not
None
and
isinstance
(
loss_weight_conf_target
,
float
):
self
.
attrs
[
'loss_weight_conf_target'
]
=
loss_weight_conf_target
if
loss_weight_conf_notarget
is
not
None
and
isinstance
(
loss_weight_conf_notarget
,
float
):
self
.
attrs
[
'loss_weight_conf_notarget'
]
=
loss_weight_conf_notarget
if
loss_weight_class
is
not
None
and
isinstance
(
loss_weight_class
,
float
):
self
.
attrs
[
'loss_weight_class'
]
=
loss_weight_class
helper
.
append_op
(
type
=
'yolov3_loss'
,
inputs
=
{
'X'
:
x
,
"GTBox"
:
gtbox
},
inputs
=
{
"X"
:
x
,
"GTBox"
:
gtbox
,
"GTLabel"
:
gtlabel
},
outputs
=
{
'Loss'
:
loss
},
attrs
=
attrs
)
return
loss
...
...
python/paddle/fluid/tests/test_detection.py
浏览文件 @
f115eb0d
...
...
@@ -366,5 +366,18 @@ class TestGenerateProposals(unittest.TestCase):
print
(
rpn_rois
.
shape
)
class
TestYoloDetection
(
unittest
.
TestCase
):
def
test_yolov3_loss
(
self
):
program
=
Program
()
with
program_guard
(
program
):
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
30
,
7
,
7
],
dtype
=
'float32'
)
gtbox
=
layers
.
data
(
name
=
'gtbox'
,
shape
=
[
10
,
4
],
dtype
=
'float32'
)
gtlabel
=
layers
.
data
(
name
=
'gtlabel'
,
shape
=
[
10
],
dtype
=
'int32'
)
loss
=
layers
.
yolov3_loss
(
x
,
gtbox
,
gtlabel
,
[
10
,
13
,
30
,
13
],
10
,
0.5
)
self
.
assertIsNotNone
(
loss
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_layers.py
浏览文件 @
f115eb0d
...
...
@@ -911,15 +911,6 @@ class TestBook(unittest.TestCase):
self
.
assertIsNotNone
(
data_1
)
print
(
str
(
program
))
def
test_yolov3_loss
(
self
):
program
=
Program
()
with
program_guard
(
program
):
x
=
layers
.
data
(
name
=
'x'
,
shape
=
[
30
,
7
,
7
],
dtype
=
'float32'
)
gtbox
=
layers
.
data
(
name
=
'gtbox'
,
shape
=
[
10
,
5
],
dtype
=
'float32'
)
loss
=
layers
.
yolov3_loss
(
x
,
gtbox
,
[
10
,
13
,
30
,
13
],
10
,
0.5
)
self
.
assertIsNotNone
(
loss
)
def
test_bilinear_tensor_product_layer
(
self
):
program
=
Program
()
with
program_guard
(
program
):
...
...
python/paddle/fluid/tests/unittests/test_yolov3_loss_op.py
浏览文件 @
f115eb0d
...
...
@@ -66,7 +66,7 @@ def box_iou(box1, box2):
return
inter_area
/
(
b1_area
+
b2_area
+
inter_area
)
def
build_target
(
gtboxs
,
attrs
,
grid_size
):
def
build_target
(
gtboxs
,
gtlabel
,
attrs
,
grid_size
):
n
,
b
,
_
=
gtboxs
.
shape
ignore_thresh
=
attrs
[
"ignore_thresh"
]
anchors
=
attrs
[
"anchors"
]
...
...
@@ -87,11 +87,11 @@ def build_target(gtboxs, attrs, grid_size):
if
gtboxs
[
i
,
j
,
:].
sum
()
==
0
:
continue
gt_label
=
int
(
gtboxs
[
i
,
j
,
0
])
gx
=
gtboxs
[
i
,
j
,
1
]
*
grid_size
gy
=
gtboxs
[
i
,
j
,
2
]
*
grid_size
gw
=
gtboxs
[
i
,
j
,
3
]
*
grid_size
gh
=
gtboxs
[
i
,
j
,
4
]
*
grid_size
gt_label
=
gtlabel
[
i
,
j
]
gx
=
gtboxs
[
i
,
j
,
0
]
*
grid_size
gy
=
gtboxs
[
i
,
j
,
1
]
*
grid_size
gw
=
gtboxs
[
i
,
j
,
2
]
*
grid_size
gh
=
gtboxs
[
i
,
j
,
3
]
*
grid_size
gi
=
int
(
gx
)
gj
=
int
(
gy
)
...
...
@@ -121,7 +121,7 @@ def build_target(gtboxs, attrs, grid_size):
return
(
tx
,
ty
,
tw
,
th
,
tconf
,
tcls
,
obj_mask
,
noobj_mask
)
def
YoloV3Loss
(
x
,
gtbox
,
attrs
):
def
YoloV3Loss
(
x
,
gtbox
,
gtlabel
,
attrs
):
n
,
c
,
h
,
w
=
x
.
shape
an_num
=
len
(
attrs
[
'anchors'
])
//
2
class_num
=
attrs
[
"class_num"
]
...
...
@@ -134,7 +134,7 @@ def YoloV3Loss(x, gtbox, attrs):
pred_cls
=
sigmoid
(
x
[:,
:,
:,
:,
5
:])
tx
,
ty
,
tw
,
th
,
tconf
,
tcls
,
obj_mask
,
noobj_mask
=
build_target
(
gtbox
,
attrs
,
x
.
shape
[
2
])
gtbox
,
gtlabel
,
attrs
,
x
.
shape
[
2
])
obj_mask_expand
=
np
.
tile
(
np
.
expand_dims
(
obj_mask
,
4
),
(
1
,
1
,
1
,
1
,
int
(
attrs
[
'class_num'
])))
...
...
@@ -142,73 +142,73 @@ def YoloV3Loss(x, gtbox, attrs):
loss_y
=
mse
(
pred_y
*
obj_mask
,
ty
*
obj_mask
,
obj_mask
.
sum
())
loss_w
=
mse
(
pred_w
*
obj_mask
,
tw
*
obj_mask
,
obj_mask
.
sum
())
loss_h
=
mse
(
pred_h
*
obj_mask
,
th
*
obj_mask
,
obj_mask
.
sum
())
loss_conf_
obj
=
bce
(
pred_conf
*
obj_mask
,
tconf
*
obj_mask
,
obj_mask
)
loss_conf_no
obj
=
bce
(
pred_conf
*
noobj_mask
,
tconf
*
noobj_mask
,
noobj_mask
)
loss_conf_
target
=
bce
(
pred_conf
*
obj_mask
,
tconf
*
obj_mask
,
obj_mask
)
loss_conf_no
target
=
bce
(
pred_conf
*
noobj_mask
,
tconf
*
noobj_mask
,
noobj_mask
)
loss_class
=
bce
(
pred_cls
*
obj_mask_expand
,
tcls
*
obj_mask_expand
,
obj_mask_expand
)
return
attrs
[
'l
ambda
_xy'
]
*
(
loss_x
+
loss_y
)
\
+
attrs
[
'l
ambda
_wh'
]
*
(
loss_w
+
loss_h
)
\
+
attrs
[
'l
ambda_conf_obj'
]
*
loss_conf_obj
\
+
attrs
[
'l
ambda_conf_noobj'
]
*
loss_conf_noobj
\
+
attrs
[
'l
ambda
_class'
]
*
loss_class
return
attrs
[
'l
oss_weight
_xy'
]
*
(
loss_x
+
loss_y
)
\
+
attrs
[
'l
oss_weight
_wh'
]
*
(
loss_w
+
loss_h
)
\
+
attrs
[
'l
oss_weight_conf_target'
]
*
loss_conf_target
\
+
attrs
[
'l
oss_weight_conf_notarget'
]
*
loss_conf_notarget
\
+
attrs
[
'l
oss_weight
_class'
]
*
loss_class
class
TestYolov3LossOp
(
OpTest
):
def
setUp
(
self
):
self
.
l
ambda
_xy
=
1.0
self
.
l
ambda
_wh
=
1.0
self
.
l
ambda_conf_obj
=
1.0
self
.
l
ambda_conf_noobj
=
1.0
self
.
l
ambda
_class
=
1.0
self
.
l
oss_weight
_xy
=
1.0
self
.
l
oss_weight
_wh
=
1.0
self
.
l
oss_weight_conf_target
=
1.0
self
.
l
oss_weight_conf_notarget
=
1.0
self
.
l
oss_weight
_class
=
1.0
self
.
initTestCase
()
self
.
op_type
=
'yolov3_loss'
x
=
np
.
random
.
random
(
size
=
self
.
x_shape
).
astype
(
'float32'
)
gtbox
=
np
.
random
.
random
(
size
=
self
.
gtbox_shape
).
astype
(
'float32'
)
gt
box
[:,
:,
0
]
=
np
.
random
.
randint
(
0
,
self
.
class_num
,
self
.
gtbox_shape
[:
2
]
)
gt
label
=
np
.
random
.
randint
(
0
,
self
.
class_num
,
self
.
gtbox_shape
[:
2
]).
astype
(
'int32'
)
self
.
attrs
=
{
"anchors"
:
self
.
anchors
,
"class_num"
:
self
.
class_num
,
"ignore_thresh"
:
self
.
ignore_thresh
,
"l
ambda_xy"
:
self
.
lambda
_xy
,
"l
ambda_wh"
:
self
.
lambda
_wh
,
"l
ambda_conf_obj"
:
self
.
lambda_conf_obj
,
"l
ambda_conf_noobj"
:
self
.
lambda_conf_noobj
,
"l
ambda_class"
:
self
.
lambda
_class
,
"l
oss_weight_xy"
:
self
.
loss_weight
_xy
,
"l
oss_weight_wh"
:
self
.
loss_weight
_wh
,
"l
oss_weight_conf_target"
:
self
.
loss_weight_conf_target
,
"l
oss_weight_conf_notarget"
:
self
.
loss_weight_conf_notarget
,
"l
oss_weight_class"
:
self
.
loss_weight
_class
,
}
self
.
inputs
=
{
'X'
:
x
,
'GTBox'
:
gtbox
}
self
.
inputs
=
{
'X'
:
x
,
'GTBox'
:
gtbox
,
'GTLabel'
:
gtlabel
}
self
.
outputs
=
{
'Loss'
:
np
.
array
([
YoloV3Loss
(
x
,
gtbox
,
self
.
attrs
)]).
astype
(
'float32'
)
'Loss'
:
np
.
array
(
[
YoloV3Loss
(
x
,
gtbox
,
gtlabel
,
self
.
attrs
)]).
astype
(
'float32'
)
}
def
test_check_output
(
self
):
place
=
core
.
CPUPlace
()
self
.
check_output_with_place
(
place
,
atol
=
1e-3
)
#
def test_check_grad_ignore_gtbox(self):
#
place = core.CPUPlace()
#
self.check_grad_with_place(
#
place, ['X'],
#
'Loss',
#
no_grad_set=set("GTBox"),
#
max_relative_error=0.06)
def
test_check_grad_ignore_gtbox
(
self
):
place
=
core
.
CPUPlace
()
self
.
check_grad_with_place
(
place
,
[
'X'
],
'Loss'
,
no_grad_set
=
set
(
"GTBox"
),
max_relative_error
=
0.06
)
def
initTestCase
(
self
):
self
.
anchors
=
[
10
,
13
,
12
,
12
]
self
.
class_num
=
10
self
.
ignore_thresh
=
0.5
self
.
x_shape
=
(
5
,
len
(
self
.
anchors
)
//
2
*
(
5
+
self
.
class_num
),
7
,
7
)
self
.
gtbox_shape
=
(
5
,
5
,
5
)
self
.
l
ambda
_xy
=
2.5
self
.
l
ambda
_wh
=
0.8
self
.
l
ambda_conf_obj
=
1.5
self
.
l
ambda_conf_noobj
=
0.5
self
.
l
ambda
_class
=
1.2
self
.
gtbox_shape
=
(
5
,
10
,
4
)
self
.
l
oss_weight
_xy
=
2.5
self
.
l
oss_weight
_wh
=
0.8
self
.
l
oss_weight_conf_target
=
1.5
self
.
l
oss_weight_conf_notarget
=
0.5
self
.
l
oss_weight
_class
=
1.2
if
__name__
==
"__main__"
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录