pipeline.py 46.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
import glob
import cv2
import numpy as np
import math
import paddle
import sys
Z
zhiboniu 已提交
23
import copy
24 25 26
import threading
import queue
import time
Z
zhiboniu 已提交
27
from collections import Sequence, defaultdict
Z
zhiboniu 已提交
28
from datacollector import DataCollector, Result
29 30 31 32 33

# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)

34 35
from cfg_utils import argsparser, print_arguments, merge_cfg
from pipe_utils import PipeTimer
Z
zhiboniu 已提交
36
from pipe_utils import get_test_images, crop_image_with_det, crop_image_with_mot, parse_mot_res, parse_mot_keypoint
Z
zhiboniu 已提交
37
from pipe_utils import PushStream
Z
zhiboniu 已提交
38

39
from python.infer import Detector, DetectorPicoDet
J
JYChen 已提交
40 41
from python.keypoint_infer import KeyPointDetector
from python.keypoint_postprocess import translate_to_ori_images
42
from python.preprocess import decode_image, ShortSizeScale
Z
zhiboniu 已提交
43
from python.visualize import visualize_box_mask, visualize_attr, visualize_pose, visualize_action, visualize_vehicleplate
44 45

from pptracking.python.mot_sde_infer import SDE_Detector
46
from pptracking.python.mot.visualize import plot_tracking_dict
47
from pptracking.python.mot.utils import flow_statistic, update_object_info
48

Z
zhiboniu 已提交
49 50 51 52 53 54 55
from pphuman.attr_infer import AttrDetector
from pphuman.video_action_infer import VideoActionRecognizer
from pphuman.action_infer import SkeletonActionRecognizer, DetActionRecognizer, ClsActionRecognizer
from pphuman.action_utils import KeyPointBuff, ActionVisualHelper
from pphuman.reid import ReID
from pphuman.mtmct import mtmct_process

56 57 58
from ppvehicle.vehicle_plate import PlateRecognizer
from ppvehicle.vehicle_attr import VehicleAttr

59 60
from download import auto_download_model

61 62 63 64 65 66

class Pipeline(object):
    """
    Pipeline

    Args:
J
JYChen 已提交
67
        args (argparse.Namespace): arguments in pipeline, which contains environment and runtime settings
68 69 70
        cfg (dict): config of models in pipeline
    """

Z
zhiboniu 已提交
71
    def __init__(self, args, cfg):
72
        self.multi_camera = False
Z
zhiboniu 已提交
73 74
        reid_cfg = cfg.get('REID', False)
        self.enable_mtmct = reid_cfg['enable'] if reid_cfg else False
75
        self.is_video = False
Z
zhiboniu 已提交
76
        self.output_dir = args.output_dir
Z
zhiboniu 已提交
77
        self.vis_result = cfg['visual']
Z
zhiboniu 已提交
78 79
        self.input = self._parse_input(args.image_file, args.image_dir,
                                       args.video_file, args.video_dir,
80
                                       args.camera_id, args.rtsp)
81
        if self.multi_camera:
82 83 84
            self.predictor = []
            for name in self.input:
                predictor_item = PipePredictor(
Z
zhiboniu 已提交
85
                    args, cfg, is_video=True, multi_camera=True)
86 87 88
                predictor_item.set_file_name(name)
                self.predictor.append(predictor_item)

89
        else:
Z
zhiboniu 已提交
90
            self.predictor = PipePredictor(args, cfg, self.is_video)
91
            if self.is_video:
92
                self.predictor.set_file_name(self.input)
93

Z
zhiboniu 已提交
94
    def _parse_input(self, image_file, image_dir, video_file, video_dir,
95
                     camera_id, rtsp):
96 97 98 99 100 101 102 103 104

        # parse input as is_video and multi_camera

        if image_file is not None or image_dir is not None:
            input = get_test_images(image_dir, image_file)
            self.is_video = False
            self.multi_camera = False

        elif video_file is not None:
Z
zhiboniu 已提交
105 106 107
            assert os.path.exists(
                video_file
            ) or 'rtsp' in video_file, "video_file not exists and not an rtsp site."
Z
zhiboniu 已提交
108 109 110 111 112 113 114
            self.multi_camera = False
            input = video_file
            self.is_video = True

        elif video_dir is not None:
            videof = [os.path.join(video_dir, x) for x in os.listdir(video_dir)]
            if len(videof) > 1:
115
                self.multi_camera = True
Z
zhiboniu 已提交
116 117
                videof.sort()
                input = videof
118
            else:
Z
zhiboniu 已提交
119
                input = videof[0]
120 121
            self.is_video = True

122 123 124 125 126 127 128 129 130 131
        elif rtsp is not None:
            if len(rtsp) > 1:
                rtsp = [rtsp_item for rtsp_item in rtsp if 'rtsp' in rtsp_item]
                self.multi_camera = True
                input = rtsp
            else:
                self.multi_camera = False
                input = rtsp[0]
            self.is_video = True

132
        elif camera_id != -1:
Z
zhiboniu 已提交
133 134
            self.multi_camera = False
            input = camera_id
135 136 137 138
            self.is_video = True

        else:
            raise ValueError(
139
                "Illegal Input, please set one of ['video_file', 'camera_id', 'image_file', 'image_dir']"
140 141 142 143
            )

        return input

144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
    def run_multithreads(self):
        if self.multi_camera:
            multi_res = []
            threads = []
            for idx, (predictor,
                      input) in enumerate(zip(self.predictor, self.input)):
                thread = threading.Thread(
                    name=str(idx).zfill(3),
                    target=predictor.run,
                    args=(input, idx))
                threads.append(thread)

            for thread in threads:
                thread.start()

            for predictor, thread in zip(self.predictor, threads):
                thread.join()
                collector_data = predictor.get_result()
                multi_res.append(collector_data)

            if self.enable_mtmct:
                mtmct_process(
                    multi_res,
                    self.input,
                    mtmct_vis=self.vis_result,
                    output_dir=self.output_dir)

        else:
            self.predictor.run(self.input)

174 175 176 177 178
    def run(self):
        if self.multi_camera:
            multi_res = []
            for predictor, input in zip(self.predictor, self.input):
                predictor.run(input)
Z
zhiboniu 已提交
179 180
                collector_data = predictor.get_result()
                multi_res.append(collector_data)
181 182 183 184 185 186
            if self.enable_mtmct:
                mtmct_process(
                    multi_res,
                    self.input,
                    mtmct_vis=self.vis_result,
                    output_dir=self.output_dir)
187 188 189 190 191

        else:
            self.predictor.run(self.input)


192
def get_model_dir(cfg):
J
JYChen 已提交
193 194 195 196
    """ 
        Auto download inference model if the model_path is a url link. 
        Otherwise it will use the model_path directly.
    """
197 198 199 200 201 202 203 204 205 206
    for key in cfg.keys():
        if type(cfg[key]) ==  dict and \
            ("enable" in cfg[key].keys() and cfg[key]['enable']
                or "enable" not in cfg[key].keys()):

            if "model_dir" in cfg[key].keys():
                model_dir = cfg[key]["model_dir"]
                downloaded_model_dir = auto_download_model(model_dir)
                if downloaded_model_dir:
                    model_dir = downloaded_model_dir
J
JYChen 已提交
207 208
                    cfg[key]["model_dir"] = model_dir
                print(key, " model dir: ", model_dir)
209 210 211 212 213
            elif key == "VEHICLE_PLATE":
                det_model_dir = cfg[key]["det_model_dir"]
                downloaded_det_model_dir = auto_download_model(det_model_dir)
                if downloaded_det_model_dir:
                    det_model_dir = downloaded_det_model_dir
J
JYChen 已提交
214 215
                    cfg[key]["det_model_dir"] = det_model_dir
                print("det_model_dir model dir: ", det_model_dir)
216 217 218 219 220

                rec_model_dir = cfg[key]["rec_model_dir"]
                downloaded_rec_model_dir = auto_download_model(rec_model_dir)
                if downloaded_rec_model_dir:
                    rec_model_dir = downloaded_rec_model_dir
J
JYChen 已提交
221 222 223
                    cfg[key]["rec_model_dir"] = rec_model_dir
                print("rec_model_dir model dir: ", rec_model_dir)

224 225 226 227 228
        elif key == "MOT":  # for idbased and skeletonbased actions
            model_dir = cfg[key]["model_dir"]
            downloaded_model_dir = auto_download_model(model_dir)
            if downloaded_model_dir:
                model_dir = downloaded_model_dir
J
JYChen 已提交
229 230
                cfg[key]["model_dir"] = model_dir
            print("mot_model_dir model_dir: ", model_dir)
231 232


233 234 235 236 237 238 239 240 241 242 243 244 245
class PipePredictor(object):
    """
    Predictor in single camera
    
    The pipeline for image input: 

        1. Detection
        2. Detection -> Attribute

    The pipeline for video input: 

        1. Tracking
        2. Tracking -> Attribute
Z
zhiboniu 已提交
246
        3. Tracking -> KeyPoint -> SkeletonAction Recognition
247
        4. VideoAction Recognition
248 249

    Args:
J
JYChen 已提交
250
        args (argparse.Namespace): arguments in pipeline, which contains environment and runtime settings
251 252 253 254 255 256
        cfg (dict): config of models in pipeline
        is_video (bool): whether the input is video, default as False
        multi_camera (bool): whether to use multi camera in pipeline, 
            default as False
    """

Z
zhiboniu 已提交
257 258 259 260
    def __init__(self, args, cfg, is_video=True, multi_camera=False):
        # general module for pphuman and ppvehicle
        self.with_mot = cfg.get('MOT', False)['enable'] if cfg.get(
            'MOT', False) else False
261
        self.with_human_attr = cfg.get('ATTR', False)['enable'] if cfg.get(
Z
zhiboniu 已提交
262
            'ATTR', False) else False
Z
zhiboniu 已提交
263 264
        if self.with_mot:
            print('Multi-Object Tracking enabled')
265 266
        if self.with_human_attr:
            print('Human Attribute Recognition enabled')
Z
zhiboniu 已提交
267 268

        # only for pphuman
Z
zhiboniu 已提交
269 270 271
        self.with_skeleton_action = cfg.get(
            'SKELETON_ACTION', False)['enable'] if cfg.get('SKELETON_ACTION',
                                                           False) else False
Z
zhiboniu 已提交
272 273 274 275 276 277 278 279 280
        self.with_video_action = cfg.get(
            'VIDEO_ACTION', False)['enable'] if cfg.get('VIDEO_ACTION',
                                                        False) else False
        self.with_idbased_detaction = cfg.get(
            'ID_BASED_DETACTION', False)['enable'] if cfg.get(
                'ID_BASED_DETACTION', False) else False
        self.with_idbased_clsaction = cfg.get(
            'ID_BASED_CLSACTION', False)['enable'] if cfg.get(
                'ID_BASED_CLSACTION', False) else False
Z
zhiboniu 已提交
281 282
        self.with_mtmct = cfg.get('REID', False)['enable'] if cfg.get(
            'REID', False) else False
283

Z
zhiboniu 已提交
284 285
        if self.with_skeleton_action:
            print('SkeletonAction Recognition enabled')
Z
zhiboniu 已提交
286 287 288 289 290 291
        if self.with_video_action:
            print('VideoAction Recognition enabled')
        if self.with_idbased_detaction:
            print('IDBASED Detection Action Recognition enabled')
        if self.with_idbased_clsaction:
            print('IDBASED Classification Action Recognition enabled')
Z
zhiboniu 已提交
292 293
        if self.with_mtmct:
            print("MTMCT enabled")
W
wangguanzhong 已提交
294

Z
zhiboniu 已提交
295 296 297 298 299 300 301
        # only for ppvehicle
        self.with_vehicleplate = cfg.get(
            'VEHICLE_PLATE', False)['enable'] if cfg.get('VEHICLE_PLATE',
                                                         False) else False
        if self.with_vehicleplate:
            print('Vehicle Plate Recognition enabled')

302 303 304 305 306 307
        self.with_vehicle_attr = cfg.get(
            'VEHICLE_ATTR', False)['enable'] if cfg.get('VEHICLE_ATTR',
                                                        False) else False
        if self.with_vehicle_attr:
            print('Vehicle Attribute Recognition enabled')

308 309 310 311 312 313
        self.modebase = {
            "framebased": False,
            "videobased": False,
            "idbased": False,
            "skeletonbased": False
        }
314

315 316 317 318 319 320 321 322 323 324 325 326
        self.basemode = {
            "MOT": "idbased",
            "ATTR": "idbased",
            "VIDEO_ACTION": "videobased",
            "SKELETON_ACTION": "skeletonbased",
            "ID_BASED_DETACTION": "idbased",
            "ID_BASED_CLSACTION": "idbased",
            "REID": "idbased",
            "VEHICLE_PLATE": "idbased",
            "VEHICLE_ATTR": "idbased",
        }

327 328 329
        self.is_video = is_video
        self.multi_camera = multi_camera
        self.cfg = cfg
330

J
JYChen 已提交
331 332 333 334 335 336 337
        self.output_dir = args.output_dir
        self.draw_center_traj = args.draw_center_traj
        self.secs_interval = args.secs_interval
        self.do_entrance_counting = args.do_entrance_counting
        self.do_break_in_counting = args.do_break_in_counting
        self.region_type = args.region_type
        self.region_polygon = args.region_polygon
338
        self.illegal_parking_time = args.illegal_parking_time
339

J
JYChen 已提交
340
        self.warmup_frame = self.cfg['warmup_frame']
341 342
        self.pipeline_res = Result()
        self.pipe_timer = PipeTimer()
343
        self.file_name = None
Z
zhiboniu 已提交
344
        self.collector = DataCollector()
345

Z
zhiboniu 已提交
346 347
        self.pushurl = args.pushurl

348
        # auto download inference model
J
JYChen 已提交
349
        get_model_dir(self.cfg)
350

Z
zhiboniu 已提交
351 352 353 354 355 356 357 358 359 360
        if self.with_vehicleplate:
            vehicleplate_cfg = self.cfg['VEHICLE_PLATE']
            self.vehicleplate_detector = PlateRecognizer(args, vehicleplate_cfg)
            basemode = self.basemode['VEHICLE_PLATE']
            self.modebase[basemode] = True

        if self.with_human_attr:
            attr_cfg = self.cfg['ATTR']
            basemode = self.basemode['ATTR']
            self.modebase[basemode] = True
J
JYChen 已提交
361
            self.attr_predictor = AttrDetector.init_with_cfg(args, attr_cfg)
Z
zhiboniu 已提交
362 363 364 365 366

        if self.with_vehicle_attr:
            vehicleattr_cfg = self.cfg['VEHICLE_ATTR']
            basemode = self.basemode['VEHICLE_ATTR']
            self.modebase[basemode] = True
J
JYChen 已提交
367 368
            self.vehicle_attr_predictor = VehicleAttr.init_with_cfg(
                args, vehicleattr_cfg)
Z
zhiboniu 已提交
369

370 371
        if not is_video:
            det_cfg = self.cfg['DET']
J
JYChen 已提交
372
            model_dir = det_cfg['model_dir']
373 374
            batch_size = det_cfg['batch_size']
            self.det_predictor = Detector(
J
JYChen 已提交
375 376 377
                model_dir, args.device, args.run_mode, batch_size,
                args.trt_min_shape, args.trt_max_shape, args.trt_opt_shape,
                args.trt_calib_mode, args.cpu_threads, args.enable_mkldnn)
378
        else:
Z
zhiboniu 已提交
379
            if self.with_idbased_detaction:
J
JYChen 已提交
380
                idbased_detaction_cfg = self.cfg['ID_BASED_DETACTION']
381
                basemode = self.basemode['ID_BASED_DETACTION']
J
JYChen 已提交
382
                self.modebase[basemode] = True
383

J
JYChen 已提交
384 385
                self.det_action_predictor = DetActionRecognizer.init_with_cfg(
                    args, idbased_detaction_cfg)
J
JYChen 已提交
386 387
                self.det_action_visual_helper = ActionVisualHelper(1)

Z
zhiboniu 已提交
388
            if self.with_idbased_clsaction:
J
JYChen 已提交
389
                idbased_clsaction_cfg = self.cfg['ID_BASED_CLSACTION']
390
                basemode = self.basemode['ID_BASED_CLSACTION']
J
JYChen 已提交
391
                self.modebase[basemode] = True
392

J
JYChen 已提交
393 394
                self.cls_action_predictor = ClsActionRecognizer.init_with_cfg(
                    args, idbased_clsaction_cfg)
J
JYChen 已提交
395 396
                self.cls_action_visual_helper = ActionVisualHelper(1)

Z
zhiboniu 已提交
397 398 399 400
            if self.with_skeleton_action:
                skeleton_action_cfg = self.cfg['SKELETON_ACTION']
                display_frames = skeleton_action_cfg['display_frames']
                self.coord_size = skeleton_action_cfg['coord_size']
401
                basemode = self.basemode['SKELETON_ACTION']
402
                self.modebase[basemode] = True
J
JYChen 已提交
403
                skeleton_action_frames = skeleton_action_cfg['max_frames']
404

J
JYChen 已提交
405 406
                self.skeleton_action_predictor = SkeletonActionRecognizer.init_with_cfg(
                    args, skeleton_action_cfg)
J
JYChen 已提交
407
                self.skeleton_action_visual_helper = ActionVisualHelper(
Z
zhiboniu 已提交
408
                    display_frames)
409

J
JYChen 已提交
410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425
                kpt_cfg = self.cfg['KPT']
                kpt_model_dir = kpt_cfg['model_dir']
                kpt_batch_size = kpt_cfg['batch_size']
                self.kpt_predictor = KeyPointDetector(
                    kpt_model_dir,
                    args.device,
                    args.run_mode,
                    kpt_batch_size,
                    args.trt_min_shape,
                    args.trt_max_shape,
                    args.trt_opt_shape,
                    args.trt_calib_mode,
                    args.cpu_threads,
                    args.enable_mkldnn,
                    use_dark=False)
                self.kpt_buff = KeyPointBuff(skeleton_action_frames)
Z
zhiboniu 已提交
426

427 428 429 430 431 432 433
            if self.with_vehicleplate:
                vehicleplate_cfg = self.cfg['VEHICLE_PLATE']
                self.vehicleplate_detector = PlateRecognizer(args,
                                                             vehicleplate_cfg)
                basemode = self.basemode['VEHICLE_PLATE']
                self.modebase[basemode] = True

Z
zhiboniu 已提交
434 435
            if self.with_mtmct:
                reid_cfg = self.cfg['REID']
436
                basemode = self.basemode['REID']
Z
zhiboniu 已提交
437
                self.modebase[basemode] = True
J
JYChen 已提交
438
                self.reid_predictor = ReID.init_with_cfg(args, reid_cfg)
Z
zhiboniu 已提交
439

Z
zhiboniu 已提交
440 441 442
            if self.with_mot or self.modebase["idbased"] or self.modebase[
                    "skeletonbased"]:
                mot_cfg = self.cfg['MOT']
J
JYChen 已提交
443
                model_dir = mot_cfg['model_dir']
Z
zhiboniu 已提交
444 445
                tracker_config = mot_cfg['tracker_config']
                batch_size = mot_cfg['batch_size']
446
                skip_frame_num = mot_cfg.get('skip_frame_num', -1)
447
                basemode = self.basemode['MOT']
Z
zhiboniu 已提交
448 449 450 451
                self.modebase[basemode] = True
                self.mot_predictor = SDE_Detector(
                    model_dir,
                    tracker_config,
J
JYChen 已提交
452 453
                    args.device,
                    args.run_mode,
Z
zhiboniu 已提交
454
                    batch_size,
J
JYChen 已提交
455 456 457 458 459 460
                    args.trt_min_shape,
                    args.trt_max_shape,
                    args.trt_opt_shape,
                    args.trt_calib_mode,
                    args.cpu_threads,
                    args.enable_mkldnn,
461
                    skip_frame_num=skip_frame_num,
J
JYChen 已提交
462 463 464 465 466 467
                    draw_center_traj=self.draw_center_traj,
                    secs_interval=self.secs_interval,
                    do_entrance_counting=self.do_entrance_counting,
                    do_break_in_counting=self.do_break_in_counting,
                    region_type=self.region_type,
                    region_polygon=self.region_polygon)
Z
zhiboniu 已提交
468

469 470
            if self.with_video_action:
                video_action_cfg = self.cfg['VIDEO_ACTION']
471
                basemode = self.basemode['VIDEO_ACTION']
472
                self.modebase[basemode] = True
J
JYChen 已提交
473 474
                self.video_action_predictor = VideoActionRecognizer.init_with_cfg(
                    args, video_action_cfg)
475

476
    def set_file_name(self, path):
Z
zhiboniu 已提交
477 478 479
        if type(path)==int:
            self.file_name = path
        elif path is not None:
480 481 482
            self.file_name = os.path.split(path)[-1]
            if "." in self.file_name:
                self.file_name = self.file_name.split(".")[-2]
W
wangguanzhong 已提交
483 484 485
        else:
            # use camera id
            self.file_name = None
486

487
    def get_result(self):
Z
zhiboniu 已提交
488
        return self.collector.get_res()
489

490
    def run(self, input, thread_idx=0):
491
        if self.is_video:
492
            self.predict_video(input, thread_idx=thread_idx)
493 494
        else:
            self.predict_image(input)
495
        self.pipe_timer.info()
496 497 498 499 500 501

    def predict_image(self, input):
        # det
        # det -> attr
        batch_loop_cnt = math.ceil(
            float(len(input)) / self.det_predictor.batch_size)
502
        self.warmup_frame = min(10, len(input)//2) - 1
503 504 505 506 507 508 509 510 511 512 513 514
        for i in range(batch_loop_cnt):
            start_index = i * self.det_predictor.batch_size
            end_index = min((i + 1) * self.det_predictor.batch_size, len(input))
            batch_file = input[start_index:end_index]
            batch_input = [decode_image(f, {})[0] for f in batch_file]

            if i > self.warmup_frame:
                self.pipe_timer.total_time.start()
                self.pipe_timer.module_time['det'].start()
            # det output format: class, score, xmin, ymin, xmax, ymax
            det_res = self.det_predictor.predict_image(
                batch_input, visual=False)
515 516
            det_res = self.det_predictor.filter_box(det_res,
                                                    self.cfg['crop_thresh'])
517 518
            if i > self.warmup_frame:
                self.pipe_timer.module_time['det'].end()
Z
zhiboniu 已提交
519
                self.pipe_timer.track_num += len(det_res['boxes'])
520 521
            self.pipeline_res.update(det_res, 'det')

522
            if self.with_human_attr:
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
                crop_inputs = crop_image_with_det(batch_input, det_res)
                attr_res_list = []

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].start()

                for crop_input in crop_inputs:
                    attr_res = self.attr_predictor.predict_image(
                        crop_input, visual=False)
                    attr_res_list.extend(attr_res['output'])

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].end()

                attr_res = {'output': attr_res_list}
                self.pipeline_res.update(attr_res, 'attr')

540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
            if self.with_vehicle_attr:
                crop_inputs = crop_image_with_det(batch_input, det_res)
                vehicle_attr_res_list = []

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['vehicle_attr'].start()

                for crop_input in crop_inputs:
                    attr_res = self.vehicle_attr_predictor.predict_image(
                        crop_input, visual=False)
                    vehicle_attr_res_list.extend(attr_res['output'])

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['vehicle_attr'].end()

                attr_res = {'output': vehicle_attr_res_list}
                self.pipeline_res.update(attr_res, 'vehicle_attr')

Z
zhiboniu 已提交
558 559 560 561 562 563 564 565 566 567 568 569 570 571
            if self.with_vehicleplate:
                if i > self.warmup_frame:
                    self.pipe_timer.module_time['vehicleplate'].start()
                crop_inputs = crop_image_with_det(batch_input, det_res)
                platelicenses = []
                for crop_input in crop_inputs:
                    platelicense = self.vehicleplate_detector.get_platelicense(
                        crop_input)
                    platelicenses.extend(platelicense['plate'])
                if i > self.warmup_frame:
                    self.pipe_timer.module_time['vehicleplate'].end()
                vehicleplate_res = {'vehicleplate': platelicenses}
                self.pipeline_res.update(vehicleplate_res, 'vehicleplate')

572 573 574 575 576 577 578
            self.pipe_timer.img_num += len(batch_input)
            if i > self.warmup_frame:
                self.pipe_timer.total_time.end()

            if self.cfg['visual']:
                self.visualize_image(batch_file, batch_input, self.pipeline_res)

579 580 581 582 583 584 585 586 587 588 589 590
    def capturevideo(self, capture, queue):
        frame_id = 0
        while(1):
            if queue.full():
                time.sleep(0.1)
            else:
                ret, frame = capture.read()
                if not ret:
                    return
                frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                queue.put(frame_rgb)

591
    def predict_video(self, video_file, thread_idx=0):
592 593 594
        # mot
        # mot -> attr
        # mot -> pose -> action
Z
zhiboniu 已提交
595
        capture = cv2.VideoCapture(video_file)
596 597 598 599 600 601

        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
602
        print("video fps: %d, frame_count: %d" % (fps, frame_count))
603

Z
zhiboniu 已提交
604 605 606 607 608 609 610
        if len(self.pushurl) > 0:
            video_out_name = 'output' if self.file_name is None else self.file_name
            pushurl = os.path.join(self.pushurl, video_out_name)
            print("the result will push stream to url:{}".format(pushurl))
            pushstream = PushStream(pushurl)
            pushstream.initcmd(fps, width, height)
        elif self.cfg['visual']:
Z
zhiboniu 已提交
611 612
            video_out_name = 'output' if (self.file_name is None or type(self.file_name)==int) else self.file_name
            if type(video_file)==str and "rtsp" in video_file:
Z
zhiboniu 已提交
613 614 615 616 617 618 619 620
                video_out_name = video_out_name + "_t" + str(thread_idx).zfill(
                    2) + "_rtsp"
            if not os.path.exists(self.output_dir):
                os.makedirs(self.output_dir)
            out_path = os.path.join(self.output_dir, video_out_name+".mp4")
            fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
            writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))

621
        frame_id = 0
622 623 624 625 626 627 628 629 630 631

        entrance, records, center_traj = None, None, None
        if self.draw_center_traj:
            center_traj = [{}]
        id_set = set()
        interval_id_set = set()
        in_id_list = list()
        out_id_list = list()
        prev_center = dict()
        records = list()
632
        if self.do_entrance_counting or self.do_break_in_counting or self.illegal_parking_time != -1:
633 634 635 636 637 638 639 640 641
            if self.region_type == 'horizontal':
                entrance = [0, height / 2., width, height / 2.]
            elif self.region_type == 'vertical':
                entrance = [width / 2, 0., width / 2, height]
            elif self.region_type == 'custom':
                entrance = []
                assert len(
                    self.region_polygon
                ) % 2 == 0, "region_polygon should be pairs of coords points when do break_in counting."
J
JYChen 已提交
642 643 644 645
                assert len(
                    self.region_polygon
                ) > 6, 'region_type is custom, region_polygon should be at least 3 pairs of point coords.'

646 647 648 649 650 651 652 653
                for i in range(0, len(self.region_polygon), 2):
                    entrance.append(
                        [self.region_polygon[i], self.region_polygon[i + 1]])
                entrance.append([width, height])
            else:
                raise ValueError("region_type:{} unsupported.".format(
                    self.region_type))

654 655
        video_fps = fps

656 657
        video_action_imgs = []

658 659 660 661
        if self.with_video_action:
            short_size = self.cfg["VIDEO_ACTION"]["short_size"]
            scale = ShortSizeScale(short_size)

662 663 664 665
        object_in_region_info = {
        }  # store info for vehicle parking in region       
        illegal_parking_dict = None

666 667 668 669 670 671 672 673 674
        framequeue = queue.Queue(10)

        thread = threading.Thread(
            target=self.capturevideo,
            args=(capture, framequeue))
        thread.start()
        time.sleep(1)

        while(not framequeue.empty()):
675
            if frame_id % 10 == 0:
676
                print('Thread: {}; frame id: {}'.format(thread_idx, frame_id))
677

678
            frame_rgb = framequeue.get()
Z
zhiboniu 已提交
679 680
            if frame_id > self.warmup_frame:
                self.pipe_timer.total_time.start()
681

682
            if self.modebase["idbased"] or self.modebase["skeletonbased"]:
683
                if frame_id > self.warmup_frame:
684
                    self.pipe_timer.module_time['mot'].start()
685

686 687 688 689 690 691 692 693
                mot_skip_frame_num = self.mot_predictor.skip_frame_num
                reuse_det_result = False
                if mot_skip_frame_num > 1 and frame_id > 0 and frame_id % mot_skip_frame_num > 0:
                    reuse_det_result = True
                res = self.mot_predictor.predict_image(
                    [copy.deepcopy(frame_rgb)],
                    visual=False,
                    reuse_det_result=reuse_det_result)
694 695 696

                # mot output format: id, class, score, xmin, ymin, xmax, ymax
                mot_res = parse_mot_res(res)
Z
zhiboniu 已提交
697 698 699
                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['mot'].end()
                    self.pipe_timer.track_num += len(mot_res['boxes'])
700

701 702 703 704
                if frame_id % 10 == 0:
                    print("Thread: {}; trackid number: {}".format(
                        thread_idx, len(mot_res['boxes'])))

705 706 707 708 709
                # flow_statistic only support single class MOT
                boxes, scores, ids = res[0]  # batch size = 1 in MOT
                mot_result = (frame_id + 1, boxes[0], scores[0],
                              ids[0])  # single class
                statistic = flow_statistic(
F
Feng Ni 已提交
710 711 712 713 714 715 716 717 718 719 720 721 722 723
                    mot_result,
                    self.secs_interval,
                    self.do_entrance_counting,
                    self.do_break_in_counting,
                    self.region_type,
                    video_fps,
                    entrance,
                    id_set,
                    interval_id_set,
                    in_id_list,
                    out_id_list,
                    prev_center,
                    records,
                    ids2names=self.mot_predictor.pred_config.labels)
724 725
                records = statistic['records']

726 727 728 729 730 731 732 733 734 735
                if self.illegal_parking_time != -1:
                    object_in_region_info, illegal_parking_dict = update_object_info(
                        object_in_region_info, mot_result, self.region_type,
                        entrance, video_fps, self.illegal_parking_time)
                    if len(illegal_parking_dict) != 0:
                        # build relationship between id and plate
                        for key, value in illegal_parking_dict.items():
                            plate = self.collector.get_carlp(key)
                            illegal_parking_dict[key]['plate'] = plate

736 737 738
                # nothing detected
                if len(mot_res['boxes']) == 0:
                    frame_id += 1
J
JYChen 已提交
739
                    if frame_id > self.warmup_frame:
740 741 742 743
                        self.pipe_timer.img_num += 1
                        self.pipe_timer.total_time.end()
                    if self.cfg['visual']:
                        _, _, fps = self.pipe_timer.get_total_time()
744
                        im = self.visualize_video(frame_rgb, mot_res, frame_id, fps,
745 746
                                                  entrance, records,
                                                  center_traj)  # visualize
Z
zhiboniu 已提交
747 748 749 750 751 752 753 754
                        if len(self.pushurl)>0:
                            pushstream.pipe.stdin.write(im.tobytes())
                        else:
                            writer.write(im)
                            if self.file_name is None:  # use camera_id
                                cv2.imshow('Paddle-Pipeline', im)
                                if cv2.waitKey(1) & 0xFF == ord('q'):
                                    break
755 756 757
                    continue

                self.pipeline_res.update(mot_res, 'mot')
J
JYChen 已提交
758
                crop_input, new_bboxes, ori_bboxes = crop_image_with_mot(
759
                    frame_rgb, mot_res)
760

761
                if self.with_vehicleplate and frame_id % 10 == 0:
Z
zhiboniu 已提交
762 763
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['vehicleplate'].start()
Z
zhiboniu 已提交
764 765
                    plate_input, _, _ = crop_image_with_mot(
                        frame_rgb, mot_res, expand=False)
Z
zhiboniu 已提交
766
                    platelicense = self.vehicleplate_detector.get_platelicense(
Z
zhiboniu 已提交
767
                        plate_input)
Z
zhiboniu 已提交
768 769
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['vehicleplate'].end()
Z
zhiboniu 已提交
770
                    self.pipeline_res.update(platelicense, 'vehicleplate')
771 772
                else:
                    self.pipeline_res.clear('vehicleplate')
Z
zhiboniu 已提交
773

774
                if self.with_human_attr:
J
JYChen 已提交
775
                    if frame_id > self.warmup_frame:
776 777 778 779 780 781 782
                        self.pipe_timer.module_time['attr'].start()
                    attr_res = self.attr_predictor.predict_image(
                        crop_input, visual=False)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['attr'].end()
                    self.pipeline_res.update(attr_res, 'attr')

783 784 785 786 787 788 789 790 791
                if self.with_vehicle_attr:
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['vehicle_attr'].start()
                    attr_res = self.vehicle_attr_predictor.predict_image(
                        crop_input, visual=False)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['vehicle_attr'].end()
                    self.pipeline_res.update(attr_res, 'vehicle_attr')

Z
zhiboniu 已提交
792
                if self.with_idbased_detaction:
J
JYChen 已提交
793 794 795 796 797 798 799 800 801 802
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['det_action'].start()
                    det_action_res = self.det_action_predictor.predict(
                        crop_input, mot_res)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['det_action'].end()
                    self.pipeline_res.update(det_action_res, 'det_action')

                    if self.cfg['visual']:
                        self.det_action_visual_helper.update(det_action_res)
Z
zhiboniu 已提交
803 804

                if self.with_idbased_clsaction:
J
JYChen 已提交
805 806 807 808 809 810 811 812 813 814
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['cls_action'].start()
                    cls_action_res = self.cls_action_predictor.predict_with_mot(
                        crop_input, mot_res)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['cls_action'].end()
                    self.pipeline_res.update(cls_action_res, 'cls_action')

                    if self.cfg['visual']:
                        self.cls_action_visual_helper.update(cls_action_res)
Z
zhiboniu 已提交
815

Z
zhiboniu 已提交
816
                if self.with_skeleton_action:
Z
zhiboniu 已提交
817 818 819 820 821 822 823 824 825 826 827 828 829
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['kpt'].start()
                    kpt_pred = self.kpt_predictor.predict_image(
                        crop_input, visual=False)
                    keypoint_vector, score_vector = translate_to_ori_images(
                        kpt_pred, np.array(new_bboxes))
                    kpt_res = {}
                    kpt_res['keypoint'] = [
                        keypoint_vector.tolist(), score_vector.tolist()
                    ] if len(keypoint_vector) > 0 else [[], []]
                    kpt_res['bbox'] = ori_bboxes
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['kpt'].end()
830

Z
zhiboniu 已提交
831
                    self.pipeline_res.update(kpt_res, 'kpt')
832

Z
zhiboniu 已提交
833
                    self.kpt_buff.update(kpt_res, mot_res)  # collect kpt output
834 835 836
                    state = self.kpt_buff.get_state(
                    )  # whether frame num is enough or lost tracker

Z
zhiboniu 已提交
837
                    skeleton_action_res = {}
838 839
                    if state:
                        if frame_id > self.warmup_frame:
Z
zhiboniu 已提交
840 841
                            self.pipe_timer.module_time[
                                'skeleton_action'].start()
842 843
                        collected_keypoint = self.kpt_buff.get_collected_keypoint(
                        )  # reoragnize kpt output with ID
Z
zhiboniu 已提交
844 845 846 847
                        skeleton_action_input = parse_mot_keypoint(
                            collected_keypoint, self.coord_size)
                        skeleton_action_res = self.skeleton_action_predictor.predict_skeleton_with_mot(
                            skeleton_action_input)
848
                        if frame_id > self.warmup_frame:
Z
zhiboniu 已提交
849 850 851
                            self.pipe_timer.module_time['skeleton_action'].end()
                        self.pipeline_res.update(skeleton_action_res,
                                                 'skeleton_action')
852 853

                    if self.cfg['visual']:
Z
zhiboniu 已提交
854 855
                        self.skeleton_action_visual_helper.update(
                            skeleton_action_res)
856 857 858

                if self.with_mtmct and frame_id % 10 == 0:
                    crop_input, img_qualities, rects = self.reid_predictor.crop_image_with_mot(
859
                        frame_rgb, mot_res)
860 861 862 863 864 865
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['reid'].start()
                    reid_res = self.reid_predictor.predict_batch(crop_input)

                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['reid'].end()
J
JYChen 已提交
866

867 868 869 870 871 872 873 874
                    reid_res_dict = {
                        'features': reid_res,
                        "qualities": img_qualities,
                        "rects": rects
                    }
                    self.pipeline_res.update(reid_res_dict, 'reid')
                else:
                    self.pipeline_res.clear('reid')
Z
zhiboniu 已提交
875

Z
zhiboniu 已提交
876
            if self.with_video_action:
877 878 879 880 881 882 883 884 885 886 887 888 889
                # get the params
                frame_len = self.cfg["VIDEO_ACTION"]["frame_len"]
                sample_freq = self.cfg["VIDEO_ACTION"]["sample_freq"]

                if sample_freq * frame_len > frame_count:  # video is too short
                    sample_freq = int(frame_count / frame_len)

                # filter the warmup frames
                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['video_action'].start()

                # collect frames
                if frame_id % sample_freq == 0:
890
                    # Scale image
891
                    scaled_img = scale(frame_rgb)
892
                    video_action_imgs.append(scaled_img)
893 894 895 896 897 898 899 900 901 902 903 904 905 906

                # the number of collected frames is enough to predict video action
                if len(video_action_imgs) == frame_len:
                    classes, scores = self.video_action_predictor.predict(
                        video_action_imgs)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['video_action'].end()

                    video_action_res = {"class": classes[0], "score": scores[0]}
                    self.pipeline_res.update(video_action_res, 'video_action')

                    print("video_action_res:", video_action_res)

                    video_action_imgs.clear()  # next clip
Z
zhiboniu 已提交
907 908

            self.collector.append(frame_id, self.pipeline_res)
909 910 911 912 913 914 915

            if frame_id > self.warmup_frame:
                self.pipe_timer.img_num += 1
                self.pipe_timer.total_time.end()
            frame_id += 1

            if self.cfg['visual']:
916
                _, _, fps = self.pipe_timer.get_total_time()
917

918
                im = self.visualize_video(frame_rgb, self.pipeline_res,
919 920 921 922
                                          self.collector, frame_id, fps,
                                          entrance, records, center_traj,
                                          self.illegal_parking_time != -1,
                                          illegal_parking_dict)  # visualize
Z
zhiboniu 已提交
923 924 925 926 927 928 929 930 931 932 933
                if len(self.pushurl)>0:
                    pushstream.pipe.stdin.write(im.tobytes())
                else:
                    writer.write(im)
                    if self.file_name is None:  # use camera_id
                        cv2.imshow('Paddle-Pipeline', im)
                        if cv2.waitKey(1) & 0xFF == ord('q'):
                            break
        if self.cfg['visual'] and len(self.pushurl)==0:
            writer.release()
            print('save result to {}'.format(out_path))
934

935
    def visualize_video(self,
936
                        image_rgb,
937
                        result,
938
                        collector,
939 940 941 942
                        frame_id,
                        fps,
                        entrance=None,
                        records=None,
943 944 945
                        center_traj=None,
                        do_illegal_parking_recognition=False,
                        illegal_parking_dict=None):
946
        image = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2BGR)
Z
zhiboniu 已提交
947
        mot_res = copy.deepcopy(result.get('mot'))
948 949
        if mot_res is not None:
            ids = mot_res['boxes'][:, 0]
W
wangguanzhong 已提交
950
            scores = mot_res['boxes'][:, 2]
951 952 953 954 955 956
            boxes = mot_res['boxes'][:, 3:]
            boxes[:, 2] = boxes[:, 2] - boxes[:, 0]
            boxes[:, 3] = boxes[:, 3] - boxes[:, 1]
        else:
            boxes = np.zeros([0, 4])
            ids = np.zeros([0])
W
wangguanzhong 已提交
957
            scores = np.zeros([0])
958 959 960 961 962 963 964 965 966 967

        # single class, still need to be defaultdict type for ploting
        num_classes = 1
        online_tlwhs = defaultdict(list)
        online_scores = defaultdict(list)
        online_ids = defaultdict(list)
        online_tlwhs[0] = boxes
        online_scores[0] = scores
        online_ids[0] = ids

F
Feng Ni 已提交
968 969 970 971 972 973 974 975 976
        if mot_res is not None:
            image = plot_tracking_dict(
                image,
                num_classes,
                online_tlwhs,
                online_ids,
                online_scores,
                frame_id=frame_id,
                fps=fps,
977
                ids2names=self.mot_predictor.pred_config.labels,
F
Feng Ni 已提交
978
                do_entrance_counting=self.do_entrance_counting,
979
                do_break_in_counting=self.do_break_in_counting,
980 981
                do_illegal_parking_recognition=do_illegal_parking_recognition,
                illegal_parking_dict=illegal_parking_dict,
F
Feng Ni 已提交
982 983 984
                entrance=entrance,
                records=records,
                center_traj=center_traj)
985

986 987 988 989 990 991 992 993 994
        human_attr_res = result.get('attr')
        if human_attr_res is not None:
            boxes = mot_res['boxes'][:, 1:]
            human_attr_res = human_attr_res['output']
            image = visualize_attr(image, human_attr_res, boxes)
            image = np.array(image)

        vehicle_attr_res = result.get('vehicle_attr')
        if vehicle_attr_res is not None:
995
            boxes = mot_res['boxes'][:, 1:]
996 997
            vehicle_attr_res = vehicle_attr_res['output']
            image = visualize_attr(image, vehicle_attr_res, boxes)
998 999
            image = np.array(image)

1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
        if mot_res is not None:
            vehicleplate = False
            plates = []
            for trackid in mot_res['boxes'][:, 0]:
                plate = collector.get_carlp(trackid)
                if plate != None:
                    vehicleplate = True
                    plates.append(plate)
                else:
                    plates.append("")
            if vehicleplate:
                boxes = mot_res['boxes'][:, 1:]
                image = visualize_vehicleplate(image, plates, boxes)
                image = np.array(image)
Z
zhiboniu 已提交
1014

J
JYChen 已提交
1015 1016 1017 1018 1019 1020 1021 1022
        kpt_res = result.get('kpt')
        if kpt_res is not None:
            image = visualize_pose(
                image,
                kpt_res,
                visual_thresh=self.cfg['kpt_thresh'],
                returnimg=True)

1023
        video_action_res = result.get('video_action')
J
JYChen 已提交
1024
        if video_action_res is not None:
1025 1026 1027
            video_action_score = None
            if video_action_res and video_action_res["class"] == 1:
                video_action_score = video_action_res["score"]
1028 1029 1030
            mot_boxes = None
            if mot_res:
                mot_boxes = mot_res['boxes']
1031 1032
            image = visualize_action(
                image,
1033
                mot_boxes,
J
JYChen 已提交
1034
                action_visual_collector=None,
1035 1036 1037
                action_text="SkeletonAction",
                video_action_score=video_action_score,
                video_action_text="Fight")
J
JYChen 已提交
1038

J
JYChen 已提交
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
        visual_helper_for_display = []
        action_to_display = []

        skeleton_action_res = result.get('skeleton_action')
        if skeleton_action_res is not None:
            visual_helper_for_display.append(self.skeleton_action_visual_helper)
            action_to_display.append("Falling")

        det_action_res = result.get('det_action')
        if det_action_res is not None:
            visual_helper_for_display.append(self.det_action_visual_helper)
            action_to_display.append("Smoking")

        cls_action_res = result.get('cls_action')
        if cls_action_res is not None:
            visual_helper_for_display.append(self.cls_action_visual_helper)
            action_to_display.append("Calling")

        if len(visual_helper_for_display) > 0:
            image = visualize_action(image, mot_res['boxes'],
                                     visual_helper_for_display,
                                     action_to_display)

1062 1063 1064 1065 1066
        return image

    def visualize_image(self, im_files, images, result):
        start_idx, boxes_num_i = 0, 0
        det_res = result.get('det')
1067 1068
        human_attr_res = result.get('attr')
        vehicle_attr_res = result.get('vehicle_attr')
Z
zhiboniu 已提交
1069
        vehicleplate_res = result.get('vehicleplate')
1070

1071 1072 1073 1074 1075 1076 1077 1078 1079
        for i, (im_file, im) in enumerate(zip(im_files, images)):
            if det_res is not None:
                det_res_i = {}
                boxes_num_i = det_res['boxes_num'][i]
                det_res_i['boxes'] = det_res['boxes'][start_idx:start_idx +
                                                      boxes_num_i, :]
                im = visualize_box_mask(
                    im,
                    det_res_i,
Z
zhiboniu 已提交
1080
                    labels=['target'],
1081
                    threshold=self.cfg['crop_thresh'])
1082 1083
                im = np.ascontiguousarray(np.copy(im))
                im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
1084 1085 1086 1087 1088 1089 1090 1091
            if human_attr_res is not None:
                human_attr_res_i = human_attr_res['output'][start_idx:start_idx
                                                            + boxes_num_i]
                im = visualize_attr(im, human_attr_res_i, det_res_i['boxes'])
            if vehicle_attr_res is not None:
                vehicle_attr_res_i = vehicle_attr_res['output'][
                    start_idx:start_idx + boxes_num_i]
                im = visualize_attr(im, vehicle_attr_res_i, det_res_i['boxes'])
Z
zhiboniu 已提交
1092 1093 1094 1095 1096
            if vehicleplate_res is not None:
                plates = vehicleplate_res['vehicleplate']
                det_res_i['boxes'][:, 4:6] = det_res_i[
                    'boxes'][:, 4:6] - det_res_i['boxes'][:, 2:4]
                im = visualize_vehicleplate(im, plates, det_res_i['boxes'])
1097

1098 1099 1100 1101
            img_name = os.path.split(im_file)[-1]
            if not os.path.exists(self.output_dir):
                os.makedirs(self.output_dir)
            out_path = os.path.join(self.output_dir, img_name)
1102
            cv2.imwrite(out_path, im)
1103 1104 1105 1106 1107
            print("save result to: " + out_path)
            start_idx += boxes_num_i


def main():
1108
    cfg = merge_cfg(FLAGS)  # use command params to update config
1109
    print_arguments(cfg)
1110

Z
zhiboniu 已提交
1111
    pipeline = Pipeline(FLAGS, cfg)
1112 1113
    # pipeline.run()
    pipeline.run_multithreads()
1114 1115 1116 1117


if __name__ == '__main__':
    paddle.enable_static()
1118 1119

    # parse params from command
1120 1121 1122 1123 1124 1125 1126
    parser = argsparser()
    FLAGS = parser.parse_args()
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()