coco_eval.py 16.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import os
import sys
import json
import cv2
import numpy as np

import logging
logger = logging.getLogger(__name__)

__all__ = [
30 31 32 33 34 35
    'bbox_eval',
    'mask_eval',
    'bbox2out',
    'mask2out',
    'get_category_info',
    'proposal_eval',
36
    'cocoapi_eval',
37 38 39
]


W
wangguanzhong 已提交
40 41 42 43 44 45 46
def clip_bbox(bbox, im_size=None):
    h = 1. if im_size is None else im_size[0]
    w = 1. if im_size is None else im_size[1]
    xmin = max(min(bbox[0], w), 0.)
    ymin = max(min(bbox[1], h), 0.)
    xmax = max(min(bbox[2], w), 0.)
    ymax = max(min(bbox[3], h), 0.)
47 48 49
    return xmin, ymin, xmax, ymax


50 51 52 53 54 55 56 57 58 59 60 61
def proposal_eval(results, anno_file, outfile, max_dets=(100, 300, 1000)):
    assert 'proposal' in results[0]
    assert outfile.endswith('.json')

    xywh_results = proposal2out(results)
    assert len(
        xywh_results) > 0, "The number of valid proposal detected is zero.\n \
        Please use reasonable model and check input data."

    with open(outfile, 'w') as f:
        json.dump(xywh_results, f)

62
    cocoapi_eval(outfile, 'proposal', anno_file=anno_file, max_dets=max_dets)
63 64 65
    # flush coco evaluation result
    sys.stdout.flush()

66 67 68 69 70

def bbox_eval(results,
              anno_file,
              outfile,
              with_background=True,
W
wangguanzhong 已提交
71 72
              is_bbox_normalized=False,
              save_only=False):
73 74
    assert 'bbox' in results[0]
    assert outfile.endswith('.json')
G
Guanghua Yu 已提交
75
    from pycocotools.coco import COCO
76 77 78 79 80 81 82 83 84 85

    coco_gt = COCO(anno_file)
    cat_ids = coco_gt.getCatIds()

    # when with_background = True, mapping category to classid, like:
    #   background:0, first_class:1, second_class:2, ...
    clsid2catid = dict(
        {i + int(with_background): catid
         for i, catid in enumerate(cat_ids)})

86 87 88
    xywh_results = bbox2out(
        results, clsid2catid, is_bbox_normalized=is_bbox_normalized)

89 90 91 92 93
    if len(xywh_results) == 0:
        logger.warning("The number of valid bbox detected is zero.\n \
            Please use reasonable model and check input data.\n \
            stop eval!")
        return [0.0]
94 95 96
    with open(outfile, 'w') as f:
        json.dump(xywh_results, f)

W
wangguanzhong 已提交
97 98 99 100 101
    if save_only:
        logger.info('The bbox result is saved to {} and do not '
                    'evaluate the mAP.'.format(outfile))
        return

102
    map_stats = cocoapi_eval(outfile, 'bbox', coco_gt=coco_gt)
103 104
    # flush coco evaluation result
    sys.stdout.flush()
105
    return map_stats
106 107


W
wangguanzhong 已提交
108 109 110 111 112 113
def mask_eval(results,
              anno_file,
              outfile,
              resolution,
              thresh_binarize=0.5,
              save_only=False):
114 115
    assert 'mask' in results[0]
    assert outfile.endswith('.json')
G
Guanghua Yu 已提交
116
    from pycocotools.coco import COCO
117 118 119 120

    coco_gt = COCO(anno_file)
    clsid2catid = {i + 1: v for i, v in enumerate(coco_gt.getCatIds())}

W
wangguanzhong 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
    segm_results = []
    for t in results:
        im_ids = np.array(t['im_id'][0])
        bboxes = t['bbox'][0]
        lengths = t['bbox'][1][0]
        masks = t['mask']
        if bboxes.shape == (1, 1) or bboxes is None:
            continue
        if len(bboxes.tolist()) == 0:
            continue
        s = 0
        for i in range(len(lengths)):
            num = lengths[i]
            im_id = int(im_ids[i][0])
            clsid_scores = bboxes[s:s + num][:, 0:2]
            mask = masks[s:s + num]
W
wangguanzhong 已提交
137
            s += num
W
wangguanzhong 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150
            for j in range(num):
                clsid, score = clsid_scores[j].tolist()
                catid = int(clsid2catid[clsid])
                segm = mask[j]
                segm['counts'] = segm['counts'].decode('utf8')
                coco_res = {
                    'image_id': im_id,
                    'category_id': int(catid),
                    'segmentation': segm,
                    'score': score
                }
                segm_results.append(coco_res)

151 152 153 154
    if len(segm_results) == 0:
        logger.warning("The number of valid mask detected is zero.\n \
            Please use reasonable model and check input data.")
        return
155

156 157 158
    with open(outfile, 'w') as f:
        json.dump(segm_results, f)

W
wangguanzhong 已提交
159 160 161 162 163
    if save_only:
        logger.info('The mask result is saved to {} and do not '
                    'evaluate the mAP.'.format(outfile))
        return

164 165
    cocoapi_eval(outfile, 'segm', coco_gt=coco_gt)

166

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
def cocoapi_eval(jsonfile,
                 style,
                 coco_gt=None,
                 anno_file=None,
                 max_dets=(100, 300, 1000)):
    """
    Args:
        jsonfile: Evaluation json file, eg: bbox.json, mask.json.
        style: COCOeval style, can be `bbox` , `segm` and `proposal`.
        coco_gt: Whether to load COCOAPI through anno_file,
                 eg: coco_gt = COCO(anno_file)
        anno_file: COCO annotations file.
        max_dets: COCO evaluation maxDets.
    """
    assert coco_gt != None or anno_file != None
G
Guanghua Yu 已提交
182 183 184
    from pycocotools.coco import COCO
    from pycocotools.cocoeval import COCOeval

185 186
    if coco_gt == None:
        coco_gt = COCO(anno_file)
187
    logger.info("Start evaluate...")
188 189 190 191 192 193 194 195 196 197
    coco_dt = coco_gt.loadRes(jsonfile)
    if style == 'proposal':
        coco_eval = COCOeval(coco_gt, coco_dt, 'bbox')
        coco_eval.params.useCats = 0
        coco_eval.params.maxDets = list(max_dets)
    else:
        coco_eval = COCOeval(coco_gt, coco_dt, style)
    coco_eval.evaluate()
    coco_eval.accumulate()
    coco_eval.summarize()
198
    return coco_eval.stats
199

200

201 202 203 204 205
def proposal2out(results, is_bbox_normalized=False):
    xywh_res = []
    for t in results:
        bboxes = t['proposal'][0]
        lengths = t['proposal'][1][0]
W
wangguanzhong 已提交
206 207
        im_ids = np.array(t['im_id'][0]).flatten()
        assert len(lengths) == im_ids.size
208 209 210 211 212 213
        if bboxes.shape == (1, 1) or bboxes is None:
            continue

        k = 0
        for i in range(len(lengths)):
            num = lengths[i]
W
wangguanzhong 已提交
214
            im_id = int(im_ids[i])
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
            for j in range(num):
                dt = bboxes[k]
                xmin, ymin, xmax, ymax = dt.tolist()

                if is_bbox_normalized:
                    xmin, ymin, xmax, ymax = \
                            clip_bbox([xmin, ymin, xmax, ymax])
                    w = xmax - xmin
                    h = ymax - ymin
                else:
                    w = xmax - xmin + 1
                    h = ymax - ymin + 1

                bbox = [xmin, ymin, w, h]
                coco_res = {
                    'image_id': im_id,
                    'category_id': 1,
                    'bbox': bbox,
                    'score': 1.0
                }
                xywh_res.append(coco_res)
                k += 1
    return xywh_res


240
def bbox2out(results, clsid2catid, is_bbox_normalized=False):
241 242 243 244 245 246 247
    """
    Args:
        results: request a dict, should include: `bbox`, `im_id`,
                 if is_bbox_normalized=True, also need `im_shape`.
        clsid2catid: class id to category id map of COCO2017 dataset.
        is_bbox_normalized: whether or not bbox is normalized.
    """
248 249 250
    xywh_res = []
    for t in results:
        bboxes = t['bbox'][0]
W
wangguanzhong 已提交
251
        if len(t['bbox'][1]) == 0: continue
252
        lengths = t['bbox'][1][0]
W
wangguanzhong 已提交
253
        im_ids = np.array(t['im_id'][0]).flatten()
W
wangguanzhong 已提交
254
        if bboxes.shape == (1, 1) or bboxes is None or len(bboxes) == 0:
255 256 257 258 259
            continue

        k = 0
        for i in range(len(lengths)):
            num = lengths[i]
W
wangguanzhong 已提交
260
            im_id = int(im_ids[i])
261 262 263
            for j in range(num):
                dt = bboxes[k]
                clsid, score, xmin, ymin, xmax, ymax = dt.tolist()
264
                catid = (clsid2catid[int(clsid)])
265 266 267 268 269 270

                if is_bbox_normalized:
                    xmin, ymin, xmax, ymax = \
                            clip_bbox([xmin, ymin, xmax, ymax])
                    w = xmax - xmin
                    h = ymax - ymin
271 272
                    im_shape = t['im_shape'][0][i].tolist()
                    im_height, im_width = int(im_shape[0]), int(im_shape[1])
273 274 275 276
                    xmin *= im_width
                    ymin *= im_height
                    w *= im_width
                    h *= im_height
277
                else:
W
wangguanzhong 已提交
278 279 280 281 282
                    # for yolov4
                    # w = xmax - xmin
                    # h = ymax - ymin
                    w = xmax - xmin + 1
                    h = ymax - ymin + 1
283 284 285 286 287 288 289 290 291 292 293 294 295 296

                bbox = [xmin, ymin, w, h]
                coco_res = {
                    'image_id': im_id,
                    'category_id': catid,
                    'bbox': bbox,
                    'score': score
                }
                xywh_res.append(coco_res)
                k += 1
    return xywh_res


def mask2out(results, clsid2catid, resolution, thresh_binarize=0.5):
G
Guanghua Yu 已提交
297
    import pycocotools.mask as mask_util
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
    scale = (resolution + 2.0) / resolution

    segm_res = []

    # for each batch
    for t in results:
        bboxes = t['bbox'][0]

        lengths = t['bbox'][1][0]
        im_ids = np.array(t['im_id'][0])
        if bboxes.shape == (1, 1) or bboxes is None:
            continue
        if len(bboxes.tolist()) == 0:
            continue

        masks = t['mask'][0]

        s = 0
        # for each sample
        for i in range(len(lengths)):
            num = lengths[i]
            im_id = int(im_ids[i][0])
J
jerrywgz 已提交
320
            im_shape = t['im_shape'][0][i]
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419

            bbox = bboxes[s:s + num][:, 2:]
            clsid_scores = bboxes[s:s + num][:, 0:2]
            mask = masks[s:s + num]
            s += num

            im_h = int(im_shape[0])
            im_w = int(im_shape[1])

            expand_bbox = expand_boxes(bbox, scale)
            expand_bbox = expand_bbox.astype(np.int32)

            padded_mask = np.zeros(
                (resolution + 2, resolution + 2), dtype=np.float32)

            for j in range(num):
                xmin, ymin, xmax, ymax = expand_bbox[j].tolist()
                clsid, score = clsid_scores[j].tolist()
                clsid = int(clsid)
                padded_mask[1:-1, 1:-1] = mask[j, clsid, :, :]

                catid = clsid2catid[clsid]

                w = xmax - xmin + 1
                h = ymax - ymin + 1
                w = np.maximum(w, 1)
                h = np.maximum(h, 1)

                resized_mask = cv2.resize(padded_mask, (w, h))
                resized_mask = np.array(
                    resized_mask > thresh_binarize, dtype=np.uint8)
                im_mask = np.zeros((im_h, im_w), dtype=np.uint8)

                x0 = min(max(xmin, 0), im_w)
                x1 = min(max(xmax + 1, 0), im_w)
                y0 = min(max(ymin, 0), im_h)
                y1 = min(max(ymax + 1, 0), im_h)

                im_mask[y0:y1, x0:x1] = resized_mask[(y0 - ymin):(y1 - ymin), (
                    x0 - xmin):(x1 - xmin)]
                segm = mask_util.encode(
                    np.array(
                        im_mask[:, :, np.newaxis], order='F'))[0]
                catid = clsid2catid[clsid]
                segm['counts'] = segm['counts'].decode('utf8')
                coco_res = {
                    'image_id': im_id,
                    'category_id': catid,
                    'segmentation': segm,
                    'score': score
                }
                segm_res.append(coco_res)
    return segm_res


def expand_boxes(boxes, scale):
    """
    Expand an array of boxes by a given scale.
    """
    w_half = (boxes[:, 2] - boxes[:, 0]) * .5
    h_half = (boxes[:, 3] - boxes[:, 1]) * .5
    x_c = (boxes[:, 2] + boxes[:, 0]) * .5
    y_c = (boxes[:, 3] + boxes[:, 1]) * .5

    w_half *= scale
    h_half *= scale

    boxes_exp = np.zeros(boxes.shape)
    boxes_exp[:, 0] = x_c - w_half
    boxes_exp[:, 2] = x_c + w_half
    boxes_exp[:, 1] = y_c - h_half
    boxes_exp[:, 3] = y_c + h_half

    return boxes_exp


def get_category_info(anno_file=None,
                      with_background=True,
                      use_default_label=False):
    if use_default_label or anno_file is None \
            or not os.path.exists(anno_file):
        logger.info("Not found annotation file {}, load "
                    "coco17 categories.".format(anno_file))
        return coco17_category_info(with_background)
    else:
        logger.info("Load categories from {}".format(anno_file))
        return get_category_info_from_anno(anno_file, with_background)


def get_category_info_from_anno(anno_file, with_background=True):
    """
    Get class id to category id map and category id
    to category name map from annotation file.

    Args:
        anno_file (str): annotation file path
        with_background (bool, default True):
            whether load background as class 0.
    """
G
Guanghua Yu 已提交
420
    from pycocotools.coco import COCO
421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610
    coco = COCO(anno_file)
    cats = coco.loadCats(coco.getCatIds())
    clsid2catid = {
        i + int(with_background): cat['id']
        for i, cat in enumerate(cats)
    }
    catid2name = {cat['id']: cat['name'] for cat in cats}

    return clsid2catid, catid2name


def coco17_category_info(with_background=True):
    """
    Get class id to category id map and category id
    to category name map of COCO2017 dataset

    Args:
        with_background (bool, default True):
            whether load background as class 0.
    """
    clsid2catid = {
        1: 1,
        2: 2,
        3: 3,
        4: 4,
        5: 5,
        6: 6,
        7: 7,
        8: 8,
        9: 9,
        10: 10,
        11: 11,
        12: 13,
        13: 14,
        14: 15,
        15: 16,
        16: 17,
        17: 18,
        18: 19,
        19: 20,
        20: 21,
        21: 22,
        22: 23,
        23: 24,
        24: 25,
        25: 27,
        26: 28,
        27: 31,
        28: 32,
        29: 33,
        30: 34,
        31: 35,
        32: 36,
        33: 37,
        34: 38,
        35: 39,
        36: 40,
        37: 41,
        38: 42,
        39: 43,
        40: 44,
        41: 46,
        42: 47,
        43: 48,
        44: 49,
        45: 50,
        46: 51,
        47: 52,
        48: 53,
        49: 54,
        50: 55,
        51: 56,
        52: 57,
        53: 58,
        54: 59,
        55: 60,
        56: 61,
        57: 62,
        58: 63,
        59: 64,
        60: 65,
        61: 67,
        62: 70,
        63: 72,
        64: 73,
        65: 74,
        66: 75,
        67: 76,
        68: 77,
        69: 78,
        70: 79,
        71: 80,
        72: 81,
        73: 82,
        74: 84,
        75: 85,
        76: 86,
        77: 87,
        78: 88,
        79: 89,
        80: 90
    }

    catid2name = {
        0: 'background',
        1: 'person',
        2: 'bicycle',
        3: 'car',
        4: 'motorcycle',
        5: 'airplane',
        6: 'bus',
        7: 'train',
        8: 'truck',
        9: 'boat',
        10: 'traffic light',
        11: 'fire hydrant',
        13: 'stop sign',
        14: 'parking meter',
        15: 'bench',
        16: 'bird',
        17: 'cat',
        18: 'dog',
        19: 'horse',
        20: 'sheep',
        21: 'cow',
        22: 'elephant',
        23: 'bear',
        24: 'zebra',
        25: 'giraffe',
        27: 'backpack',
        28: 'umbrella',
        31: 'handbag',
        32: 'tie',
        33: 'suitcase',
        34: 'frisbee',
        35: 'skis',
        36: 'snowboard',
        37: 'sports ball',
        38: 'kite',
        39: 'baseball bat',
        40: 'baseball glove',
        41: 'skateboard',
        42: 'surfboard',
        43: 'tennis racket',
        44: 'bottle',
        46: 'wine glass',
        47: 'cup',
        48: 'fork',
        49: 'knife',
        50: 'spoon',
        51: 'bowl',
        52: 'banana',
        53: 'apple',
        54: 'sandwich',
        55: 'orange',
        56: 'broccoli',
        57: 'carrot',
        58: 'hot dog',
        59: 'pizza',
        60: 'donut',
        61: 'cake',
        62: 'chair',
        63: 'couch',
        64: 'potted plant',
        65: 'bed',
        67: 'dining table',
        70: 'toilet',
        72: 'tv',
        73: 'laptop',
        74: 'mouse',
        75: 'remote',
        76: 'keyboard',
        77: 'cell phone',
        78: 'microwave',
        79: 'oven',
        80: 'toaster',
        81: 'sink',
        82: 'refrigerator',
        84: 'book',
        85: 'clock',
        86: 'vase',
        87: 'scissors',
        88: 'teddy bear',
        89: 'hair drier',
        90: 'toothbrush'
    }

    if not with_background:
        clsid2catid = {k - 1: v for k, v in clsid2catid.items()}

611
    return clsid2catid, catid2name