pipeline.py 45.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
import glob
import cv2
import numpy as np
import math
import paddle
import sys
Z
zhiboniu 已提交
23
import copy
Z
zhiboniu 已提交
24
from collections import Sequence, defaultdict
Z
zhiboniu 已提交
25
from datacollector import DataCollector, Result
26 27 28 29 30

# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)

31 32
from cfg_utils import argsparser, print_arguments, merge_cfg
from pipe_utils import PipeTimer
Z
zhiboniu 已提交
33
from pipe_utils import get_test_images, crop_image_with_det, crop_image_with_mot, parse_mot_res, parse_mot_keypoint
Z
zhiboniu 已提交
34
from pipe_utils import PushStream
Z
zhiboniu 已提交
35

36
from python.infer import Detector, DetectorPicoDet
J
JYChen 已提交
37 38
from python.keypoint_infer import KeyPointDetector
from python.keypoint_postprocess import translate_to_ori_images
39
from python.preprocess import decode_image, ShortSizeScale
Z
zhiboniu 已提交
40
from python.visualize import visualize_box_mask, visualize_attr, visualize_pose, visualize_action, visualize_vehicleplate
41 42

from pptracking.python.mot_sde_infer import SDE_Detector
43
from pptracking.python.mot.visualize import plot_tracking_dict
44
from pptracking.python.mot.utils import flow_statistic, update_object_info
45

Z
zhiboniu 已提交
46 47 48 49 50 51 52
from pphuman.attr_infer import AttrDetector
from pphuman.video_action_infer import VideoActionRecognizer
from pphuman.action_infer import SkeletonActionRecognizer, DetActionRecognizer, ClsActionRecognizer
from pphuman.action_utils import KeyPointBuff, ActionVisualHelper
from pphuman.reid import ReID
from pphuman.mtmct import mtmct_process

53 54 55
from ppvehicle.vehicle_plate import PlateRecognizer
from ppvehicle.vehicle_attr import VehicleAttr

56 57
from download import auto_download_model

58 59 60 61 62 63

class Pipeline(object):
    """
    Pipeline

    Args:
J
JYChen 已提交
64
        args (argparse.Namespace): arguments in pipeline, which contains environment and runtime settings
65 66 67
        cfg (dict): config of models in pipeline
    """

Z
zhiboniu 已提交
68
    def __init__(self, args, cfg):
69
        self.multi_camera = False
Z
zhiboniu 已提交
70 71
        reid_cfg = cfg.get('REID', False)
        self.enable_mtmct = reid_cfg['enable'] if reid_cfg else False
72
        self.is_video = False
Z
zhiboniu 已提交
73
        self.output_dir = args.output_dir
Z
zhiboniu 已提交
74
        self.vis_result = cfg['visual']
Z
zhiboniu 已提交
75 76
        self.input = self._parse_input(args.image_file, args.image_dir,
                                       args.video_file, args.video_dir,
77
                                       args.camera_id, args.rtsp)
78
        if self.multi_camera:
79 80 81
            self.predictor = []
            for name in self.input:
                predictor_item = PipePredictor(
Z
zhiboniu 已提交
82
                    args, cfg, is_video=True, multi_camera=True)
83 84 85
                predictor_item.set_file_name(name)
                self.predictor.append(predictor_item)

86
        else:
Z
zhiboniu 已提交
87
            self.predictor = PipePredictor(args, cfg, self.is_video)
88
            if self.is_video:
89
                self.predictor.set_file_name(self.input)
90

Z
zhiboniu 已提交
91
    def _parse_input(self, image_file, image_dir, video_file, video_dir,
92
                     camera_id, rtsp):
93 94 95 96 97 98 99 100 101

        # parse input as is_video and multi_camera

        if image_file is not None or image_dir is not None:
            input = get_test_images(image_dir, image_file)
            self.is_video = False
            self.multi_camera = False

        elif video_file is not None:
Z
zhiboniu 已提交
102 103 104
            assert os.path.exists(
                video_file
            ) or 'rtsp' in video_file, "video_file not exists and not an rtsp site."
Z
zhiboniu 已提交
105 106 107 108 109 110 111
            self.multi_camera = False
            input = video_file
            self.is_video = True

        elif video_dir is not None:
            videof = [os.path.join(video_dir, x) for x in os.listdir(video_dir)]
            if len(videof) > 1:
112
                self.multi_camera = True
Z
zhiboniu 已提交
113 114
                videof.sort()
                input = videof
115
            else:
Z
zhiboniu 已提交
116
                input = videof[0]
117 118
            self.is_video = True

119 120 121 122 123 124 125 126 127 128
        elif rtsp is not None:
            if len(rtsp) > 1:
                rtsp = [rtsp_item for rtsp_item in rtsp if 'rtsp' in rtsp_item]
                self.multi_camera = True
                input = rtsp
            else:
                self.multi_camera = False
                input = rtsp[0]
            self.is_video = True

129
        elif camera_id != -1:
Z
zhiboniu 已提交
130 131
            self.multi_camera = False
            input = camera_id
132 133 134 135
            self.is_video = True

        else:
            raise ValueError(
136
                "Illegal Input, please set one of ['video_file', 'camera_id', 'image_file', 'image_dir']"
137 138 139 140
            )

        return input

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    def run_multithreads(self):
        import threading
        if self.multi_camera:
            multi_res = []
            threads = []
            for idx, (predictor,
                      input) in enumerate(zip(self.predictor, self.input)):
                thread = threading.Thread(
                    name=str(idx).zfill(3),
                    target=predictor.run,
                    args=(input, idx))
                threads.append(thread)

            for thread in threads:
                thread.start()

            for predictor, thread in zip(self.predictor, threads):
                thread.join()
                collector_data = predictor.get_result()
                multi_res.append(collector_data)

            if self.enable_mtmct:
                mtmct_process(
                    multi_res,
                    self.input,
                    mtmct_vis=self.vis_result,
                    output_dir=self.output_dir)

        else:
            self.predictor.run(self.input)

172 173 174 175 176
    def run(self):
        if self.multi_camera:
            multi_res = []
            for predictor, input in zip(self.predictor, self.input):
                predictor.run(input)
Z
zhiboniu 已提交
177 178
                collector_data = predictor.get_result()
                multi_res.append(collector_data)
179 180 181 182 183 184
            if self.enable_mtmct:
                mtmct_process(
                    multi_res,
                    self.input,
                    mtmct_vis=self.vis_result,
                    output_dir=self.output_dir)
185 186 187 188 189

        else:
            self.predictor.run(self.input)


190
def get_model_dir(cfg):
J
JYChen 已提交
191 192 193 194
    """ 
        Auto download inference model if the model_path is a url link. 
        Otherwise it will use the model_path directly.
    """
195 196 197 198 199 200 201 202 203 204
    for key in cfg.keys():
        if type(cfg[key]) ==  dict and \
            ("enable" in cfg[key].keys() and cfg[key]['enable']
                or "enable" not in cfg[key].keys()):

            if "model_dir" in cfg[key].keys():
                model_dir = cfg[key]["model_dir"]
                downloaded_model_dir = auto_download_model(model_dir)
                if downloaded_model_dir:
                    model_dir = downloaded_model_dir
J
JYChen 已提交
205 206
                    cfg[key]["model_dir"] = model_dir
                print(key, " model dir: ", model_dir)
207 208 209 210 211
            elif key == "VEHICLE_PLATE":
                det_model_dir = cfg[key]["det_model_dir"]
                downloaded_det_model_dir = auto_download_model(det_model_dir)
                if downloaded_det_model_dir:
                    det_model_dir = downloaded_det_model_dir
J
JYChen 已提交
212 213
                    cfg[key]["det_model_dir"] = det_model_dir
                print("det_model_dir model dir: ", det_model_dir)
214 215 216 217 218

                rec_model_dir = cfg[key]["rec_model_dir"]
                downloaded_rec_model_dir = auto_download_model(rec_model_dir)
                if downloaded_rec_model_dir:
                    rec_model_dir = downloaded_rec_model_dir
J
JYChen 已提交
219 220 221
                    cfg[key]["rec_model_dir"] = rec_model_dir
                print("rec_model_dir model dir: ", rec_model_dir)

222 223 224 225 226
        elif key == "MOT":  # for idbased and skeletonbased actions
            model_dir = cfg[key]["model_dir"]
            downloaded_model_dir = auto_download_model(model_dir)
            if downloaded_model_dir:
                model_dir = downloaded_model_dir
J
JYChen 已提交
227 228
                cfg[key]["model_dir"] = model_dir
            print("mot_model_dir model_dir: ", model_dir)
229 230


231 232 233 234 235 236 237 238 239 240 241 242 243
class PipePredictor(object):
    """
    Predictor in single camera
    
    The pipeline for image input: 

        1. Detection
        2. Detection -> Attribute

    The pipeline for video input: 

        1. Tracking
        2. Tracking -> Attribute
Z
zhiboniu 已提交
244
        3. Tracking -> KeyPoint -> SkeletonAction Recognition
245
        4. VideoAction Recognition
246 247

    Args:
J
JYChen 已提交
248
        args (argparse.Namespace): arguments in pipeline, which contains environment and runtime settings
249 250 251 252 253 254
        cfg (dict): config of models in pipeline
        is_video (bool): whether the input is video, default as False
        multi_camera (bool): whether to use multi camera in pipeline, 
            default as False
    """

Z
zhiboniu 已提交
255 256 257 258
    def __init__(self, args, cfg, is_video=True, multi_camera=False):
        # general module for pphuman and ppvehicle
        self.with_mot = cfg.get('MOT', False)['enable'] if cfg.get(
            'MOT', False) else False
259
        self.with_human_attr = cfg.get('ATTR', False)['enable'] if cfg.get(
Z
zhiboniu 已提交
260
            'ATTR', False) else False
Z
zhiboniu 已提交
261 262
        if self.with_mot:
            print('Multi-Object Tracking enabled')
263 264
        if self.with_human_attr:
            print('Human Attribute Recognition enabled')
Z
zhiboniu 已提交
265 266

        # only for pphuman
Z
zhiboniu 已提交
267 268 269
        self.with_skeleton_action = cfg.get(
            'SKELETON_ACTION', False)['enable'] if cfg.get('SKELETON_ACTION',
                                                           False) else False
Z
zhiboniu 已提交
270 271 272 273 274 275 276 277 278
        self.with_video_action = cfg.get(
            'VIDEO_ACTION', False)['enable'] if cfg.get('VIDEO_ACTION',
                                                        False) else False
        self.with_idbased_detaction = cfg.get(
            'ID_BASED_DETACTION', False)['enable'] if cfg.get(
                'ID_BASED_DETACTION', False) else False
        self.with_idbased_clsaction = cfg.get(
            'ID_BASED_CLSACTION', False)['enable'] if cfg.get(
                'ID_BASED_CLSACTION', False) else False
Z
zhiboniu 已提交
279 280
        self.with_mtmct = cfg.get('REID', False)['enable'] if cfg.get(
            'REID', False) else False
281

Z
zhiboniu 已提交
282 283
        if self.with_skeleton_action:
            print('SkeletonAction Recognition enabled')
Z
zhiboniu 已提交
284 285 286 287 288 289
        if self.with_video_action:
            print('VideoAction Recognition enabled')
        if self.with_idbased_detaction:
            print('IDBASED Detection Action Recognition enabled')
        if self.with_idbased_clsaction:
            print('IDBASED Classification Action Recognition enabled')
Z
zhiboniu 已提交
290 291
        if self.with_mtmct:
            print("MTMCT enabled")
W
wangguanzhong 已提交
292

Z
zhiboniu 已提交
293 294 295 296 297 298 299
        # only for ppvehicle
        self.with_vehicleplate = cfg.get(
            'VEHICLE_PLATE', False)['enable'] if cfg.get('VEHICLE_PLATE',
                                                         False) else False
        if self.with_vehicleplate:
            print('Vehicle Plate Recognition enabled')

300 301 302 303 304 305
        self.with_vehicle_attr = cfg.get(
            'VEHICLE_ATTR', False)['enable'] if cfg.get('VEHICLE_ATTR',
                                                        False) else False
        if self.with_vehicle_attr:
            print('Vehicle Attribute Recognition enabled')

306 307 308 309 310 311
        self.modebase = {
            "framebased": False,
            "videobased": False,
            "idbased": False,
            "skeletonbased": False
        }
312

313 314 315 316 317 318 319 320 321 322 323 324
        self.basemode = {
            "MOT": "idbased",
            "ATTR": "idbased",
            "VIDEO_ACTION": "videobased",
            "SKELETON_ACTION": "skeletonbased",
            "ID_BASED_DETACTION": "idbased",
            "ID_BASED_CLSACTION": "idbased",
            "REID": "idbased",
            "VEHICLE_PLATE": "idbased",
            "VEHICLE_ATTR": "idbased",
        }

325 326 327
        self.is_video = is_video
        self.multi_camera = multi_camera
        self.cfg = cfg
328

J
JYChen 已提交
329 330 331 332 333 334 335
        self.output_dir = args.output_dir
        self.draw_center_traj = args.draw_center_traj
        self.secs_interval = args.secs_interval
        self.do_entrance_counting = args.do_entrance_counting
        self.do_break_in_counting = args.do_break_in_counting
        self.region_type = args.region_type
        self.region_polygon = args.region_polygon
336
        self.illegal_parking_time = args.illegal_parking_time
337

J
JYChen 已提交
338
        self.warmup_frame = self.cfg['warmup_frame']
339 340
        self.pipeline_res = Result()
        self.pipe_timer = PipeTimer()
341
        self.file_name = None
Z
zhiboniu 已提交
342
        self.collector = DataCollector()
343

Z
zhiboniu 已提交
344 345
        self.pushurl = args.pushurl

346
        # auto download inference model
J
JYChen 已提交
347
        get_model_dir(self.cfg)
348

Z
zhiboniu 已提交
349 350 351 352 353 354 355 356 357 358
        if self.with_vehicleplate:
            vehicleplate_cfg = self.cfg['VEHICLE_PLATE']
            self.vehicleplate_detector = PlateRecognizer(args, vehicleplate_cfg)
            basemode = self.basemode['VEHICLE_PLATE']
            self.modebase[basemode] = True

        if self.with_human_attr:
            attr_cfg = self.cfg['ATTR']
            basemode = self.basemode['ATTR']
            self.modebase[basemode] = True
J
JYChen 已提交
359
            self.attr_predictor = AttrDetector.init_with_cfg(args, attr_cfg)
Z
zhiboniu 已提交
360 361 362 363 364

        if self.with_vehicle_attr:
            vehicleattr_cfg = self.cfg['VEHICLE_ATTR']
            basemode = self.basemode['VEHICLE_ATTR']
            self.modebase[basemode] = True
J
JYChen 已提交
365 366
            self.vehicle_attr_predictor = VehicleAttr.init_with_cfg(
                args, vehicleattr_cfg)
Z
zhiboniu 已提交
367

368 369
        if not is_video:
            det_cfg = self.cfg['DET']
J
JYChen 已提交
370
            model_dir = det_cfg['model_dir']
371 372
            batch_size = det_cfg['batch_size']
            self.det_predictor = Detector(
J
JYChen 已提交
373 374 375
                model_dir, args.device, args.run_mode, batch_size,
                args.trt_min_shape, args.trt_max_shape, args.trt_opt_shape,
                args.trt_calib_mode, args.cpu_threads, args.enable_mkldnn)
376
        else:
Z
zhiboniu 已提交
377
            if self.with_idbased_detaction:
J
JYChen 已提交
378
                idbased_detaction_cfg = self.cfg['ID_BASED_DETACTION']
379
                basemode = self.basemode['ID_BASED_DETACTION']
J
JYChen 已提交
380
                self.modebase[basemode] = True
381

J
JYChen 已提交
382 383
                self.det_action_predictor = DetActionRecognizer.init_with_cfg(
                    args, idbased_detaction_cfg)
J
JYChen 已提交
384 385
                self.det_action_visual_helper = ActionVisualHelper(1)

Z
zhiboniu 已提交
386
            if self.with_idbased_clsaction:
J
JYChen 已提交
387
                idbased_clsaction_cfg = self.cfg['ID_BASED_CLSACTION']
388
                basemode = self.basemode['ID_BASED_CLSACTION']
J
JYChen 已提交
389
                self.modebase[basemode] = True
390

J
JYChen 已提交
391 392
                self.cls_action_predictor = ClsActionRecognizer.init_with_cfg(
                    args, idbased_clsaction_cfg)
J
JYChen 已提交
393 394
                self.cls_action_visual_helper = ActionVisualHelper(1)

Z
zhiboniu 已提交
395 396 397 398
            if self.with_skeleton_action:
                skeleton_action_cfg = self.cfg['SKELETON_ACTION']
                display_frames = skeleton_action_cfg['display_frames']
                self.coord_size = skeleton_action_cfg['coord_size']
399
                basemode = self.basemode['SKELETON_ACTION']
400
                self.modebase[basemode] = True
J
JYChen 已提交
401
                skeleton_action_frames = skeleton_action_cfg['max_frames']
402

J
JYChen 已提交
403 404
                self.skeleton_action_predictor = SkeletonActionRecognizer.init_with_cfg(
                    args, skeleton_action_cfg)
J
JYChen 已提交
405
                self.skeleton_action_visual_helper = ActionVisualHelper(
Z
zhiboniu 已提交
406
                    display_frames)
407

J
JYChen 已提交
408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
                kpt_cfg = self.cfg['KPT']
                kpt_model_dir = kpt_cfg['model_dir']
                kpt_batch_size = kpt_cfg['batch_size']
                self.kpt_predictor = KeyPointDetector(
                    kpt_model_dir,
                    args.device,
                    args.run_mode,
                    kpt_batch_size,
                    args.trt_min_shape,
                    args.trt_max_shape,
                    args.trt_opt_shape,
                    args.trt_calib_mode,
                    args.cpu_threads,
                    args.enable_mkldnn,
                    use_dark=False)
                self.kpt_buff = KeyPointBuff(skeleton_action_frames)
Z
zhiboniu 已提交
424

425 426 427 428 429 430 431
            if self.with_vehicleplate:
                vehicleplate_cfg = self.cfg['VEHICLE_PLATE']
                self.vehicleplate_detector = PlateRecognizer(args,
                                                             vehicleplate_cfg)
                basemode = self.basemode['VEHICLE_PLATE']
                self.modebase[basemode] = True

Z
zhiboniu 已提交
432 433
            if self.with_mtmct:
                reid_cfg = self.cfg['REID']
434
                basemode = self.basemode['REID']
Z
zhiboniu 已提交
435
                self.modebase[basemode] = True
J
JYChen 已提交
436
                self.reid_predictor = ReID.init_with_cfg(args, reid_cfg)
Z
zhiboniu 已提交
437

Z
zhiboniu 已提交
438 439 440
            if self.with_mot or self.modebase["idbased"] or self.modebase[
                    "skeletonbased"]:
                mot_cfg = self.cfg['MOT']
J
JYChen 已提交
441
                model_dir = mot_cfg['model_dir']
Z
zhiboniu 已提交
442 443
                tracker_config = mot_cfg['tracker_config']
                batch_size = mot_cfg['batch_size']
444
                skip_frame_num = mot_cfg.get('skip_frame_num', -1)
445
                basemode = self.basemode['MOT']
Z
zhiboniu 已提交
446 447 448 449
                self.modebase[basemode] = True
                self.mot_predictor = SDE_Detector(
                    model_dir,
                    tracker_config,
J
JYChen 已提交
450 451
                    args.device,
                    args.run_mode,
Z
zhiboniu 已提交
452
                    batch_size,
J
JYChen 已提交
453 454 455 456 457 458
                    args.trt_min_shape,
                    args.trt_max_shape,
                    args.trt_opt_shape,
                    args.trt_calib_mode,
                    args.cpu_threads,
                    args.enable_mkldnn,
459
                    skip_frame_num=skip_frame_num,
J
JYChen 已提交
460 461 462 463 464 465
                    draw_center_traj=self.draw_center_traj,
                    secs_interval=self.secs_interval,
                    do_entrance_counting=self.do_entrance_counting,
                    do_break_in_counting=self.do_break_in_counting,
                    region_type=self.region_type,
                    region_polygon=self.region_polygon)
Z
zhiboniu 已提交
466

467 468
            if self.with_video_action:
                video_action_cfg = self.cfg['VIDEO_ACTION']
469
                basemode = self.basemode['VIDEO_ACTION']
470
                self.modebase[basemode] = True
J
JYChen 已提交
471 472
                self.video_action_predictor = VideoActionRecognizer.init_with_cfg(
                    args, video_action_cfg)
473

474
    def set_file_name(self, path):
W
wangguanzhong 已提交
475
        if path is not None:
476 477 478
            self.file_name = os.path.split(path)[-1]
            if "." in self.file_name:
                self.file_name = self.file_name.split(".")[-2]
W
wangguanzhong 已提交
479 480 481
        else:
            # use camera id
            self.file_name = None
482

483
    def get_result(self):
Z
zhiboniu 已提交
484
        return self.collector.get_res()
485

486
    def run(self, input, thread_idx=0):
487
        if self.is_video:
488
            self.predict_video(input, thread_idx=thread_idx)
489 490
        else:
            self.predict_image(input)
491
        self.pipe_timer.info()
492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509

    def predict_image(self, input):
        # det
        # det -> attr
        batch_loop_cnt = math.ceil(
            float(len(input)) / self.det_predictor.batch_size)
        for i in range(batch_loop_cnt):
            start_index = i * self.det_predictor.batch_size
            end_index = min((i + 1) * self.det_predictor.batch_size, len(input))
            batch_file = input[start_index:end_index]
            batch_input = [decode_image(f, {})[0] for f in batch_file]

            if i > self.warmup_frame:
                self.pipe_timer.total_time.start()
                self.pipe_timer.module_time['det'].start()
            # det output format: class, score, xmin, ymin, xmax, ymax
            det_res = self.det_predictor.predict_image(
                batch_input, visual=False)
510 511
            det_res = self.det_predictor.filter_box(det_res,
                                                    self.cfg['crop_thresh'])
512 513
            if i > self.warmup_frame:
                self.pipe_timer.module_time['det'].end()
Z
zhiboniu 已提交
514
                self.pipe_timer.track_num += len(det_res['boxes'])
515 516
            self.pipeline_res.update(det_res, 'det')

517
            if self.with_human_attr:
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
                crop_inputs = crop_image_with_det(batch_input, det_res)
                attr_res_list = []

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].start()

                for crop_input in crop_inputs:
                    attr_res = self.attr_predictor.predict_image(
                        crop_input, visual=False)
                    attr_res_list.extend(attr_res['output'])

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].end()

                attr_res = {'output': attr_res_list}
                self.pipeline_res.update(attr_res, 'attr')

535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
            if self.with_vehicle_attr:
                crop_inputs = crop_image_with_det(batch_input, det_res)
                vehicle_attr_res_list = []

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['vehicle_attr'].start()

                for crop_input in crop_inputs:
                    attr_res = self.vehicle_attr_predictor.predict_image(
                        crop_input, visual=False)
                    vehicle_attr_res_list.extend(attr_res['output'])

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['vehicle_attr'].end()

                attr_res = {'output': vehicle_attr_res_list}
                self.pipeline_res.update(attr_res, 'vehicle_attr')

Z
zhiboniu 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565 566
            if self.with_vehicleplate:
                if i > self.warmup_frame:
                    self.pipe_timer.module_time['vehicleplate'].start()
                crop_inputs = crop_image_with_det(batch_input, det_res)
                platelicenses = []
                for crop_input in crop_inputs:
                    platelicense = self.vehicleplate_detector.get_platelicense(
                        crop_input)
                    platelicenses.extend(platelicense['plate'])
                if i > self.warmup_frame:
                    self.pipe_timer.module_time['vehicleplate'].end()
                vehicleplate_res = {'vehicleplate': platelicenses}
                self.pipeline_res.update(vehicleplate_res, 'vehicleplate')

567 568 569 570 571 572 573
            self.pipe_timer.img_num += len(batch_input)
            if i > self.warmup_frame:
                self.pipe_timer.total_time.end()

            if self.cfg['visual']:
                self.visualize_image(batch_file, batch_input, self.pipeline_res)

574
    def predict_video(self, video_file, thread_idx=0):
575 576 577
        # mot
        # mot -> attr
        # mot -> pose -> action
Z
zhiboniu 已提交
578
        capture = cv2.VideoCapture(video_file)
579 580 581 582 583 584

        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
585
        print("video fps: %d, frame_count: %d" % (fps, frame_count))
586

Z
zhiboniu 已提交
587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
        if len(self.pushurl) > 0:
            video_out_name = 'output' if self.file_name is None else self.file_name
            pushurl = os.path.join(self.pushurl, video_out_name)
            print("the result will push stream to url:{}".format(pushurl))
            pushstream = PushStream(pushurl)
            pushstream.initcmd(fps, width, height)
        elif self.cfg['visual']:
            video_out_name = 'output' if self.file_name is None else self.file_name
            if "rtsp" in video_file:
                video_out_name = video_out_name + "_t" + str(thread_idx).zfill(
                    2) + "_rtsp"
            if not os.path.exists(self.output_dir):
                os.makedirs(self.output_dir)
            out_path = os.path.join(self.output_dir, video_out_name+".mp4")
            fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
            writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))

604
        frame_id = 0
605 606 607 608 609 610 611 612 613 614

        entrance, records, center_traj = None, None, None
        if self.draw_center_traj:
            center_traj = [{}]
        id_set = set()
        interval_id_set = set()
        in_id_list = list()
        out_id_list = list()
        prev_center = dict()
        records = list()
615
        if self.do_entrance_counting or self.do_break_in_counting or self.illegal_parking_time != -1:
616 617 618 619 620 621 622 623 624
            if self.region_type == 'horizontal':
                entrance = [0, height / 2., width, height / 2.]
            elif self.region_type == 'vertical':
                entrance = [width / 2, 0., width / 2, height]
            elif self.region_type == 'custom':
                entrance = []
                assert len(
                    self.region_polygon
                ) % 2 == 0, "region_polygon should be pairs of coords points when do break_in counting."
J
JYChen 已提交
625 626 627 628
                assert len(
                    self.region_polygon
                ) > 6, 'region_type is custom, region_polygon should be at least 3 pairs of point coords.'

629 630 631 632 633 634 635 636
                for i in range(0, len(self.region_polygon), 2):
                    entrance.append(
                        [self.region_polygon[i], self.region_polygon[i + 1]])
                entrance.append([width, height])
            else:
                raise ValueError("region_type:{} unsupported.".format(
                    self.region_type))

637 638
        video_fps = fps

639 640
        video_action_imgs = []

641 642 643 644
        if self.with_video_action:
            short_size = self.cfg["VIDEO_ACTION"]["short_size"]
            scale = ShortSizeScale(short_size)

645 646 647 648
        object_in_region_info = {
        }  # store info for vehicle parking in region       
        illegal_parking_dict = None

649 650
        while (1):
            if frame_id % 10 == 0:
651
                print('Thread: {}; frame id: {}'.format(thread_idx, frame_id))
652

653 654 655
            ret, frame = capture.read()
            if not ret:
                break
656
            frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
Z
zhiboniu 已提交
657 658
            if frame_id > self.warmup_frame:
                self.pipe_timer.total_time.start()
659

660
            if self.modebase["idbased"] or self.modebase["skeletonbased"]:
661
                if frame_id > self.warmup_frame:
662
                    self.pipe_timer.module_time['mot'].start()
663

664 665 666 667 668 669 670 671
                mot_skip_frame_num = self.mot_predictor.skip_frame_num
                reuse_det_result = False
                if mot_skip_frame_num > 1 and frame_id > 0 and frame_id % mot_skip_frame_num > 0:
                    reuse_det_result = True
                res = self.mot_predictor.predict_image(
                    [copy.deepcopy(frame_rgb)],
                    visual=False,
                    reuse_det_result=reuse_det_result)
672 673 674

                # mot output format: id, class, score, xmin, ymin, xmax, ymax
                mot_res = parse_mot_res(res)
Z
zhiboniu 已提交
675 676 677
                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['mot'].end()
                    self.pipe_timer.track_num += len(mot_res['boxes'])
678

679 680 681 682
                if frame_id % 10 == 0:
                    print("Thread: {}; trackid number: {}".format(
                        thread_idx, len(mot_res['boxes'])))

683 684 685 686 687
                # flow_statistic only support single class MOT
                boxes, scores, ids = res[0]  # batch size = 1 in MOT
                mot_result = (frame_id + 1, boxes[0], scores[0],
                              ids[0])  # single class
                statistic = flow_statistic(
F
Feng Ni 已提交
688 689 690 691 692 693 694 695 696 697 698 699 700 701
                    mot_result,
                    self.secs_interval,
                    self.do_entrance_counting,
                    self.do_break_in_counting,
                    self.region_type,
                    video_fps,
                    entrance,
                    id_set,
                    interval_id_set,
                    in_id_list,
                    out_id_list,
                    prev_center,
                    records,
                    ids2names=self.mot_predictor.pred_config.labels)
702 703
                records = statistic['records']

704 705 706 707 708 709 710 711 712 713
                if self.illegal_parking_time != -1:
                    object_in_region_info, illegal_parking_dict = update_object_info(
                        object_in_region_info, mot_result, self.region_type,
                        entrance, video_fps, self.illegal_parking_time)
                    if len(illegal_parking_dict) != 0:
                        # build relationship between id and plate
                        for key, value in illegal_parking_dict.items():
                            plate = self.collector.get_carlp(key)
                            illegal_parking_dict[key]['plate'] = plate

714 715 716
                # nothing detected
                if len(mot_res['boxes']) == 0:
                    frame_id += 1
J
JYChen 已提交
717
                    if frame_id > self.warmup_frame:
718 719 720 721 722 723 724
                        self.pipe_timer.img_num += 1
                        self.pipe_timer.total_time.end()
                    if self.cfg['visual']:
                        _, _, fps = self.pipe_timer.get_total_time()
                        im = self.visualize_video(frame, mot_res, frame_id, fps,
                                                  entrance, records,
                                                  center_traj)  # visualize
Z
zhiboniu 已提交
725 726 727 728 729 730 731 732
                        if len(self.pushurl)>0:
                            pushstream.pipe.stdin.write(im.tobytes())
                        else:
                            writer.write(im)
                            if self.file_name is None:  # use camera_id
                                cv2.imshow('Paddle-Pipeline', im)
                                if cv2.waitKey(1) & 0xFF == ord('q'):
                                    break
733 734 735
                    continue

                self.pipeline_res.update(mot_res, 'mot')
J
JYChen 已提交
736
                crop_input, new_bboxes, ori_bboxes = crop_image_with_mot(
737
                    frame_rgb, mot_res)
738

739
                if self.with_vehicleplate and frame_id % 10 == 0:
Z
zhiboniu 已提交
740 741
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['vehicleplate'].start()
Z
zhiboniu 已提交
742 743
                    plate_input, _, _ = crop_image_with_mot(
                        frame_rgb, mot_res, expand=False)
Z
zhiboniu 已提交
744
                    platelicense = self.vehicleplate_detector.get_platelicense(
Z
zhiboniu 已提交
745
                        plate_input)
Z
zhiboniu 已提交
746 747
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['vehicleplate'].end()
Z
zhiboniu 已提交
748
                    self.pipeline_res.update(platelicense, 'vehicleplate')
749 750
                else:
                    self.pipeline_res.clear('vehicleplate')
Z
zhiboniu 已提交
751

752
                if self.with_human_attr:
J
JYChen 已提交
753
                    if frame_id > self.warmup_frame:
754 755 756 757 758 759 760
                        self.pipe_timer.module_time['attr'].start()
                    attr_res = self.attr_predictor.predict_image(
                        crop_input, visual=False)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['attr'].end()
                    self.pipeline_res.update(attr_res, 'attr')

761 762 763 764 765 766 767 768 769
                if self.with_vehicle_attr:
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['vehicle_attr'].start()
                    attr_res = self.vehicle_attr_predictor.predict_image(
                        crop_input, visual=False)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['vehicle_attr'].end()
                    self.pipeline_res.update(attr_res, 'vehicle_attr')

Z
zhiboniu 已提交
770
                if self.with_idbased_detaction:
J
JYChen 已提交
771 772 773 774 775 776 777 778 779 780
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['det_action'].start()
                    det_action_res = self.det_action_predictor.predict(
                        crop_input, mot_res)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['det_action'].end()
                    self.pipeline_res.update(det_action_res, 'det_action')

                    if self.cfg['visual']:
                        self.det_action_visual_helper.update(det_action_res)
Z
zhiboniu 已提交
781 782

                if self.with_idbased_clsaction:
J
JYChen 已提交
783 784 785 786 787 788 789 790 791 792
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['cls_action'].start()
                    cls_action_res = self.cls_action_predictor.predict_with_mot(
                        crop_input, mot_res)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['cls_action'].end()
                    self.pipeline_res.update(cls_action_res, 'cls_action')

                    if self.cfg['visual']:
                        self.cls_action_visual_helper.update(cls_action_res)
Z
zhiboniu 已提交
793

Z
zhiboniu 已提交
794
                if self.with_skeleton_action:
Z
zhiboniu 已提交
795 796 797 798 799 800 801 802 803 804 805 806 807
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['kpt'].start()
                    kpt_pred = self.kpt_predictor.predict_image(
                        crop_input, visual=False)
                    keypoint_vector, score_vector = translate_to_ori_images(
                        kpt_pred, np.array(new_bboxes))
                    kpt_res = {}
                    kpt_res['keypoint'] = [
                        keypoint_vector.tolist(), score_vector.tolist()
                    ] if len(keypoint_vector) > 0 else [[], []]
                    kpt_res['bbox'] = ori_bboxes
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['kpt'].end()
808

Z
zhiboniu 已提交
809
                    self.pipeline_res.update(kpt_res, 'kpt')
810

Z
zhiboniu 已提交
811
                    self.kpt_buff.update(kpt_res, mot_res)  # collect kpt output
812 813 814
                    state = self.kpt_buff.get_state(
                    )  # whether frame num is enough or lost tracker

Z
zhiboniu 已提交
815
                    skeleton_action_res = {}
816 817
                    if state:
                        if frame_id > self.warmup_frame:
Z
zhiboniu 已提交
818 819
                            self.pipe_timer.module_time[
                                'skeleton_action'].start()
820 821
                        collected_keypoint = self.kpt_buff.get_collected_keypoint(
                        )  # reoragnize kpt output with ID
Z
zhiboniu 已提交
822 823 824 825
                        skeleton_action_input = parse_mot_keypoint(
                            collected_keypoint, self.coord_size)
                        skeleton_action_res = self.skeleton_action_predictor.predict_skeleton_with_mot(
                            skeleton_action_input)
826
                        if frame_id > self.warmup_frame:
Z
zhiboniu 已提交
827 828 829
                            self.pipe_timer.module_time['skeleton_action'].end()
                        self.pipeline_res.update(skeleton_action_res,
                                                 'skeleton_action')
830 831

                    if self.cfg['visual']:
Z
zhiboniu 已提交
832 833
                        self.skeleton_action_visual_helper.update(
                            skeleton_action_res)
834 835 836

                if self.with_mtmct and frame_id % 10 == 0:
                    crop_input, img_qualities, rects = self.reid_predictor.crop_image_with_mot(
837
                        frame_rgb, mot_res)
838 839 840 841 842 843
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['reid'].start()
                    reid_res = self.reid_predictor.predict_batch(crop_input)

                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['reid'].end()
J
JYChen 已提交
844

845 846 847 848 849 850 851 852
                    reid_res_dict = {
                        'features': reid_res,
                        "qualities": img_qualities,
                        "rects": rects
                    }
                    self.pipeline_res.update(reid_res_dict, 'reid')
                else:
                    self.pipeline_res.clear('reid')
Z
zhiboniu 已提交
853

Z
zhiboniu 已提交
854
            if self.with_video_action:
855 856 857 858 859 860 861 862 863 864 865 866 867
                # get the params
                frame_len = self.cfg["VIDEO_ACTION"]["frame_len"]
                sample_freq = self.cfg["VIDEO_ACTION"]["sample_freq"]

                if sample_freq * frame_len > frame_count:  # video is too short
                    sample_freq = int(frame_count / frame_len)

                # filter the warmup frames
                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['video_action'].start()

                # collect frames
                if frame_id % sample_freq == 0:
868
                    # Scale image
869
                    scaled_img = scale(frame_rgb)
870
                    video_action_imgs.append(scaled_img)
871 872 873 874 875 876 877 878 879 880 881 882 883 884

                # the number of collected frames is enough to predict video action
                if len(video_action_imgs) == frame_len:
                    classes, scores = self.video_action_predictor.predict(
                        video_action_imgs)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['video_action'].end()

                    video_action_res = {"class": classes[0], "score": scores[0]}
                    self.pipeline_res.update(video_action_res, 'video_action')

                    print("video_action_res:", video_action_res)

                    video_action_imgs.clear()  # next clip
Z
zhiboniu 已提交
885 886

            self.collector.append(frame_id, self.pipeline_res)
887 888 889 890 891 892 893

            if frame_id > self.warmup_frame:
                self.pipe_timer.img_num += 1
                self.pipe_timer.total_time.end()
            frame_id += 1

            if self.cfg['visual']:
894
                _, _, fps = self.pipe_timer.get_total_time()
895 896 897 898 899 900

                im = self.visualize_video(frame, self.pipeline_res,
                                          self.collector, frame_id, fps,
                                          entrance, records, center_traj,
                                          self.illegal_parking_time != -1,
                                          illegal_parking_dict)  # visualize
Z
zhiboniu 已提交
901 902 903 904 905 906 907 908 909 910 911
                if len(self.pushurl)>0:
                    pushstream.pipe.stdin.write(im.tobytes())
                else:
                    writer.write(im)
                    if self.file_name is None:  # use camera_id
                        cv2.imshow('Paddle-Pipeline', im)
                        if cv2.waitKey(1) & 0xFF == ord('q'):
                            break
        if self.cfg['visual'] and len(self.pushurl)==0:
            writer.release()
            print('save result to {}'.format(out_path))
912

913 914 915
    def visualize_video(self,
                        image,
                        result,
916
                        collector,
917 918 919 920
                        frame_id,
                        fps,
                        entrance=None,
                        records=None,
921 922 923
                        center_traj=None,
                        do_illegal_parking_recognition=False,
                        illegal_parking_dict=None):
Z
zhiboniu 已提交
924
        mot_res = copy.deepcopy(result.get('mot'))
925 926
        if mot_res is not None:
            ids = mot_res['boxes'][:, 0]
W
wangguanzhong 已提交
927
            scores = mot_res['boxes'][:, 2]
928 929 930 931 932 933
            boxes = mot_res['boxes'][:, 3:]
            boxes[:, 2] = boxes[:, 2] - boxes[:, 0]
            boxes[:, 3] = boxes[:, 3] - boxes[:, 1]
        else:
            boxes = np.zeros([0, 4])
            ids = np.zeros([0])
W
wangguanzhong 已提交
934
            scores = np.zeros([0])
935 936 937 938 939 940 941 942 943 944

        # single class, still need to be defaultdict type for ploting
        num_classes = 1
        online_tlwhs = defaultdict(list)
        online_scores = defaultdict(list)
        online_ids = defaultdict(list)
        online_tlwhs[0] = boxes
        online_scores[0] = scores
        online_ids[0] = ids

F
Feng Ni 已提交
945 946 947 948 949 950 951 952 953
        if mot_res is not None:
            image = plot_tracking_dict(
                image,
                num_classes,
                online_tlwhs,
                online_ids,
                online_scores,
                frame_id=frame_id,
                fps=fps,
954
                ids2names=self.mot_predictor.pred_config.labels,
F
Feng Ni 已提交
955
                do_entrance_counting=self.do_entrance_counting,
956
                do_break_in_counting=self.do_break_in_counting,
957 958
                do_illegal_parking_recognition=do_illegal_parking_recognition,
                illegal_parking_dict=illegal_parking_dict,
F
Feng Ni 已提交
959 960 961
                entrance=entrance,
                records=records,
                center_traj=center_traj)
962

963 964 965 966 967 968 969 970 971
        human_attr_res = result.get('attr')
        if human_attr_res is not None:
            boxes = mot_res['boxes'][:, 1:]
            human_attr_res = human_attr_res['output']
            image = visualize_attr(image, human_attr_res, boxes)
            image = np.array(image)

        vehicle_attr_res = result.get('vehicle_attr')
        if vehicle_attr_res is not None:
972
            boxes = mot_res['boxes'][:, 1:]
973 974
            vehicle_attr_res = vehicle_attr_res['output']
            image = visualize_attr(image, vehicle_attr_res, boxes)
975 976
            image = np.array(image)

977 978 979 980 981 982 983 984 985 986 987 988 989 990
        if mot_res is not None:
            vehicleplate = False
            plates = []
            for trackid in mot_res['boxes'][:, 0]:
                plate = collector.get_carlp(trackid)
                if plate != None:
                    vehicleplate = True
                    plates.append(plate)
                else:
                    plates.append("")
            if vehicleplate:
                boxes = mot_res['boxes'][:, 1:]
                image = visualize_vehicleplate(image, plates, boxes)
                image = np.array(image)
Z
zhiboniu 已提交
991

J
JYChen 已提交
992 993 994 995 996 997 998 999
        kpt_res = result.get('kpt')
        if kpt_res is not None:
            image = visualize_pose(
                image,
                kpt_res,
                visual_thresh=self.cfg['kpt_thresh'],
                returnimg=True)

1000
        video_action_res = result.get('video_action')
J
JYChen 已提交
1001
        if video_action_res is not None:
1002 1003 1004
            video_action_score = None
            if video_action_res and video_action_res["class"] == 1:
                video_action_score = video_action_res["score"]
1005 1006 1007
            mot_boxes = None
            if mot_res:
                mot_boxes = mot_res['boxes']
1008 1009
            image = visualize_action(
                image,
1010
                mot_boxes,
J
JYChen 已提交
1011
                action_visual_collector=None,
1012 1013 1014
                action_text="SkeletonAction",
                video_action_score=video_action_score,
                video_action_text="Fight")
J
JYChen 已提交
1015

J
JYChen 已提交
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038
        visual_helper_for_display = []
        action_to_display = []

        skeleton_action_res = result.get('skeleton_action')
        if skeleton_action_res is not None:
            visual_helper_for_display.append(self.skeleton_action_visual_helper)
            action_to_display.append("Falling")

        det_action_res = result.get('det_action')
        if det_action_res is not None:
            visual_helper_for_display.append(self.det_action_visual_helper)
            action_to_display.append("Smoking")

        cls_action_res = result.get('cls_action')
        if cls_action_res is not None:
            visual_helper_for_display.append(self.cls_action_visual_helper)
            action_to_display.append("Calling")

        if len(visual_helper_for_display) > 0:
            image = visualize_action(image, mot_res['boxes'],
                                     visual_helper_for_display,
                                     action_to_display)

1039 1040 1041 1042 1043
        return image

    def visualize_image(self, im_files, images, result):
        start_idx, boxes_num_i = 0, 0
        det_res = result.get('det')
1044 1045
        human_attr_res = result.get('attr')
        vehicle_attr_res = result.get('vehicle_attr')
Z
zhiboniu 已提交
1046
        vehicleplate_res = result.get('vehicleplate')
1047

1048 1049 1050 1051 1052 1053 1054 1055 1056
        for i, (im_file, im) in enumerate(zip(im_files, images)):
            if det_res is not None:
                det_res_i = {}
                boxes_num_i = det_res['boxes_num'][i]
                det_res_i['boxes'] = det_res['boxes'][start_idx:start_idx +
                                                      boxes_num_i, :]
                im = visualize_box_mask(
                    im,
                    det_res_i,
Z
zhiboniu 已提交
1057
                    labels=['target'],
1058
                    threshold=self.cfg['crop_thresh'])
1059 1060
                im = np.ascontiguousarray(np.copy(im))
                im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
1061 1062 1063 1064 1065 1066 1067 1068
            if human_attr_res is not None:
                human_attr_res_i = human_attr_res['output'][start_idx:start_idx
                                                            + boxes_num_i]
                im = visualize_attr(im, human_attr_res_i, det_res_i['boxes'])
            if vehicle_attr_res is not None:
                vehicle_attr_res_i = vehicle_attr_res['output'][
                    start_idx:start_idx + boxes_num_i]
                im = visualize_attr(im, vehicle_attr_res_i, det_res_i['boxes'])
Z
zhiboniu 已提交
1069 1070 1071 1072 1073
            if vehicleplate_res is not None:
                plates = vehicleplate_res['vehicleplate']
                det_res_i['boxes'][:, 4:6] = det_res_i[
                    'boxes'][:, 4:6] - det_res_i['boxes'][:, 2:4]
                im = visualize_vehicleplate(im, plates, det_res_i['boxes'])
1074

1075 1076 1077 1078
            img_name = os.path.split(im_file)[-1]
            if not os.path.exists(self.output_dir):
                os.makedirs(self.output_dir)
            out_path = os.path.join(self.output_dir, img_name)
1079
            cv2.imwrite(out_path, im)
1080 1081 1082 1083 1084
            print("save result to: " + out_path)
            start_idx += boxes_num_i


def main():
1085
    cfg = merge_cfg(FLAGS)  # use command params to update config
1086
    print_arguments(cfg)
1087

Z
zhiboniu 已提交
1088
    pipeline = Pipeline(FLAGS, cfg)
1089 1090
    # pipeline.run()
    pipeline.run_multithreads()
1091 1092 1093 1094


if __name__ == '__main__':
    paddle.enable_static()
1095 1096

    # parse params from command
1097 1098 1099 1100 1101 1102 1103
    parser = argsparser()
    FLAGS = parser.parse_args()
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()