Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
2ee6dd97
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
2ee6dd97
编写于
10月 14, 2019
作者:
Y
Yuan Gao
提交者:
qingqing01
10月 14, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add class aware sampling strategy (#3104)
* add class aware sampling strategy * remove redundancy code
上级
e968c137
变更
5
隐藏空白更改
内联
并排
Showing
5 changed file
with
159 addition
and
8 deletion
+159
-8
ppdet/data/data_feed.py
ppdet/data/data_feed.py
+15
-5
ppdet/data/source/__init__.py
ppdet/data/source/__init__.py
+9
-1
ppdet/data/source/class_aware_sampling_roidb_source.py
ppdet/data/source/class_aware_sampling_roidb_source.py
+132
-0
ppdet/data/source/coco_loader.py
ppdet/data/source/coco_loader.py
+2
-1
ppdet/utils/coco_eval.py
ppdet/utils/coco_eval.py
+1
-1
未找到文件。
ppdet/data/data_feed.py
浏览文件 @
2ee6dd97
...
...
@@ -70,6 +70,10 @@ def _prepare_data_config(feed, args_path):
'TYPE'
:
type
(
feed
.
dataset
).
__source__
}
if
feed
.
mode
==
'TRAIN'
:
data_config
[
'CLASS_AWARE_SAMPLING'
]
=
getattr
(
feed
,
'class_aware_sampling'
,
False
)
if
len
(
getattr
(
feed
.
dataset
,
'images'
,
[]))
>
0
:
data_config
[
'IMAGES'
]
=
feed
.
dataset
.
images
...
...
@@ -301,7 +305,8 @@ class DataFeed(object):
bufsize
=
10
,
use_process
=
False
,
memsize
=
None
,
use_padded_im_info
=
False
):
use_padded_im_info
=
False
,
class_aware_sampling
=
False
):
super
(
DataFeed
,
self
).
__init__
()
self
.
fields
=
fields
self
.
image_shape
=
image_shape
...
...
@@ -318,6 +323,7 @@ class DataFeed(object):
self
.
memsize
=
memsize
self
.
dataset
=
dataset
self
.
use_padded_im_info
=
use_padded_im_info
self
.
class_aware_sampling
=
class_aware_sampling
if
isinstance
(
dataset
,
dict
):
self
.
dataset
=
DataSet
(
**
dataset
)
...
...
@@ -447,7 +453,8 @@ class FasterRCNNTrainFeed(DataFeed):
bufsize
=
10
,
num_workers
=
2
,
use_process
=
False
,
memsize
=
None
):
memsize
=
None
,
class_aware_sampling
=
False
):
# XXX this should be handled by the data loader, since `fields` is
# given, just collect them
sample_transforms
.
append
(
ArrangeRCNN
())
...
...
@@ -464,7 +471,8 @@ class FasterRCNNTrainFeed(DataFeed):
bufsize
=
bufsize
,
num_workers
=
num_workers
,
use_process
=
use_process
,
memsize
=
memsize
)
memsize
=
memsize
,
class_aware_sampling
=
class_aware_sampling
)
# XXX these modes should be unified
self
.
mode
=
'TRAIN'
...
...
@@ -891,7 +899,8 @@ class YoloTrainFeed(DataFeed):
use_process
=
True
,
memsize
=
None
,
num_max_boxes
=
50
,
mixup_epoch
=
250
):
mixup_epoch
=
250
,
class_aware_sampling
=
False
):
sample_transforms
.
append
(
ArrangeYOLO
())
super
(
YoloTrainFeed
,
self
).
__init__
(
dataset
,
...
...
@@ -907,7 +916,8 @@ class YoloTrainFeed(DataFeed):
num_workers
=
num_workers
,
bufsize
=
bufsize
,
use_process
=
use_process
,
memsize
=
memsize
)
memsize
=
memsize
,
class_aware_sampling
=
class_aware_sampling
)
self
.
num_max_boxes
=
num_max_boxes
self
.
mixup_epoch
=
mixup_epoch
self
.
mode
=
'TRAIN'
...
...
ppdet/data/source/__init__.py
浏览文件 @
2ee6dd97
...
...
@@ -21,6 +21,7 @@ import copy
from
.roidb_source
import
RoiDbSource
from
.simple_source
import
SimpleSource
from
.iterator_source
import
IteratorSource
from
.class_aware_sampling_roidb_source
import
ClassAwareSamplingRoiDbSource
def
build_source
(
config
):
...
...
@@ -53,7 +54,12 @@ def build_source(config):
source_type
=
'RoiDbSource'
if
'type'
in
data_cf
:
if
data_cf
[
'type'
]
in
[
'VOCSource'
,
'COCOSource'
,
'RoiDbSource'
]:
source_type
=
'RoiDbSource'
if
'class_aware_sampling'
in
args
and
args
[
'class_aware_sampling'
]:
source_type
=
'ClassAwareSamplingRoiDbSource'
else
:
source_type
=
'RoiDbSource'
if
'class_aware_sampling'
in
args
:
del
args
[
'class_aware_sampling'
]
else
:
source_type
=
data_cf
[
'type'
]
del
args
[
'type'
]
...
...
@@ -61,5 +67,7 @@ def build_source(config):
return
RoiDbSource
(
**
args
)
elif
source_type
==
'SimpleSource'
:
return
SimpleSource
(
**
args
)
elif
source_type
==
'ClassAwareSamplingRoiDbSource'
:
return
ClassAwareSamplingRoiDbSource
(
**
args
)
else
:
raise
ValueError
(
'source type not supported: '
+
source_type
)
ppdet/data/source/class_aware_sampling_roidb_source.py
0 → 100644
浏览文件 @
2ee6dd97
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#function:
# interface to load data from local files and parse it for samples,
# eg: roidb data in pickled files
from
__future__
import
absolute_import
from
__future__
import
division
from
__future__
import
print_function
from
__future__
import
unicode_literals
import
os
import
random
import
copy
import
collections
import
pickle
as
pkl
import
numpy
as
np
from
.roidb_source
import
RoiDbSource
class
ClassAwareSamplingRoiDbSource
(
RoiDbSource
):
""" interface to load class aware sampling roidb data from files
"""
def
__init__
(
self
,
anno_file
,
image_dir
=
None
,
samples
=-
1
,
is_shuffle
=
True
,
load_img
=
False
,
cname2cid
=
None
,
use_default_label
=
None
,
mixup_epoch
=-
1
,
with_background
=
True
):
""" Init
Args:
fname (str): label file path
image_dir (str): root dir for images
samples (int): samples to load, -1 means all
is_shuffle (bool): whether to shuffle samples
load_img (bool): whether load data in this class
cname2cid (dict): the label name to id dictionary
use_default_label (bool):whether use the default mapping of label to id
mixup_epoch (int): parse mixup in first n epoch
with_background (bool): whether load background
as a class
"""
super
(
ClassAwareSamplingRoiDbSource
,
self
).
__init__
(
anno_file
=
anno_file
,
image_dir
=
image_dir
,
samples
=
samples
,
is_shuffle
=
is_shuffle
,
load_img
=
load_img
,
cname2cid
=
cname2cid
,
use_default_label
=
use_default_label
,
mixup_epoch
=
mixup_epoch
,
with_background
=
with_background
)
self
.
_img_weights
=
None
def
__str__
(
self
):
return
'ClassAwareSamplingRoidbSource(fname:%s,epoch:%d,size:%d)'
\
%
(
self
.
_fname
,
self
.
_epoch
,
self
.
size
())
def
next
(
self
):
""" load next sample
"""
if
self
.
_epoch
<
0
:
self
.
reset
()
_pos
=
np
.
random
.
choice
(
self
.
_samples
,
1
,
replace
=
False
,
p
=
self
.
_img_weights
)[
0
]
sample
=
copy
.
deepcopy
(
self
.
_roidb
[
_pos
])
if
self
.
_load_img
:
sample
[
'image'
]
=
self
.
_load_image
(
sample
[
'im_file'
])
else
:
sample
[
'im_file'
]
=
os
.
path
.
join
(
self
.
_image_dir
,
sample
[
'im_file'
])
return
sample
def
_calc_img_weights
(
self
):
""" calculate the probabilities of each sample
"""
imgs_cls
=
[]
num_per_cls
=
{}
img_weights
=
[]
for
i
,
roidb
in
enumerate
(
self
.
_roidb
):
img_cls
=
set
(
[
k
for
cls
in
self
.
_roidb
[
i
][
'gt_class'
]
for
k
in
cls
])
imgs_cls
.
append
(
img_cls
)
for
c
in
img_cls
:
if
c
not
in
num_per_cls
:
num_per_cls
[
c
]
=
1
else
:
num_per_cls
[
c
]
+=
1
for
i
in
range
(
len
(
self
.
_roidb
)):
weights
=
0
for
c
in
imgs_cls
[
i
]:
weights
+=
1
/
num_per_cls
[
c
]
img_weights
.
append
(
weights
)
# Probabilities sum to 1
img_weights
=
img_weights
/
np
.
sum
(
img_weights
)
return
img_weights
def
reset
(
self
):
""" implementation of Dataset.reset
"""
if
self
.
_roidb
is
None
:
self
.
_roidb
=
self
.
_load
()
if
self
.
_img_weights
is
None
:
self
.
_img_weights
=
self
.
_calc_img_weights
()
self
.
_samples
=
len
(
self
.
_roidb
)
if
self
.
_epoch
<
0
:
self
.
_epoch
=
0
ppdet/data/source/coco_loader.py
浏览文件 @
2ee6dd97
...
...
@@ -101,7 +101,8 @@ def load(anno_path, sample_num=-1, with_background=True):
gt_class
[
i
][
0
]
=
catid2clsid
[
catid
]
gt_bbox
[
i
,
:]
=
box
[
'clean_bbox'
]
is_crowd
[
i
][
0
]
=
box
[
'iscrowd'
]
gt_poly
[
i
]
=
box
[
'segmentation'
]
if
'segmentation'
in
box
:
gt_poly
[
i
]
=
box
[
'segmentation'
]
coco_rec
=
{
'im_file'
:
im_fname
,
...
...
ppdet/utils/coco_eval.py
浏览文件 @
2ee6dd97
...
...
@@ -213,7 +213,7 @@ def bbox2out(results, clsid2catid, is_bbox_normalized=False):
for
j
in
range
(
num
):
dt
=
bboxes
[
k
]
clsid
,
score
,
xmin
,
ymin
,
xmax
,
ymax
=
dt
.
tolist
()
catid
=
clsid2catid
[
clsid
]
catid
=
(
clsid2catid
[
int
(
clsid
)])
if
is_bbox_normalized
:
xmin
,
ymin
,
xmax
,
ymax
=
\
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录