Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
23e9cb95
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
23e9cb95
编写于
7月 08, 2022
作者:
J
JYChen
提交者:
GitHub
7月 08, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add frame-skip to boost inference (#6383)
上级
9e5f22ae
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
132 addition
and
16 deletion
+132
-16
deploy/pipeline/config/infer_cfg_pphuman.yml
deploy/pipeline/config/infer_cfg_pphuman.yml
+2
-0
deploy/pipeline/pipeline.py
deploy/pipeline/pipeline.py
+8
-2
deploy/pipeline/pphuman/action_infer.py
deploy/pipeline/pphuman/action_infer.py
+122
-14
未找到文件。
deploy/pipeline/config/infer_cfg_pphuman.yml
浏览文件 @
23e9cb95
...
...
@@ -50,6 +50,7 @@ ID_BASED_DETACTION:
basemode
:
"
idbased"
threshold
:
0.6
display_frames
:
80
skip_frame_num
:
2
enable
:
False
ID_BASED_CLSACTION
:
...
...
@@ -58,6 +59,7 @@ ID_BASED_CLSACTION:
basemode
:
"
idbased"
threshold
:
0.8
display_frames
:
80
skip_frame_num
:
2
enable
:
False
REID
:
...
...
deploy/pipeline/pipeline.py
浏览文件 @
23e9cb95
...
...
@@ -342,7 +342,9 @@ class PipePredictor(object):
basemode
=
idbased_detaction_cfg
[
'basemode'
]
threshold
=
idbased_detaction_cfg
[
'threshold'
]
display_frames
=
idbased_detaction_cfg
[
'display_frames'
]
skip_frame_num
=
idbased_detaction_cfg
[
'skip_frame_num'
]
self
.
modebase
[
basemode
]
=
True
self
.
det_action_predictor
=
DetActionRecognizer
(
model_dir
,
device
,
...
...
@@ -355,7 +357,8 @@ class PipePredictor(object):
cpu_threads
,
enable_mkldnn
,
threshold
=
threshold
,
display_frames
=
display_frames
)
display_frames
=
display_frames
,
skip_frame_num
=
skip_frame_num
)
self
.
det_action_visual_helper
=
ActionVisualHelper
(
1
)
if
self
.
with_idbased_clsaction
:
...
...
@@ -366,6 +369,8 @@ class PipePredictor(object):
threshold
=
idbased_clsaction_cfg
[
'threshold'
]
self
.
modebase
[
basemode
]
=
True
display_frames
=
idbased_clsaction_cfg
[
'display_frames'
]
skip_frame_num
=
idbased_clsaction_cfg
[
'skip_frame_num'
]
self
.
cls_action_predictor
=
ClsActionRecognizer
(
model_dir
,
device
,
...
...
@@ -378,7 +383,8 @@ class PipePredictor(object):
cpu_threads
,
enable_mkldnn
,
threshold
=
threshold
,
display_frames
=
display_frames
)
display_frames
=
display_frames
,
skip_frame_num
=
skip_frame_num
)
self
.
cls_action_visual_helper
=
ActionVisualHelper
(
1
)
if
self
.
with_skeleton_action
:
...
...
deploy/pipeline/pphuman/action_infer.py
浏览文件 @
23e9cb95
...
...
@@ -279,7 +279,11 @@ class DetActionRecognizer(object):
cpu_threads (int): cpu threads
enable_mkldnn (bool): whether to open MKLDNN
threshold (float): The threshold of score for action feature object detection.
display_frames (int): The duration for corresponding detected action.
display_frames (int): The duration for corresponding detected action.
skip_frame_num (int): The number of frames for interval prediction. A skipped frame will
reuse the result of its last frame. If it is set to 0, no frame will be skipped. Default
is 0.
"""
def
__init__
(
self
,
...
...
@@ -295,7 +299,8 @@ class DetActionRecognizer(object):
enable_mkldnn
=
False
,
output_dir
=
'output'
,
threshold
=
0.5
,
display_frames
=
20
):
display_frames
=
20
,
skip_frame_num
=
0
):
super
(
DetActionRecognizer
,
self
).
__init__
()
self
.
detector
=
Detector
(
model_dir
=
model_dir
,
...
...
@@ -313,10 +318,21 @@ class DetActionRecognizer(object):
self
.
threshold
=
threshold
self
.
frame_life
=
display_frames
self
.
result_history
=
{}
self
.
skip_frame_num
=
skip_frame_num
self
.
skip_frame_cnt
=
0
self
.
id_in_last_frame
=
[]
def
predict
(
self
,
images
,
mot_result
):
det_result
=
self
.
detector
.
predict_image
(
images
,
visual
=
False
)
result
=
self
.
postprocess
(
det_result
,
mot_result
)
if
self
.
skip_frame_cnt
==
0
or
(
not
self
.
check_id_is_same
(
mot_result
)):
det_result
=
self
.
detector
.
predict_image
(
images
,
visual
=
False
)
result
=
self
.
postprocess
(
det_result
,
mot_result
)
else
:
result
=
self
.
reuse_result
(
mot_result
)
self
.
skip_frame_cnt
+=
1
if
self
.
skip_frame_cnt
>=
self
.
skip_frame_num
:
self
.
skip_frame_cnt
=
0
return
result
def
postprocess
(
self
,
det_result
,
mot_result
):
...
...
@@ -343,10 +359,11 @@ class DetActionRecognizer(object):
if
valid_boxes
.
shape
[
0
]
>=
1
:
action_ret
[
'class'
]
=
valid_boxes
[
0
,
0
]
action_ret
[
'score'
]
=
valid_boxes
[
0
,
1
]
self
.
result_history
[
tracker_id
]
=
[
0
,
self
.
frame_life
]
self
.
result_history
[
tracker_id
]
=
[
0
,
self
.
frame_life
,
valid_boxes
[
0
,
1
]]
else
:
history_det
,
life_remain
=
self
.
result_history
.
get
(
tracker_id
,
[
1
,
0
])
history_det
,
life_remain
,
history_score
=
self
.
result_history
.
get
(
tracker_id
,
[
1
,
self
.
frame_life
,
-
1.
0
])
action_ret
[
'class'
]
=
history_det
action_ret
[
'score'
]
=
-
1.0
life_remain
-=
1
...
...
@@ -354,10 +371,48 @@ class DetActionRecognizer(object):
del
(
self
.
result_history
[
tracker_id
])
elif
tracker_id
in
self
.
result_history
:
self
.
result_history
[
tracker_id
][
1
]
=
life_remain
else
:
self
.
result_history
[
tracker_id
]
=
[
history_det
,
life_remain
,
history_score
]
mot_id
.
append
(
tracker_id
)
act_res
.
append
(
action_ret
)
result
=
list
(
zip
(
mot_id
,
act_res
))
self
.
id_in_last_frame
=
mot_id
return
result
def
check_id_is_same
(
self
,
mot_result
):
mot_bboxes
=
mot_result
.
get
(
'boxes'
)
for
idx
in
range
(
len
(
mot_bboxes
)):
tracker_id
=
mot_bboxes
[
idx
,
0
]
if
tracker_id
not
in
self
.
id_in_last_frame
:
return
False
return
True
def
reuse_result
(
self
,
mot_result
):
# This function reusing previous results of the same ID directly.
mot_bboxes
=
mot_result
.
get
(
'boxes'
)
mot_id
=
[]
act_res
=
[]
for
idx
in
range
(
len
(
mot_bboxes
)):
tracker_id
=
mot_bboxes
[
idx
,
0
]
history_cls
,
life_remain
,
history_score
=
self
.
result_history
.
get
(
tracker_id
,
[
1
,
0
,
-
1.0
])
life_remain
-=
1
if
tracker_id
in
self
.
result_history
:
self
.
result_history
[
tracker_id
][
1
]
=
life_remain
action_ret
=
{
'class'
:
history_cls
,
'score'
:
history_score
}
mot_id
.
append
(
tracker_id
)
act_res
.
append
(
action_ret
)
result
=
list
(
zip
(
mot_id
,
act_res
))
self
.
id_in_last_frame
=
mot_id
return
result
...
...
@@ -378,6 +433,9 @@ class ClsActionRecognizer(AttrDetector):
enable_mkldnn (bool): whether to open MKLDNN
threshold (float): The threshold of score for action feature object detection.
display_frames (int): The duration for corresponding detected action.
skip_frame_num (int): The number of frames for interval prediction. A skipped frame will
reuse the result of its last frame. If it is set to 0, no frame will be skipped. Default
is 0.
"""
def
__init__
(
self
,
...
...
@@ -393,7 +451,8 @@ class ClsActionRecognizer(AttrDetector):
enable_mkldnn
=
False
,
output_dir
=
'output'
,
threshold
=
0.5
,
display_frames
=
80
):
display_frames
=
80
,
skip_frame_num
=
0
):
super
(
ClsActionRecognizer
,
self
).
__init__
(
model_dir
=
model_dir
,
device
=
device
,
...
...
@@ -410,11 +469,22 @@ class ClsActionRecognizer(AttrDetector):
self
.
threshold
=
threshold
self
.
frame_life
=
display_frames
self
.
result_history
=
{}
self
.
skip_frame_num
=
skip_frame_num
self
.
skip_frame_cnt
=
0
self
.
id_in_last_frame
=
[]
def
predict_with_mot
(
self
,
images
,
mot_result
):
images
=
self
.
crop_half_body
(
images
)
cls_result
=
self
.
predict_image
(
images
,
visual
=
False
)[
"output"
]
result
=
self
.
match_action_with_id
(
cls_result
,
mot_result
)
if
self
.
skip_frame_cnt
==
0
or
(
not
self
.
check_id_is_same
(
mot_result
)):
images
=
self
.
crop_half_body
(
images
)
cls_result
=
self
.
predict_image
(
images
,
visual
=
False
)[
"output"
]
result
=
self
.
match_action_with_id
(
cls_result
,
mot_result
)
else
:
result
=
self
.
reuse_result
(
mot_result
)
self
.
skip_frame_cnt
+=
1
if
self
.
skip_frame_cnt
>=
self
.
skip_frame_num
:
self
.
skip_frame_cnt
=
0
return
result
def
crop_half_body
(
self
,
images
):
...
...
@@ -456,8 +526,8 @@ class ClsActionRecognizer(AttrDetector):
# Current now, class 0 is positive, class 1 is negative.
if
cls_id_res
==
1
or
(
cls_id_res
==
0
and
cls_score_res
<
self
.
threshold
):
history_cls
,
life_remain
=
self
.
result_history
.
get
(
tracker_id
,
[
1
,
0
])
history_cls
,
life_remain
,
history_score
=
self
.
result_history
.
get
(
tracker_id
,
[
1
,
self
.
frame_life
,
-
1.
0
])
cls_id_res
=
history_cls
cls_score_res
=
1
-
cls_score_res
life_remain
-=
1
...
...
@@ -465,13 +535,51 @@ class ClsActionRecognizer(AttrDetector):
del
(
self
.
result_history
[
tracker_id
])
elif
tracker_id
in
self
.
result_history
:
self
.
result_history
[
tracker_id
][
1
]
=
life_remain
else
:
self
.
result_history
[
tracker_id
]
=
[
cls_id_res
,
life_remain
,
cls_score_res
]
else
:
self
.
result_history
[
tracker_id
]
=
[
cls_id_res
,
self
.
frame_life
]
self
.
result_history
[
tracker_id
]
=
[
cls_id_res
,
self
.
frame_life
,
cls_score_res
]
action_ret
=
{
'class'
:
cls_id_res
,
'score'
:
cls_score_res
}
mot_id
.
append
(
tracker_id
)
act_res
.
append
(
action_ret
)
result
=
list
(
zip
(
mot_id
,
act_res
))
self
.
id_in_last_frame
=
mot_id
return
result
def
check_id_is_same
(
self
,
mot_result
):
mot_bboxes
=
mot_result
.
get
(
'boxes'
)
for
idx
in
range
(
len
(
mot_bboxes
)):
tracker_id
=
mot_bboxes
[
idx
,
0
]
if
tracker_id
not
in
self
.
id_in_last_frame
:
return
False
return
True
def
reuse_result
(
self
,
mot_result
):
# This function reusing previous results of the same ID directly.
mot_bboxes
=
mot_result
.
get
(
'boxes'
)
mot_id
=
[]
act_res
=
[]
for
idx
in
range
(
len
(
mot_bboxes
)):
tracker_id
=
mot_bboxes
[
idx
,
0
]
history_cls
,
life_remain
,
history_score
=
self
.
result_history
.
get
(
tracker_id
,
[
1
,
0
,
-
1.0
])
life_remain
-=
1
if
tracker_id
in
self
.
result_history
:
self
.
result_history
[
tracker_id
][
1
]
=
life_remain
action_ret
=
{
'class'
:
history_cls
,
'score'
:
history_score
}
mot_id
.
append
(
tracker_id
)
act_res
.
append
(
action_ret
)
result
=
list
(
zip
(
mot_id
,
act_res
))
self
.
id_in_last_frame
=
mot_id
return
result
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录