coco_eval.py 14.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

import os
import sys
import json
import cv2
import numpy as np
W
wangguanzhong 已提交
25 26
import matplotlib
matplotlib.use('Agg')
27 28 29 30 31 32 33 34
from pycocotools.coco import COCO
from pycocotools.cocoeval import COCOeval
import pycocotools.mask as mask_util

import logging
logger = logging.getLogger(__name__)

__all__ = [
35 36 37 38 39 40
    'bbox_eval',
    'mask_eval',
    'bbox2out',
    'mask2out',
    'get_category_info',
    'proposal_eval',
41
    'cocoapi_eval',
42 43 44 45 46 47 48 49 50 51 52
]


def clip_bbox(bbox):
    xmin = max(min(bbox[0], 1.), 0.)
    ymin = max(min(bbox[1], 1.), 0.)
    xmax = max(min(bbox[2], 1.), 0.)
    ymax = max(min(bbox[3], 1.), 0.)
    return xmin, ymin, xmax, ymax


53 54 55 56 57 58 59 60 61 62 63 64
def proposal_eval(results, anno_file, outfile, max_dets=(100, 300, 1000)):
    assert 'proposal' in results[0]
    assert outfile.endswith('.json')

    xywh_results = proposal2out(results)
    assert len(
        xywh_results) > 0, "The number of valid proposal detected is zero.\n \
        Please use reasonable model and check input data."

    with open(outfile, 'w') as f:
        json.dump(xywh_results, f)

65
    cocoapi_eval(outfile, 'proposal', anno_file=anno_file, max_dets=max_dets)
66 67 68
    # flush coco evaluation result
    sys.stdout.flush()

69 70 71 72 73 74 75 76 77 78 79 80 81 82
def bbox_eval(results, anno_file, outfile, with_background=True):
    assert 'bbox' in results[0]
    assert outfile.endswith('.json')

    coco_gt = COCO(anno_file)
    cat_ids = coco_gt.getCatIds()

    # when with_background = True, mapping category to classid, like:
    #   background:0, first_class:1, second_class:2, ...
    clsid2catid = dict(
        {i + int(with_background): catid
         for i, catid in enumerate(cat_ids)})

    xywh_results = bbox2out(results, clsid2catid)
83 84 85 86
    assert len(
        xywh_results) > 0, "The number of valid bbox detected is zero.\n \
        Please use reasonable model and check input data."

87 88 89
    with open(outfile, 'w') as f:
        json.dump(xywh_results, f)

90
    cocoapi_eval(outfile, 'bbox', coco_gt=coco_gt)
91 92 93 94 95 96 97 98 99 100 101 102
    # flush coco evaluation result
    sys.stdout.flush()


def mask_eval(results, anno_file, outfile, resolution, thresh_binarize=0.5):
    assert 'mask' in results[0]
    assert outfile.endswith('.json')

    coco_gt = COCO(anno_file)
    clsid2catid = {i + 1: v for i, v in enumerate(coco_gt.getCatIds())}

    segm_results = mask2out(results, clsid2catid, resolution, thresh_binarize)
103
    assert len(
W
wangguanzhong 已提交
104
        segm_results) > 0, "The number of valid mask detected is zero.\n \
105 106
        Please use reasonable model and check input data."

107 108 109
    with open(outfile, 'w') as f:
        json.dump(segm_results, f)

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
    cocoapi_eval(outfile, 'segm', coco_gt=coco_gt)

def cocoapi_eval(jsonfile,
                 style,
                 coco_gt=None,
                 anno_file=None,
                 max_dets=(100, 300, 1000)):
    """
    Args:
        jsonfile: Evaluation json file, eg: bbox.json, mask.json.
        style: COCOeval style, can be `bbox` , `segm` and `proposal`.
        coco_gt: Whether to load COCOAPI through anno_file,
                 eg: coco_gt = COCO(anno_file)
        anno_file: COCO annotations file.
        max_dets: COCO evaluation maxDets.
    """
    assert coco_gt != None or anno_file != None
    if coco_gt == None:
        coco_gt = COCO(anno_file)
129
    logger.info("Start evaluate...")
130 131 132 133 134 135 136 137 138 139
    coco_dt = coco_gt.loadRes(jsonfile)
    if style == 'proposal':
        coco_eval = COCOeval(coco_gt, coco_dt, 'bbox')
        coco_eval.params.useCats = 0
        coco_eval.params.maxDets = list(max_dets)
    else:
        coco_eval = COCOeval(coco_gt, coco_dt, style)
    coco_eval.evaluate()
    coco_eval.accumulate()
    coco_eval.summarize()
140 141


142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
def proposal2out(results, is_bbox_normalized=False):
    xywh_res = []
    for t in results:
        bboxes = t['proposal'][0]
        lengths = t['proposal'][1][0]
        im_ids = np.array(t['im_id'][0])
        if bboxes.shape == (1, 1) or bboxes is None:
            continue

        k = 0
        for i in range(len(lengths)):
            num = lengths[i]
            im_id = int(im_ids[i][0])
            for j in range(num):
                dt = bboxes[k]
                xmin, ymin, xmax, ymax = dt.tolist()

                if is_bbox_normalized:
                    xmin, ymin, xmax, ymax = \
                            clip_bbox([xmin, ymin, xmax, ymax])
                    w = xmax - xmin
                    h = ymax - ymin
                else:
                    w = xmax - xmin + 1
                    h = ymax - ymin + 1

                bbox = [xmin, ymin, w, h]
                coco_res = {
                    'image_id': im_id,
                    'category_id': 1,
                    'bbox': bbox,
                    'score': 1.0
                }
                xywh_res.append(coco_res)
                k += 1
    return xywh_res


180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
def bbox2out(results, clsid2catid, is_bbox_normalized=False):
    xywh_res = []
    for t in results:
        bboxes = t['bbox'][0]
        lengths = t['bbox'][1][0]
        im_ids = np.array(t['im_id'][0])
        if bboxes.shape == (1, 1) or bboxes is None:
            continue

        k = 0
        for i in range(len(lengths)):
            num = lengths[i]
            im_id = int(im_ids[i][0])
            for j in range(num):
                dt = bboxes[k]
                clsid, score, xmin, ymin, xmax, ymax = dt.tolist()
                catid = clsid2catid[clsid]

                if is_bbox_normalized:
                    xmin, ymin, xmax, ymax = \
                            clip_bbox([xmin, ymin, xmax, ymax])
                    w = xmax - xmin
                    h = ymax - ymin
                else:
                    w = xmax - xmin + 1
                    h = ymax - ymin + 1

                bbox = [xmin, ymin, w, h]
                coco_res = {
                    'image_id': im_id,
                    'category_id': catid,
                    'bbox': bbox,
                    'score': score
                }
                xywh_res.append(coco_res)
                k += 1
    return xywh_res


def mask2out(results, clsid2catid, resolution, thresh_binarize=0.5):
    scale = (resolution + 2.0) / resolution

    segm_res = []

    # for each batch
    for t in results:
        bboxes = t['bbox'][0]

        lengths = t['bbox'][1][0]
        im_ids = np.array(t['im_id'][0])
        if bboxes.shape == (1, 1) or bboxes is None:
            continue
        if len(bboxes.tolist()) == 0:
            continue

        masks = t['mask'][0]

        s = 0
        # for each sample
        for i in range(len(lengths)):
            num = lengths[i]
            im_id = int(im_ids[i][0])
J
jerrywgz 已提交
242
            im_shape = t['im_shape'][0][i]
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532

            bbox = bboxes[s:s + num][:, 2:]
            clsid_scores = bboxes[s:s + num][:, 0:2]
            mask = masks[s:s + num]
            s += num

            im_h = int(im_shape[0])
            im_w = int(im_shape[1])

            expand_bbox = expand_boxes(bbox, scale)
            expand_bbox = expand_bbox.astype(np.int32)

            padded_mask = np.zeros(
                (resolution + 2, resolution + 2), dtype=np.float32)

            for j in range(num):
                xmin, ymin, xmax, ymax = expand_bbox[j].tolist()
                clsid, score = clsid_scores[j].tolist()
                clsid = int(clsid)
                padded_mask[1:-1, 1:-1] = mask[j, clsid, :, :]

                catid = clsid2catid[clsid]

                w = xmax - xmin + 1
                h = ymax - ymin + 1
                w = np.maximum(w, 1)
                h = np.maximum(h, 1)

                resized_mask = cv2.resize(padded_mask, (w, h))
                resized_mask = np.array(
                    resized_mask > thresh_binarize, dtype=np.uint8)
                im_mask = np.zeros((im_h, im_w), dtype=np.uint8)

                x0 = min(max(xmin, 0), im_w)
                x1 = min(max(xmax + 1, 0), im_w)
                y0 = min(max(ymin, 0), im_h)
                y1 = min(max(ymax + 1, 0), im_h)

                im_mask[y0:y1, x0:x1] = resized_mask[(y0 - ymin):(y1 - ymin), (
                    x0 - xmin):(x1 - xmin)]
                segm = mask_util.encode(
                    np.array(
                        im_mask[:, :, np.newaxis], order='F'))[0]
                catid = clsid2catid[clsid]
                segm['counts'] = segm['counts'].decode('utf8')
                coco_res = {
                    'image_id': im_id,
                    'category_id': catid,
                    'segmentation': segm,
                    'score': score
                }
                segm_res.append(coco_res)
    return segm_res


def expand_boxes(boxes, scale):
    """
    Expand an array of boxes by a given scale.
    """
    w_half = (boxes[:, 2] - boxes[:, 0]) * .5
    h_half = (boxes[:, 3] - boxes[:, 1]) * .5
    x_c = (boxes[:, 2] + boxes[:, 0]) * .5
    y_c = (boxes[:, 3] + boxes[:, 1]) * .5

    w_half *= scale
    h_half *= scale

    boxes_exp = np.zeros(boxes.shape)
    boxes_exp[:, 0] = x_c - w_half
    boxes_exp[:, 2] = x_c + w_half
    boxes_exp[:, 1] = y_c - h_half
    boxes_exp[:, 3] = y_c + h_half

    return boxes_exp


def get_category_info(anno_file=None,
                      with_background=True,
                      use_default_label=False):
    if use_default_label or anno_file is None \
            or not os.path.exists(anno_file):
        logger.info("Not found annotation file {}, load "
                    "coco17 categories.".format(anno_file))
        return coco17_category_info(with_background)
    else:
        logger.info("Load categories from {}".format(anno_file))
        return get_category_info_from_anno(anno_file, with_background)


def get_category_info_from_anno(anno_file, with_background=True):
    """
    Get class id to category id map and category id
    to category name map from annotation file.

    Args:
        anno_file (str): annotation file path
        with_background (bool, default True):
            whether load background as class 0.
    """
    coco = COCO(anno_file)
    cats = coco.loadCats(coco.getCatIds())
    clsid2catid = {
        i + int(with_background): cat['id']
        for i, cat in enumerate(cats)
    }
    catid2name = {cat['id']: cat['name'] for cat in cats}

    return clsid2catid, catid2name


def coco17_category_info(with_background=True):
    """
    Get class id to category id map and category id
    to category name map of COCO2017 dataset

    Args:
        with_background (bool, default True):
            whether load background as class 0.
    """
    clsid2catid = {
        1: 1,
        2: 2,
        3: 3,
        4: 4,
        5: 5,
        6: 6,
        7: 7,
        8: 8,
        9: 9,
        10: 10,
        11: 11,
        12: 13,
        13: 14,
        14: 15,
        15: 16,
        16: 17,
        17: 18,
        18: 19,
        19: 20,
        20: 21,
        21: 22,
        22: 23,
        23: 24,
        24: 25,
        25: 27,
        26: 28,
        27: 31,
        28: 32,
        29: 33,
        30: 34,
        31: 35,
        32: 36,
        33: 37,
        34: 38,
        35: 39,
        36: 40,
        37: 41,
        38: 42,
        39: 43,
        40: 44,
        41: 46,
        42: 47,
        43: 48,
        44: 49,
        45: 50,
        46: 51,
        47: 52,
        48: 53,
        49: 54,
        50: 55,
        51: 56,
        52: 57,
        53: 58,
        54: 59,
        55: 60,
        56: 61,
        57: 62,
        58: 63,
        59: 64,
        60: 65,
        61: 67,
        62: 70,
        63: 72,
        64: 73,
        65: 74,
        66: 75,
        67: 76,
        68: 77,
        69: 78,
        70: 79,
        71: 80,
        72: 81,
        73: 82,
        74: 84,
        75: 85,
        76: 86,
        77: 87,
        78: 88,
        79: 89,
        80: 90
    }

    catid2name = {
        0: 'background',
        1: 'person',
        2: 'bicycle',
        3: 'car',
        4: 'motorcycle',
        5: 'airplane',
        6: 'bus',
        7: 'train',
        8: 'truck',
        9: 'boat',
        10: 'traffic light',
        11: 'fire hydrant',
        13: 'stop sign',
        14: 'parking meter',
        15: 'bench',
        16: 'bird',
        17: 'cat',
        18: 'dog',
        19: 'horse',
        20: 'sheep',
        21: 'cow',
        22: 'elephant',
        23: 'bear',
        24: 'zebra',
        25: 'giraffe',
        27: 'backpack',
        28: 'umbrella',
        31: 'handbag',
        32: 'tie',
        33: 'suitcase',
        34: 'frisbee',
        35: 'skis',
        36: 'snowboard',
        37: 'sports ball',
        38: 'kite',
        39: 'baseball bat',
        40: 'baseball glove',
        41: 'skateboard',
        42: 'surfboard',
        43: 'tennis racket',
        44: 'bottle',
        46: 'wine glass',
        47: 'cup',
        48: 'fork',
        49: 'knife',
        50: 'spoon',
        51: 'bowl',
        52: 'banana',
        53: 'apple',
        54: 'sandwich',
        55: 'orange',
        56: 'broccoli',
        57: 'carrot',
        58: 'hot dog',
        59: 'pizza',
        60: 'donut',
        61: 'cake',
        62: 'chair',
        63: 'couch',
        64: 'potted plant',
        65: 'bed',
        67: 'dining table',
        70: 'toilet',
        72: 'tv',
        73: 'laptop',
        74: 'mouse',
        75: 'remote',
        76: 'keyboard',
        77: 'cell phone',
        78: 'microwave',
        79: 'oven',
        80: 'toaster',
        81: 'sink',
        82: 'refrigerator',
        84: 'book',
        85: 'clock',
        86: 'vase',
        87: 'scissors',
        88: 'teddy bear',
        89: 'hair drier',
        90: 'toothbrush'
    }

    if not with_background:
        clsid2catid = {k - 1: v for k, v in clsid2catid.items()}

    return clsid2catid, catid2name