pipeline.py 46.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
import glob
import cv2
import numpy as np
import math
import paddle
import sys
Z
zhiboniu 已提交
23
import copy
Z
zhiboniu 已提交
24
from collections import Sequence, defaultdict
Z
zhiboniu 已提交
25
from datacollector import DataCollector, Result
26 27 28 29 30

# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)

Z
zhiboniu 已提交
31 32 33
from pipe_utils import argsparser, print_arguments, merge_cfg, PipeTimer
from pipe_utils import get_test_images, crop_image_with_det, crop_image_with_mot, parse_mot_res, parse_mot_keypoint

34
from python.infer import Detector, DetectorPicoDet
J
JYChen 已提交
35 36
from python.keypoint_infer import KeyPointDetector
from python.keypoint_postprocess import translate_to_ori_images
37
from python.preprocess import decode_image, ShortSizeScale
Z
zhiboniu 已提交
38
from python.visualize import visualize_box_mask, visualize_attr, visualize_pose, visualize_action, visualize_vehicleplate
39 40

from pptracking.python.mot_sde_infer import SDE_Detector
41 42
from pptracking.python.mot.visualize import plot_tracking_dict
from pptracking.python.mot.utils import flow_statistic
43

Z
zhiboniu 已提交
44 45 46 47 48 49 50
from pphuman.attr_infer import AttrDetector
from pphuman.video_action_infer import VideoActionRecognizer
from pphuman.action_infer import SkeletonActionRecognizer, DetActionRecognizer, ClsActionRecognizer
from pphuman.action_utils import KeyPointBuff, ActionVisualHelper
from pphuman.reid import ReID
from pphuman.mtmct import mtmct_process

51 52 53
from ppvehicle.vehicle_plate import PlateRecognizer
from ppvehicle.vehicle_attr import VehicleAttr

54 55
from download import auto_download_model

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

class Pipeline(object):
    """
    Pipeline

    Args:
        cfg (dict): config of models in pipeline
        image_file (string|None): the path of image file, default as None
        image_dir (string|None): the path of image directory, if not None, 
            then all the images in directory will be predicted, default as None
        video_file (string|None): the path of video file, default as None
        camera_id (int): the device id of camera to predict, default as -1
        device (string): the device to predict, options are: CPU/GPU/XPU, 
            default as CPU
        run_mode (string): the mode of prediction, options are: 
            paddle/trt_fp32/trt_fp16, default as paddle
        trt_min_shape (int): min shape for dynamic shape in trt, default as 1
        trt_max_shape (int): max shape for dynamic shape in trt, default as 1280
        trt_opt_shape (int): opt shape for dynamic shape in trt, default as 640
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True. default as False
        cpu_threads (int): cpu threads, default as 1
        enable_mkldnn (bool): whether to open MKLDNN, default as False
        output_dir (string): The path of output, default as 'output'
80 81 82
        draw_center_traj (bool): Whether drawing the trajectory of center, default as False
        secs_interval (int): The seconds interval to count after tracking, default as 10
        do_entrance_counting(bool): Whether counting the numbers of identifiers entering 
83
            or getting out from the entrance, default as False, only support single class
84
            counting in MOT.
85 86
    """

Z
zhiboniu 已提交
87
    def __init__(self, args, cfg):
88
        self.multi_camera = False
Z
zhiboniu 已提交
89 90
        reid_cfg = cfg.get('REID', False)
        self.enable_mtmct = reid_cfg['enable'] if reid_cfg else False
91
        self.is_video = False
Z
zhiboniu 已提交
92
        self.output_dir = args.output_dir
Z
zhiboniu 已提交
93
        self.vis_result = cfg['visual']
Z
zhiboniu 已提交
94 95 96
        self.input = self._parse_input(args.image_file, args.image_dir,
                                       args.video_file, args.video_dir,
                                       args.camera_id)
97
        if self.multi_camera:
98 99 100
            self.predictor = []
            for name in self.input:
                predictor_item = PipePredictor(
Z
zhiboniu 已提交
101
                    args, cfg, is_video=True, multi_camera=True)
102 103 104
                predictor_item.set_file_name(name)
                self.predictor.append(predictor_item)

105
        else:
Z
zhiboniu 已提交
106
            self.predictor = PipePredictor(args, cfg, self.is_video)
107
            if self.is_video:
Z
zhiboniu 已提交
108
                self.predictor.set_file_name(args.video_file)
109

Z
zhiboniu 已提交
110 111 112 113
        self.output_dir = args.output_dir
        self.draw_center_traj = args.draw_center_traj
        self.secs_interval = args.secs_interval
        self.do_entrance_counting = args.do_entrance_counting
114 115 116 117 118 119 120
        self.do_break_in_counting = args.do_break_in_counting
        self.region_type = args.region_type
        self.region_polygon = args.region_polygon
        if self.region_type == 'custom':
            assert len(
                self.region_polygon
            ) > 6, 'region_type is custom, region_polygon should be at least 3 pairs of point coords.'
121

Z
zhiboniu 已提交
122 123
    def _parse_input(self, image_file, image_dir, video_file, video_dir,
                     camera_id):
124 125 126 127 128 129 130 131 132

        # parse input as is_video and multi_camera

        if image_file is not None or image_dir is not None:
            input = get_test_images(image_dir, image_file)
            self.is_video = False
            self.multi_camera = False

        elif video_file is not None:
133
            assert os.path.exists(video_file), "video_file not exists."
Z
zhiboniu 已提交
134 135 136 137 138 139 140
            self.multi_camera = False
            input = video_file
            self.is_video = True

        elif video_dir is not None:
            videof = [os.path.join(video_dir, x) for x in os.listdir(video_dir)]
            if len(videof) > 1:
141
                self.multi_camera = True
Z
zhiboniu 已提交
142 143
                videof.sort()
                input = videof
144
            else:
Z
zhiboniu 已提交
145
                input = videof[0]
146 147 148
            self.is_video = True

        elif camera_id != -1:
Z
zhiboniu 已提交
149 150
            self.multi_camera = False
            input = camera_id
151 152 153 154
            self.is_video = True

        else:
            raise ValueError(
155
                "Illegal Input, please set one of ['video_file', 'camera_id', 'image_file', 'image_dir']"
156 157 158 159 160 161 162 163 164
            )

        return input

    def run(self):
        if self.multi_camera:
            multi_res = []
            for predictor, input in zip(self.predictor, self.input):
                predictor.run(input)
Z
zhiboniu 已提交
165 166
                collector_data = predictor.get_result()
                multi_res.append(collector_data)
167 168 169 170 171 172
            if self.enable_mtmct:
                mtmct_process(
                    multi_res,
                    self.input,
                    mtmct_vis=self.vis_result,
                    output_dir=self.output_dir)
173 174 175 176 177

        else:
            self.predictor.run(self.input)


178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
def get_model_dir(cfg):
    # auto download inference model
    model_dir_dict = {}
    for key in cfg.keys():
        if type(cfg[key]) ==  dict and \
            ("enable" in cfg[key].keys() and cfg[key]['enable']
                or "enable" not in cfg[key].keys()):

            if "model_dir" in cfg[key].keys():
                model_dir = cfg[key]["model_dir"]
                downloaded_model_dir = auto_download_model(model_dir)
                if downloaded_model_dir:
                    model_dir = downloaded_model_dir
                model_dir_dict[key] = model_dir
                print(key, " model dir:", model_dir)
            elif key == "VEHICLE_PLATE":
                det_model_dir = cfg[key]["det_model_dir"]
                downloaded_det_model_dir = auto_download_model(det_model_dir)
                if downloaded_det_model_dir:
                    det_model_dir = downloaded_det_model_dir
                model_dir_dict["det_model_dir"] = det_model_dir
                print("det_model_dir model dir:", det_model_dir)

                rec_model_dir = cfg[key]["rec_model_dir"]
                downloaded_rec_model_dir = auto_download_model(rec_model_dir)
                if downloaded_rec_model_dir:
                    rec_model_dir = downloaded_rec_model_dir
                model_dir_dict["rec_model_dir"] = rec_model_dir
                print("rec_model_dir model dir:", rec_model_dir)
        elif key == "MOT":  # for idbased and skeletonbased actions
            model_dir = cfg[key]["model_dir"]
            downloaded_model_dir = auto_download_model(model_dir)
            if downloaded_model_dir:
                model_dir = downloaded_model_dir
            model_dir_dict[key] = model_dir

    return model_dir_dict


217 218 219 220 221 222 223 224 225 226 227 228 229
class PipePredictor(object):
    """
    Predictor in single camera
    
    The pipeline for image input: 

        1. Detection
        2. Detection -> Attribute

    The pipeline for video input: 

        1. Tracking
        2. Tracking -> Attribute
Z
zhiboniu 已提交
230
        3. Tracking -> KeyPoint -> SkeletonAction Recognition
231
        4. VideoAction Recognition
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250

    Args:
        cfg (dict): config of models in pipeline
        is_video (bool): whether the input is video, default as False
        multi_camera (bool): whether to use multi camera in pipeline, 
            default as False
        camera_id (int): the device id of camera to predict, default as -1
        device (string): the device to predict, options are: CPU/GPU/XPU, 
            default as CPU
        run_mode (string): the mode of prediction, options are: 
            paddle/trt_fp32/trt_fp16, default as paddle
        trt_min_shape (int): min shape for dynamic shape in trt, default as 1
        trt_max_shape (int): max shape for dynamic shape in trt, default as 1280
        trt_opt_shape (int): opt shape for dynamic shape in trt, default as 640
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True. default as False
        cpu_threads (int): cpu threads, default as 1
        enable_mkldnn (bool): whether to open MKLDNN, default as False
        output_dir (string): The path of output, default as 'output'
251 252 253
        draw_center_traj (bool): Whether drawing the trajectory of center, default as False
        secs_interval (int): The seconds interval to count after tracking, default as 10
        do_entrance_counting(bool): Whether counting the numbers of identifiers entering 
254
            or getting out from the entrance, default as False, only support single class
255
            counting in MOT.
256 257
    """

Z
zhiboniu 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270
    def __init__(self, args, cfg, is_video=True, multi_camera=False):
        device = args.device
        run_mode = args.run_mode
        trt_min_shape = args.trt_min_shape
        trt_max_shape = args.trt_max_shape
        trt_opt_shape = args.trt_opt_shape
        trt_calib_mode = args.trt_calib_mode
        cpu_threads = args.cpu_threads
        enable_mkldnn = args.enable_mkldnn
        output_dir = args.output_dir
        draw_center_traj = args.draw_center_traj
        secs_interval = args.secs_interval
        do_entrance_counting = args.do_entrance_counting
271 272 273
        do_break_in_counting = args.do_break_in_counting
        region_type = args.region_type
        region_polygon = args.region_polygon
Z
zhiboniu 已提交
274 275 276 277

        # general module for pphuman and ppvehicle
        self.with_mot = cfg.get('MOT', False)['enable'] if cfg.get(
            'MOT', False) else False
278
        self.with_human_attr = cfg.get('ATTR', False)['enable'] if cfg.get(
Z
zhiboniu 已提交
279
            'ATTR', False) else False
Z
zhiboniu 已提交
280 281
        if self.with_mot:
            print('Multi-Object Tracking enabled')
282 283
        if self.with_human_attr:
            print('Human Attribute Recognition enabled')
Z
zhiboniu 已提交
284 285

        # only for pphuman
Z
zhiboniu 已提交
286 287 288
        self.with_skeleton_action = cfg.get(
            'SKELETON_ACTION', False)['enable'] if cfg.get('SKELETON_ACTION',
                                                           False) else False
Z
zhiboniu 已提交
289 290 291 292 293 294 295 296 297
        self.with_video_action = cfg.get(
            'VIDEO_ACTION', False)['enable'] if cfg.get('VIDEO_ACTION',
                                                        False) else False
        self.with_idbased_detaction = cfg.get(
            'ID_BASED_DETACTION', False)['enable'] if cfg.get(
                'ID_BASED_DETACTION', False) else False
        self.with_idbased_clsaction = cfg.get(
            'ID_BASED_CLSACTION', False)['enable'] if cfg.get(
                'ID_BASED_CLSACTION', False) else False
Z
zhiboniu 已提交
298 299
        self.with_mtmct = cfg.get('REID', False)['enable'] if cfg.get(
            'REID', False) else False
300

Z
zhiboniu 已提交
301 302
        if self.with_skeleton_action:
            print('SkeletonAction Recognition enabled')
Z
zhiboniu 已提交
303 304 305 306 307 308
        if self.with_video_action:
            print('VideoAction Recognition enabled')
        if self.with_idbased_detaction:
            print('IDBASED Detection Action Recognition enabled')
        if self.with_idbased_clsaction:
            print('IDBASED Classification Action Recognition enabled')
Z
zhiboniu 已提交
309 310
        if self.with_mtmct:
            print("MTMCT enabled")
W
wangguanzhong 已提交
311

Z
zhiboniu 已提交
312 313 314 315 316 317 318
        # only for ppvehicle
        self.with_vehicleplate = cfg.get(
            'VEHICLE_PLATE', False)['enable'] if cfg.get('VEHICLE_PLATE',
                                                         False) else False
        if self.with_vehicleplate:
            print('Vehicle Plate Recognition enabled')

319 320 321 322 323 324
        self.with_vehicle_attr = cfg.get(
            'VEHICLE_ATTR', False)['enable'] if cfg.get('VEHICLE_ATTR',
                                                        False) else False
        if self.with_vehicle_attr:
            print('Vehicle Attribute Recognition enabled')

325 326 327 328 329 330
        self.modebase = {
            "framebased": False,
            "videobased": False,
            "idbased": False,
            "skeletonbased": False
        }
331

332 333 334 335
        self.is_video = is_video
        self.multi_camera = multi_camera
        self.cfg = cfg
        self.output_dir = output_dir
336 337 338
        self.draw_center_traj = draw_center_traj
        self.secs_interval = secs_interval
        self.do_entrance_counting = do_entrance_counting
339 340 341
        self.do_break_in_counting = do_break_in_counting
        self.region_type = region_type
        self.region_polygon = region_polygon
342

J
JYChen 已提交
343
        self.warmup_frame = self.cfg['warmup_frame']
344 345
        self.pipeline_res = Result()
        self.pipe_timer = PipeTimer()
346
        self.file_name = None
Z
zhiboniu 已提交
347
        self.collector = DataCollector()
348

349 350 351
        # auto download inference model
        model_dir_dict = get_model_dir(self.cfg)

352 353
        if not is_video:
            det_cfg = self.cfg['DET']
354
            model_dir = model_dir_dict['DET']
355 356 357 358 359
            batch_size = det_cfg['batch_size']
            self.det_predictor = Detector(
                model_dir, device, run_mode, batch_size, trt_min_shape,
                trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                enable_mkldnn)
360
            if self.with_human_attr:
361
                attr_cfg = self.cfg['ATTR']
362
                model_dir = model_dir_dict['ATTR']
363
                batch_size = attr_cfg['batch_size']
364 365
                basemode = attr_cfg['basemode']
                self.modebase[basemode] = True
366 367 368 369 370
                self.attr_predictor = AttrDetector(
                    model_dir, device, run_mode, batch_size, trt_min_shape,
                    trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                    enable_mkldnn)

371 372
            if self.with_vehicle_attr:
                vehicleattr_cfg = self.cfg['VEHICLE_ATTR']
373
                model_dir = model_dir_dict['VEHICLE_ATTR']
374 375 376 377 378 379 380 381 382 383
                batch_size = vehicleattr_cfg['batch_size']
                color_threshold = vehicleattr_cfg['color_threshold']
                type_threshold = vehicleattr_cfg['type_threshold']
                basemode = vehicleattr_cfg['basemode']
                self.modebase[basemode] = True
                self.vehicle_attr_predictor = VehicleAttr(
                    model_dir, device, run_mode, batch_size, trt_min_shape,
                    trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                    enable_mkldnn, color_threshold, type_threshold)

384
        else:
385
            if self.with_human_attr:
386
                attr_cfg = self.cfg['ATTR']
387
                model_dir = model_dir_dict['ATTR']
388
                batch_size = attr_cfg['batch_size']
389 390
                basemode = attr_cfg['basemode']
                self.modebase[basemode] = True
391 392 393 394
                self.attr_predictor = AttrDetector(
                    model_dir, device, run_mode, batch_size, trt_min_shape,
                    trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                    enable_mkldnn)
Z
zhiboniu 已提交
395
            if self.with_idbased_detaction:
J
JYChen 已提交
396
                idbased_detaction_cfg = self.cfg['ID_BASED_DETACTION']
397
                model_dir = model_dir_dict['ID_BASED_DETACTION']
J
JYChen 已提交
398 399 400 401
                batch_size = idbased_detaction_cfg['batch_size']
                basemode = idbased_detaction_cfg['basemode']
                threshold = idbased_detaction_cfg['threshold']
                display_frames = idbased_detaction_cfg['display_frames']
402
                skip_frame_num = idbased_detaction_cfg['skip_frame_num']
J
JYChen 已提交
403
                self.modebase[basemode] = True
404

J
JYChen 已提交
405 406 407 408 409 410 411 412 413 414 415 416
                self.det_action_predictor = DetActionRecognizer(
                    model_dir,
                    device,
                    run_mode,
                    batch_size,
                    trt_min_shape,
                    trt_max_shape,
                    trt_opt_shape,
                    trt_calib_mode,
                    cpu_threads,
                    enable_mkldnn,
                    threshold=threshold,
417 418
                    display_frames=display_frames,
                    skip_frame_num=skip_frame_num)
J
JYChen 已提交
419 420
                self.det_action_visual_helper = ActionVisualHelper(1)

Z
zhiboniu 已提交
421
            if self.with_idbased_clsaction:
J
JYChen 已提交
422
                idbased_clsaction_cfg = self.cfg['ID_BASED_CLSACTION']
423
                model_dir = model_dir_dict['ID_BASED_CLSACTION']
J
JYChen 已提交
424 425 426 427 428
                batch_size = idbased_clsaction_cfg['batch_size']
                basemode = idbased_clsaction_cfg['basemode']
                threshold = idbased_clsaction_cfg['threshold']
                self.modebase[basemode] = True
                display_frames = idbased_clsaction_cfg['display_frames']
429 430
                skip_frame_num = idbased_clsaction_cfg['skip_frame_num']

J
JYChen 已提交
431 432 433 434 435 436 437 438 439 440 441 442
                self.cls_action_predictor = ClsActionRecognizer(
                    model_dir,
                    device,
                    run_mode,
                    batch_size,
                    trt_min_shape,
                    trt_max_shape,
                    trt_opt_shape,
                    trt_calib_mode,
                    cpu_threads,
                    enable_mkldnn,
                    threshold=threshold,
443 444
                    display_frames=display_frames,
                    skip_frame_num=skip_frame_num)
J
JYChen 已提交
445 446
                self.cls_action_visual_helper = ActionVisualHelper(1)

Z
zhiboniu 已提交
447 448
            if self.with_skeleton_action:
                skeleton_action_cfg = self.cfg['SKELETON_ACTION']
449
                skeleton_action_model_dir = model_dir_dict['SKELETON_ACTION']
Z
zhiboniu 已提交
450 451 452 453 454
                skeleton_action_batch_size = skeleton_action_cfg['batch_size']
                skeleton_action_frames = skeleton_action_cfg['max_frames']
                display_frames = skeleton_action_cfg['display_frames']
                self.coord_size = skeleton_action_cfg['coord_size']
                basemode = skeleton_action_cfg['basemode']
455 456
                self.modebase[basemode] = True

Z
zhiboniu 已提交
457 458
                self.skeleton_action_predictor = SkeletonActionRecognizer(
                    skeleton_action_model_dir,
J
JYChen 已提交
459 460
                    device,
                    run_mode,
Z
zhiboniu 已提交
461
                    skeleton_action_batch_size,
J
JYChen 已提交
462 463 464 465 466 467
                    trt_min_shape,
                    trt_max_shape,
                    trt_opt_shape,
                    trt_calib_mode,
                    cpu_threads,
                    enable_mkldnn,
Z
zhiboniu 已提交
468
                    window_size=skeleton_action_frames)
J
JYChen 已提交
469
                self.skeleton_action_visual_helper = ActionVisualHelper(
Z
zhiboniu 已提交
470
                    display_frames)
471 472 473

                if self.modebase["skeletonbased"]:
                    kpt_cfg = self.cfg['KPT']
474
                    kpt_model_dir = model_dir_dict['KPT']
475 476 477 478 479 480 481 482 483 484 485 486 487
                    kpt_batch_size = kpt_cfg['batch_size']
                    self.kpt_predictor = KeyPointDetector(
                        kpt_model_dir,
                        device,
                        run_mode,
                        kpt_batch_size,
                        trt_min_shape,
                        trt_max_shape,
                        trt_opt_shape,
                        trt_calib_mode,
                        cpu_threads,
                        enable_mkldnn,
                        use_dark=False)
Z
zhiboniu 已提交
488
                    self.kpt_buff = KeyPointBuff(skeleton_action_frames)
Z
zhiboniu 已提交
489

Z
zhiboniu 已提交
490 491 492 493 494 495 496
            if self.with_vehicleplate:
                vehicleplate_cfg = self.cfg['VEHICLE_PLATE']
                self.vehicleplate_detector = PlateRecognizer(args,
                                                             vehicleplate_cfg)
                basemode = vehicleplate_cfg['basemode']
                self.modebase[basemode] = True

497 498
            if self.with_vehicle_attr:
                vehicleattr_cfg = self.cfg['VEHICLE_ATTR']
499
                model_dir = model_dir_dict['VEHICLE_ATTR']
500 501 502 503 504 505 506 507 508 509
                batch_size = vehicleattr_cfg['batch_size']
                color_threshold = vehicleattr_cfg['color_threshold']
                type_threshold = vehicleattr_cfg['type_threshold']
                basemode = vehicleattr_cfg['basemode']
                self.modebase[basemode] = True
                self.vehicle_attr_predictor = VehicleAttr(
                    model_dir, device, run_mode, batch_size, trt_min_shape,
                    trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                    enable_mkldnn, color_threshold, type_threshold)

Z
zhiboniu 已提交
510 511
            if self.with_mtmct:
                reid_cfg = self.cfg['REID']
512
                model_dir = model_dir_dict['REID']
Z
zhiboniu 已提交
513 514 515 516 517 518 519 520
                batch_size = reid_cfg['batch_size']
                basemode = reid_cfg['basemode']
                self.modebase[basemode] = True
                self.reid_predictor = ReID(
                    model_dir, device, run_mode, batch_size, trt_min_shape,
                    trt_max_shape, trt_opt_shape, trt_calib_mode, cpu_threads,
                    enable_mkldnn)

Z
zhiboniu 已提交
521 522 523
            if self.with_mot or self.modebase["idbased"] or self.modebase[
                    "skeletonbased"]:
                mot_cfg = self.cfg['MOT']
524
                model_dir = model_dir_dict['MOT']
Z
zhiboniu 已提交
525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542
                tracker_config = mot_cfg['tracker_config']
                batch_size = mot_cfg['batch_size']
                basemode = mot_cfg['basemode']
                self.modebase[basemode] = True
                self.mot_predictor = SDE_Detector(
                    model_dir,
                    tracker_config,
                    device,
                    run_mode,
                    batch_size,
                    trt_min_shape,
                    trt_max_shape,
                    trt_opt_shape,
                    trt_calib_mode,
                    cpu_threads,
                    enable_mkldnn,
                    draw_center_traj=draw_center_traj,
                    secs_interval=secs_interval,
543 544 545 546
                    do_entrance_counting=do_entrance_counting,
                    do_break_in_counting=do_break_in_counting,
                    region_type=region_type,
                    region_polygon=region_polygon)
Z
zhiboniu 已提交
547

548 549 550 551 552 553
            if self.with_video_action:
                video_action_cfg = self.cfg['VIDEO_ACTION']

                basemode = video_action_cfg['basemode']
                self.modebase[basemode] = True

554
                video_action_model_dir = model_dir_dict['VIDEO_ACTION']
555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
                video_action_batch_size = video_action_cfg['batch_size']
                short_size = video_action_cfg["short_size"]
                target_size = video_action_cfg["target_size"]

                self.video_action_predictor = VideoActionRecognizer(
                    model_dir=video_action_model_dir,
                    short_size=short_size,
                    target_size=target_size,
                    device=device,
                    run_mode=run_mode,
                    batch_size=video_action_batch_size,
                    trt_min_shape=trt_min_shape,
                    trt_max_shape=trt_max_shape,
                    trt_opt_shape=trt_opt_shape,
                    trt_calib_mode=trt_calib_mode,
                    cpu_threads=cpu_threads,
                    enable_mkldnn=enable_mkldnn)

573
    def set_file_name(self, path):
W
wangguanzhong 已提交
574 575 576 577 578
        if path is not None:
            self.file_name = os.path.split(path)[-1]
        else:
            # use camera id
            self.file_name = None
579

580
    def get_result(self):
Z
zhiboniu 已提交
581
        return self.collector.get_res()
582 583 584 585 586 587

    def run(self, input):
        if self.is_video:
            self.predict_video(input)
        else:
            self.predict_image(input)
588
        self.pipe_timer.info()
589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606

    def predict_image(self, input):
        # det
        # det -> attr
        batch_loop_cnt = math.ceil(
            float(len(input)) / self.det_predictor.batch_size)
        for i in range(batch_loop_cnt):
            start_index = i * self.det_predictor.batch_size
            end_index = min((i + 1) * self.det_predictor.batch_size, len(input))
            batch_file = input[start_index:end_index]
            batch_input = [decode_image(f, {})[0] for f in batch_file]

            if i > self.warmup_frame:
                self.pipe_timer.total_time.start()
                self.pipe_timer.module_time['det'].start()
            # det output format: class, score, xmin, ymin, xmax, ymax
            det_res = self.det_predictor.predict_image(
                batch_input, visual=False)
607 608
            det_res = self.det_predictor.filter_box(det_res,
                                                    self.cfg['crop_thresh'])
609 610 611 612
            if i > self.warmup_frame:
                self.pipe_timer.module_time['det'].end()
            self.pipeline_res.update(det_res, 'det')

613
            if self.with_human_attr:
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630
                crop_inputs = crop_image_with_det(batch_input, det_res)
                attr_res_list = []

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].start()

                for crop_input in crop_inputs:
                    attr_res = self.attr_predictor.predict_image(
                        crop_input, visual=False)
                    attr_res_list.extend(attr_res['output'])

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].end()

                attr_res = {'output': attr_res_list}
                self.pipeline_res.update(attr_res, 'attr')

631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648
            if self.with_vehicle_attr:
                crop_inputs = crop_image_with_det(batch_input, det_res)
                vehicle_attr_res_list = []

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['vehicle_attr'].start()

                for crop_input in crop_inputs:
                    attr_res = self.vehicle_attr_predictor.predict_image(
                        crop_input, visual=False)
                    vehicle_attr_res_list.extend(attr_res['output'])

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['vehicle_attr'].end()

                attr_res = {'output': vehicle_attr_res_list}
                self.pipeline_res.update(attr_res, 'vehicle_attr')

649 650 651 652 653 654 655
            self.pipe_timer.img_num += len(batch_input)
            if i > self.warmup_frame:
                self.pipe_timer.total_time.end()

            if self.cfg['visual']:
                self.visualize_image(batch_file, batch_input, self.pipeline_res)

Z
zhiboniu 已提交
656
    def predict_video(self, video_file):
657 658 659
        # mot
        # mot -> attr
        # mot -> pose -> action
Z
zhiboniu 已提交
660
        capture = cv2.VideoCapture(video_file)
661
        video_out_name = 'output.mp4' if self.file_name is None else self.file_name
662 663 664 665 666 667

        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
668
        print("video fps: %d, frame_count: %d" % (fps, frame_count))
669 670 671 672 673 674 675

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
        fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
        frame_id = 0
676 677 678 679 680 681 682 683 684 685

        entrance, records, center_traj = None, None, None
        if self.draw_center_traj:
            center_traj = [{}]
        id_set = set()
        interval_id_set = set()
        in_id_list = list()
        out_id_list = list()
        prev_center = dict()
        records = list()
686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703
        if self.do_entrance_counting or self.do_break_in_counting:
            if self.region_type == 'horizontal':
                entrance = [0, height / 2., width, height / 2.]
            elif self.region_type == 'vertical':
                entrance = [width / 2, 0., width / 2, height]
            elif self.region_type == 'custom':
                entrance = []
                assert len(
                    self.region_polygon
                ) % 2 == 0, "region_polygon should be pairs of coords points when do break_in counting."
                for i in range(0, len(self.region_polygon), 2):
                    entrance.append(
                        [self.region_polygon[i], self.region_polygon[i + 1]])
                entrance.append([width, height])
            else:
                raise ValueError("region_type:{} unsupported.".format(
                    self.region_type))

704 705
        video_fps = fps

706 707
        video_action_imgs = []

708 709 710 711
        if self.with_video_action:
            short_size = self.cfg["VIDEO_ACTION"]["short_size"]
            scale = ShortSizeScale(short_size)

712 713 714
        while (1):
            if frame_id % 10 == 0:
                print('frame id: ', frame_id)
715

716 717 718
            ret, frame = capture.read()
            if not ret:
                break
719
            frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
720

721
            if self.modebase["idbased"] or self.modebase["skeletonbased"]:
722
                if frame_id > self.warmup_frame:
723 724 725
                    self.pipe_timer.total_time.start()
                    self.pipe_timer.module_time['mot'].start()
                res = self.mot_predictor.predict_image(
726
                    [copy.deepcopy(frame_rgb)], visual=False)
727

J
JYChen 已提交
728
                if frame_id > self.warmup_frame:
729 730 731 732 733 734 735 736 737 738 739
                    self.pipe_timer.module_time['mot'].end()

                # mot output format: id, class, score, xmin, ymin, xmax, ymax
                mot_res = parse_mot_res(res)

                # flow_statistic only support single class MOT
                boxes, scores, ids = res[0]  # batch size = 1 in MOT
                mot_result = (frame_id + 1, boxes[0], scores[0],
                              ids[0])  # single class
                statistic = flow_statistic(
                    mot_result, self.secs_interval, self.do_entrance_counting,
740 741 742
                    self.do_break_in_counting, self.region_type, video_fps,
                    entrance, id_set, interval_id_set, in_id_list, out_id_list,
                    prev_center, records)
743 744 745 746 747
                records = statistic['records']

                # nothing detected
                if len(mot_res['boxes']) == 0:
                    frame_id += 1
J
JYChen 已提交
748
                    if frame_id > self.warmup_frame:
749 750 751 752 753 754 755 756 757
                        self.pipe_timer.img_num += 1
                        self.pipe_timer.total_time.end()
                    if self.cfg['visual']:
                        _, _, fps = self.pipe_timer.get_total_time()
                        im = self.visualize_video(frame, mot_res, frame_id, fps,
                                                  entrance, records,
                                                  center_traj)  # visualize
                        writer.write(im)
                        if self.file_name is None:  # use camera_id
Z
zhiboniu 已提交
758
                            cv2.imshow('Paddle-Pipeline', im)
759 760 761 762 763
                            if cv2.waitKey(1) & 0xFF == ord('q'):
                                break
                    continue

                self.pipeline_res.update(mot_res, 'mot')
J
JYChen 已提交
764
                crop_input, new_bboxes, ori_bboxes = crop_image_with_mot(
765
                    frame_rgb, mot_res)
766

Z
zhiboniu 已提交
767
                if self.with_vehicleplate:
Z
zhiboniu 已提交
768 769
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['vehicleplate'].start()
Z
zhiboniu 已提交
770 771
                    platelicense = self.vehicleplate_detector.get_platelicense(
                        crop_input)
Z
zhiboniu 已提交
772 773
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['vehicleplate'].end()
Z
zhiboniu 已提交
774 775
                    self.pipeline_res.update(platelicense, 'vehicleplate')

776
                if self.with_human_attr:
J
JYChen 已提交
777
                    if frame_id > self.warmup_frame:
778 779 780 781 782 783 784
                        self.pipe_timer.module_time['attr'].start()
                    attr_res = self.attr_predictor.predict_image(
                        crop_input, visual=False)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['attr'].end()
                    self.pipeline_res.update(attr_res, 'attr')

785 786 787 788 789 790 791 792 793
                if self.with_vehicle_attr:
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['vehicle_attr'].start()
                    attr_res = self.vehicle_attr_predictor.predict_image(
                        crop_input, visual=False)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['vehicle_attr'].end()
                    self.pipeline_res.update(attr_res, 'vehicle_attr')

Z
zhiboniu 已提交
794
                if self.with_idbased_detaction:
J
JYChen 已提交
795 796 797 798 799 800 801 802 803 804
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['det_action'].start()
                    det_action_res = self.det_action_predictor.predict(
                        crop_input, mot_res)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['det_action'].end()
                    self.pipeline_res.update(det_action_res, 'det_action')

                    if self.cfg['visual']:
                        self.det_action_visual_helper.update(det_action_res)
Z
zhiboniu 已提交
805 806

                if self.with_idbased_clsaction:
J
JYChen 已提交
807 808 809 810 811 812 813 814 815 816
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['cls_action'].start()
                    cls_action_res = self.cls_action_predictor.predict_with_mot(
                        crop_input, mot_res)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['cls_action'].end()
                    self.pipeline_res.update(cls_action_res, 'cls_action')

                    if self.cfg['visual']:
                        self.cls_action_visual_helper.update(cls_action_res)
Z
zhiboniu 已提交
817

Z
zhiboniu 已提交
818
                if self.with_skeleton_action:
Z
zhiboniu 已提交
819 820 821 822 823 824 825 826 827 828 829 830 831
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['kpt'].start()
                    kpt_pred = self.kpt_predictor.predict_image(
                        crop_input, visual=False)
                    keypoint_vector, score_vector = translate_to_ori_images(
                        kpt_pred, np.array(new_bboxes))
                    kpt_res = {}
                    kpt_res['keypoint'] = [
                        keypoint_vector.tolist(), score_vector.tolist()
                    ] if len(keypoint_vector) > 0 else [[], []]
                    kpt_res['bbox'] = ori_bboxes
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['kpt'].end()
832

Z
zhiboniu 已提交
833
                    self.pipeline_res.update(kpt_res, 'kpt')
834

Z
zhiboniu 已提交
835
                    self.kpt_buff.update(kpt_res, mot_res)  # collect kpt output
836 837 838
                    state = self.kpt_buff.get_state(
                    )  # whether frame num is enough or lost tracker

Z
zhiboniu 已提交
839
                    skeleton_action_res = {}
840 841
                    if state:
                        if frame_id > self.warmup_frame:
Z
zhiboniu 已提交
842 843
                            self.pipe_timer.module_time[
                                'skeleton_action'].start()
844 845
                        collected_keypoint = self.kpt_buff.get_collected_keypoint(
                        )  # reoragnize kpt output with ID
Z
zhiboniu 已提交
846 847 848 849
                        skeleton_action_input = parse_mot_keypoint(
                            collected_keypoint, self.coord_size)
                        skeleton_action_res = self.skeleton_action_predictor.predict_skeleton_with_mot(
                            skeleton_action_input)
850
                        if frame_id > self.warmup_frame:
Z
zhiboniu 已提交
851 852 853
                            self.pipe_timer.module_time['skeleton_action'].end()
                        self.pipeline_res.update(skeleton_action_res,
                                                 'skeleton_action')
854 855

                    if self.cfg['visual']:
Z
zhiboniu 已提交
856 857
                        self.skeleton_action_visual_helper.update(
                            skeleton_action_res)
858 859 860

                if self.with_mtmct and frame_id % 10 == 0:
                    crop_input, img_qualities, rects = self.reid_predictor.crop_image_with_mot(
861
                        frame_rgb, mot_res)
862 863 864 865 866 867
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['reid'].start()
                    reid_res = self.reid_predictor.predict_batch(crop_input)

                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['reid'].end()
J
JYChen 已提交
868

869 870 871 872 873 874 875 876
                    reid_res_dict = {
                        'features': reid_res,
                        "qualities": img_qualities,
                        "rects": rects
                    }
                    self.pipeline_res.update(reid_res_dict, 'reid')
                else:
                    self.pipeline_res.clear('reid')
Z
zhiboniu 已提交
877

Z
zhiboniu 已提交
878
            if self.with_video_action:
879 880 881 882 883 884 885 886 887 888 889 890 891
                # get the params
                frame_len = self.cfg["VIDEO_ACTION"]["frame_len"]
                sample_freq = self.cfg["VIDEO_ACTION"]["sample_freq"]

                if sample_freq * frame_len > frame_count:  # video is too short
                    sample_freq = int(frame_count / frame_len)

                # filter the warmup frames
                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['video_action'].start()

                # collect frames
                if frame_id % sample_freq == 0:
892
                    # Scale image
893
                    scaled_img = scale(frame_rgb)
894
                    video_action_imgs.append(scaled_img)
895 896 897 898 899 900 901 902 903 904 905 906 907 908

                # the number of collected frames is enough to predict video action
                if len(video_action_imgs) == frame_len:
                    classes, scores = self.video_action_predictor.predict(
                        video_action_imgs)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['video_action'].end()

                    video_action_res = {"class": classes[0], "score": scores[0]}
                    self.pipeline_res.update(video_action_res, 'video_action')

                    print("video_action_res:", video_action_res)

                    video_action_imgs.clear()  # next clip
Z
zhiboniu 已提交
909 910

            self.collector.append(frame_id, self.pipeline_res)
911 912 913 914 915 916 917

            if frame_id > self.warmup_frame:
                self.pipe_timer.img_num += 1
                self.pipe_timer.total_time.end()
            frame_id += 1

            if self.cfg['visual']:
918 919
                _, _, fps = self.pipe_timer.get_total_time()
                im = self.visualize_video(frame, self.pipeline_res, frame_id,
920 921
                                          fps, entrance, records,
                                          center_traj)  # visualize
922
                writer.write(im)
W
wangguanzhong 已提交
923
                if self.file_name is None:  # use camera_id
Z
zhiboniu 已提交
924
                    cv2.imshow('Paddle-Pipeline', im)
W
wangguanzhong 已提交
925 926
                    if cv2.waitKey(1) & 0xFF == ord('q'):
                        break
927 928 929 930

        writer.release()
        print('save result to {}'.format(out_path))

931 932 933 934 935 936 937 938
    def visualize_video(self,
                        image,
                        result,
                        frame_id,
                        fps,
                        entrance=None,
                        records=None,
                        center_traj=None):
Z
zhiboniu 已提交
939
        mot_res = copy.deepcopy(result.get('mot'))
940 941
        if mot_res is not None:
            ids = mot_res['boxes'][:, 0]
W
wangguanzhong 已提交
942
            scores = mot_res['boxes'][:, 2]
943 944 945 946 947 948
            boxes = mot_res['boxes'][:, 3:]
            boxes[:, 2] = boxes[:, 2] - boxes[:, 0]
            boxes[:, 3] = boxes[:, 3] - boxes[:, 1]
        else:
            boxes = np.zeros([0, 4])
            ids = np.zeros([0])
W
wangguanzhong 已提交
949
            scores = np.zeros([0])
950 951 952 953 954 955 956 957 958 959

        # single class, still need to be defaultdict type for ploting
        num_classes = 1
        online_tlwhs = defaultdict(list)
        online_scores = defaultdict(list)
        online_ids = defaultdict(list)
        online_tlwhs[0] = boxes
        online_scores[0] = scores
        online_ids[0] = ids

F
Feng Ni 已提交
960 961 962 963 964 965 966 967 968 969
        if mot_res is not None:
            image = plot_tracking_dict(
                image,
                num_classes,
                online_tlwhs,
                online_ids,
                online_scores,
                frame_id=frame_id,
                fps=fps,
                do_entrance_counting=self.do_entrance_counting,
970
                do_break_in_counting=self.do_break_in_counting,
F
Feng Ni 已提交
971 972 973
                entrance=entrance,
                records=records,
                center_traj=center_traj)
974

975 976 977 978 979 980 981 982 983
        human_attr_res = result.get('attr')
        if human_attr_res is not None:
            boxes = mot_res['boxes'][:, 1:]
            human_attr_res = human_attr_res['output']
            image = visualize_attr(image, human_attr_res, boxes)
            image = np.array(image)

        vehicle_attr_res = result.get('vehicle_attr')
        if vehicle_attr_res is not None:
984
            boxes = mot_res['boxes'][:, 1:]
985 986
            vehicle_attr_res = vehicle_attr_res['output']
            image = visualize_attr(image, vehicle_attr_res, boxes)
987 988
            image = np.array(image)

Z
zhiboniu 已提交
989 990 991 992 993 994 995
        vehicleplate_res = result.get('vehicleplate')
        if vehicleplate_res:
            boxes = mot_res['boxes'][:, 1:]
            image = visualize_vehicleplate(image, vehicleplate_res['plate'],
                                           boxes)
            image = np.array(image)

J
JYChen 已提交
996 997 998 999 1000 1001 1002 1003
        kpt_res = result.get('kpt')
        if kpt_res is not None:
            image = visualize_pose(
                image,
                kpt_res,
                visual_thresh=self.cfg['kpt_thresh'],
                returnimg=True)

1004
        video_action_res = result.get('video_action')
J
JYChen 已提交
1005
        if video_action_res is not None:
1006 1007 1008
            video_action_score = None
            if video_action_res and video_action_res["class"] == 1:
                video_action_score = video_action_res["score"]
1009 1010 1011
            mot_boxes = None
            if mot_res:
                mot_boxes = mot_res['boxes']
1012 1013
            image = visualize_action(
                image,
1014
                mot_boxes,
J
JYChen 已提交
1015
                action_visual_collector=None,
1016 1017 1018
                action_text="SkeletonAction",
                video_action_score=video_action_score,
                video_action_text="Fight")
J
JYChen 已提交
1019

J
JYChen 已提交
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042
        visual_helper_for_display = []
        action_to_display = []

        skeleton_action_res = result.get('skeleton_action')
        if skeleton_action_res is not None:
            visual_helper_for_display.append(self.skeleton_action_visual_helper)
            action_to_display.append("Falling")

        det_action_res = result.get('det_action')
        if det_action_res is not None:
            visual_helper_for_display.append(self.det_action_visual_helper)
            action_to_display.append("Smoking")

        cls_action_res = result.get('cls_action')
        if cls_action_res is not None:
            visual_helper_for_display.append(self.cls_action_visual_helper)
            action_to_display.append("Calling")

        if len(visual_helper_for_display) > 0:
            image = visualize_action(image, mot_res['boxes'],
                                     visual_helper_for_display,
                                     action_to_display)

1043 1044 1045 1046 1047
        return image

    def visualize_image(self, im_files, images, result):
        start_idx, boxes_num_i = 0, 0
        det_res = result.get('det')
1048 1049 1050
        human_attr_res = result.get('attr')
        vehicle_attr_res = result.get('vehicle_attr')

1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061
        for i, (im_file, im) in enumerate(zip(im_files, images)):
            if det_res is not None:
                det_res_i = {}
                boxes_num_i = det_res['boxes_num'][i]
                det_res_i['boxes'] = det_res['boxes'][start_idx:start_idx +
                                                      boxes_num_i, :]
                im = visualize_box_mask(
                    im,
                    det_res_i,
                    labels=['person'],
                    threshold=self.cfg['crop_thresh'])
1062 1063
                im = np.ascontiguousarray(np.copy(im))
                im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
1064 1065 1066 1067 1068 1069 1070 1071 1072
            if human_attr_res is not None:
                human_attr_res_i = human_attr_res['output'][start_idx:start_idx
                                                            + boxes_num_i]
                im = visualize_attr(im, human_attr_res_i, det_res_i['boxes'])
            if vehicle_attr_res is not None:
                vehicle_attr_res_i = vehicle_attr_res['output'][
                    start_idx:start_idx + boxes_num_i]
                im = visualize_attr(im, vehicle_attr_res_i, det_res_i['boxes'])

1073 1074 1075 1076
            img_name = os.path.split(im_file)[-1]
            if not os.path.exists(self.output_dir):
                os.makedirs(self.output_dir)
            out_path = os.path.join(self.output_dir, img_name)
1077
            cv2.imwrite(out_path, im)
1078 1079 1080 1081 1082 1083 1084
            print("save result to: " + out_path)
            start_idx += boxes_num_i


def main():
    cfg = merge_cfg(FLAGS)
    print_arguments(cfg)
1085

Z
zhiboniu 已提交
1086
    pipeline = Pipeline(FLAGS, cfg)
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
    pipeline.run()


if __name__ == '__main__':
    paddle.enable_static()
    parser = argsparser()
    FLAGS = parser.parse_args()
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()