pipeline.py 54.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
import glob
import cv2
import numpy as np
import math
import paddle
import sys
Z
zhiboniu 已提交
23
import copy
24 25 26
import threading
import queue
import time
27
from collections import defaultdict
Z
zhiboniu 已提交
28
from datacollector import DataCollector, Result
29 30 31 32
try:
    from collections.abc import Sequence
except Exception:
    from collections import Sequence
33

C
chenxujun 已提交
34
# add deploy path of PaddleDetection to sys.path
35 36 37
parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2)))
sys.path.insert(0, parent_path)

38 39
from cfg_utils import argsparser, print_arguments, merge_cfg
from pipe_utils import PipeTimer
Z
zhiboniu 已提交
40
from pipe_utils import get_test_images, crop_image_with_det, crop_image_with_mot, parse_mot_res, parse_mot_keypoint
Z
zhiboniu 已提交
41
from pipe_utils import PushStream
Z
zhiboniu 已提交
42

43
from python.infer import Detector, DetectorPicoDet
J
JYChen 已提交
44 45
from python.keypoint_infer import KeyPointDetector
from python.keypoint_postprocess import translate_to_ori_images
46
from python.preprocess import decode_image, ShortSizeScale
L
LokeZhou 已提交
47
from python.visualize import visualize_box_mask, visualize_attr, visualize_pose, visualize_action, visualize_vehicleplate, visualize_vehiclepress, visualize_lane, visualize_vehicle_retrograde
48 49

from pptracking.python.mot_sde_infer import SDE_Detector
50
from pptracking.python.mot.visualize import plot_tracking_dict
51
from pptracking.python.mot.utils import flow_statistic, update_object_info
52

Z
zhiboniu 已提交
53 54 55 56 57 58 59
from pphuman.attr_infer import AttrDetector
from pphuman.video_action_infer import VideoActionRecognizer
from pphuman.action_infer import SkeletonActionRecognizer, DetActionRecognizer, ClsActionRecognizer
from pphuman.action_utils import KeyPointBuff, ActionVisualHelper
from pphuman.reid import ReID
from pphuman.mtmct import mtmct_process

60 61
from ppvehicle.vehicle_plate import PlateRecognizer
from ppvehicle.vehicle_attr import VehicleAttr
L
LokeZhou 已提交
62 63 64
from ppvehicle.vehicle_pressing import VehiclePressingRecognizer
from ppvehicle.vehicle_retrograde import VehicleRetrogradeRecognizer
from ppvehicle.lane_seg_infer import LaneSegPredictor
65

66 67
from download import auto_download_model

68 69 70 71 72 73

class Pipeline(object):
    """
    Pipeline

    Args:
J
JYChen 已提交
74
        args (argparse.Namespace): arguments in pipeline, which contains environment and runtime settings
75 76 77
        cfg (dict): config of models in pipeline
    """

Z
zhiboniu 已提交
78
    def __init__(self, args, cfg):
79
        self.multi_camera = False
Z
zhiboniu 已提交
80 81
        reid_cfg = cfg.get('REID', False)
        self.enable_mtmct = reid_cfg['enable'] if reid_cfg else False
82
        self.is_video = False
Z
zhiboniu 已提交
83
        self.output_dir = args.output_dir
Z
zhiboniu 已提交
84
        self.vis_result = cfg['visual']
Z
zhiboniu 已提交
85 86
        self.input = self._parse_input(args.image_file, args.image_dir,
                                       args.video_file, args.video_dir,
87
                                       args.camera_id, args.rtsp)
88
        if self.multi_camera:
89 90 91
            self.predictor = []
            for name in self.input:
                predictor_item = PipePredictor(
Z
zhiboniu 已提交
92
                    args, cfg, is_video=True, multi_camera=True)
93 94 95
                predictor_item.set_file_name(name)
                self.predictor.append(predictor_item)

96
        else:
Z
zhiboniu 已提交
97
            self.predictor = PipePredictor(args, cfg, self.is_video)
98
            if self.is_video:
99
                self.predictor.set_file_name(self.input)
100

Z
zhiboniu 已提交
101
    def _parse_input(self, image_file, image_dir, video_file, video_dir,
102
                     camera_id, rtsp):
103 104 105 106 107 108 109 110 111

        # parse input as is_video and multi_camera

        if image_file is not None or image_dir is not None:
            input = get_test_images(image_dir, image_file)
            self.is_video = False
            self.multi_camera = False

        elif video_file is not None:
Z
zhiboniu 已提交
112 113 114
            assert os.path.exists(
                video_file
            ) or 'rtsp' in video_file, "video_file not exists and not an rtsp site."
Z
zhiboniu 已提交
115 116 117 118 119 120 121
            self.multi_camera = False
            input = video_file
            self.is_video = True

        elif video_dir is not None:
            videof = [os.path.join(video_dir, x) for x in os.listdir(video_dir)]
            if len(videof) > 1:
122
                self.multi_camera = True
Z
zhiboniu 已提交
123 124
                videof.sort()
                input = videof
125
            else:
Z
zhiboniu 已提交
126
                input = videof[0]
127 128
            self.is_video = True

129 130 131 132 133 134 135 136 137 138
        elif rtsp is not None:
            if len(rtsp) > 1:
                rtsp = [rtsp_item for rtsp_item in rtsp if 'rtsp' in rtsp_item]
                self.multi_camera = True
                input = rtsp
            else:
                self.multi_camera = False
                input = rtsp[0]
            self.is_video = True

139
        elif camera_id != -1:
Z
zhiboniu 已提交
140 141
            self.multi_camera = False
            input = camera_id
142 143 144 145
            self.is_video = True

        else:
            raise ValueError(
146
                "Illegal Input, please set one of ['video_file', 'camera_id', 'image_file', 'image_dir']"
147 148 149 150
            )

        return input

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
    def run_multithreads(self):
        if self.multi_camera:
            multi_res = []
            threads = []
            for idx, (predictor,
                      input) in enumerate(zip(self.predictor, self.input)):
                thread = threading.Thread(
                    name=str(idx).zfill(3),
                    target=predictor.run,
                    args=(input, idx))
                threads.append(thread)

            for thread in threads:
                thread.start()

            for predictor, thread in zip(self.predictor, threads):
                thread.join()
                collector_data = predictor.get_result()
                multi_res.append(collector_data)

            if self.enable_mtmct:
                mtmct_process(
                    multi_res,
                    self.input,
                    mtmct_vis=self.vis_result,
                    output_dir=self.output_dir)

        else:
            self.predictor.run(self.input)

181 182 183 184 185
    def run(self):
        if self.multi_camera:
            multi_res = []
            for predictor, input in zip(self.predictor, self.input):
                predictor.run(input)
Z
zhiboniu 已提交
186 187
                collector_data = predictor.get_result()
                multi_res.append(collector_data)
188 189 190 191 192 193
            if self.enable_mtmct:
                mtmct_process(
                    multi_res,
                    self.input,
                    mtmct_vis=self.vis_result,
                    output_dir=self.output_dir)
194 195 196 197 198

        else:
            self.predictor.run(self.input)


199
def get_model_dir(cfg):
J
JYChen 已提交
200 201 202 203
    """ 
        Auto download inference model if the model_path is a url link. 
        Otherwise it will use the model_path directly.
    """
204 205 206 207 208 209 210 211 212 213
    for key in cfg.keys():
        if type(cfg[key]) ==  dict and \
            ("enable" in cfg[key].keys() and cfg[key]['enable']
                or "enable" not in cfg[key].keys()):

            if "model_dir" in cfg[key].keys():
                model_dir = cfg[key]["model_dir"]
                downloaded_model_dir = auto_download_model(model_dir)
                if downloaded_model_dir:
                    model_dir = downloaded_model_dir
J
JYChen 已提交
214 215
                    cfg[key]["model_dir"] = model_dir
                print(key, " model dir: ", model_dir)
216 217 218 219 220
            elif key == "VEHICLE_PLATE":
                det_model_dir = cfg[key]["det_model_dir"]
                downloaded_det_model_dir = auto_download_model(det_model_dir)
                if downloaded_det_model_dir:
                    det_model_dir = downloaded_det_model_dir
J
JYChen 已提交
221 222
                    cfg[key]["det_model_dir"] = det_model_dir
                print("det_model_dir model dir: ", det_model_dir)
223 224 225 226 227

                rec_model_dir = cfg[key]["rec_model_dir"]
                downloaded_rec_model_dir = auto_download_model(rec_model_dir)
                if downloaded_rec_model_dir:
                    rec_model_dir = downloaded_rec_model_dir
J
JYChen 已提交
228 229 230
                    cfg[key]["rec_model_dir"] = rec_model_dir
                print("rec_model_dir model dir: ", rec_model_dir)

231 232 233 234 235
        elif key == "MOT":  # for idbased and skeletonbased actions
            model_dir = cfg[key]["model_dir"]
            downloaded_model_dir = auto_download_model(model_dir)
            if downloaded_model_dir:
                model_dir = downloaded_model_dir
J
JYChen 已提交
236 237
                cfg[key]["model_dir"] = model_dir
            print("mot_model_dir model_dir: ", model_dir)
238 239


240 241 242 243 244 245 246 247 248 249 250 251 252
class PipePredictor(object):
    """
    Predictor in single camera
    
    The pipeline for image input: 

        1. Detection
        2. Detection -> Attribute

    The pipeline for video input: 

        1. Tracking
        2. Tracking -> Attribute
Z
zhiboniu 已提交
253
        3. Tracking -> KeyPoint -> SkeletonAction Recognition
254
        4. VideoAction Recognition
255 256

    Args:
J
JYChen 已提交
257
        args (argparse.Namespace): arguments in pipeline, which contains environment and runtime settings
258 259 260 261 262 263
        cfg (dict): config of models in pipeline
        is_video (bool): whether the input is video, default as False
        multi_camera (bool): whether to use multi camera in pipeline, 
            default as False
    """

Z
zhiboniu 已提交
264 265 266 267
    def __init__(self, args, cfg, is_video=True, multi_camera=False):
        # general module for pphuman and ppvehicle
        self.with_mot = cfg.get('MOT', False)['enable'] if cfg.get(
            'MOT', False) else False
268
        self.with_human_attr = cfg.get('ATTR', False)['enable'] if cfg.get(
Z
zhiboniu 已提交
269
            'ATTR', False) else False
Z
zhiboniu 已提交
270 271
        if self.with_mot:
            print('Multi-Object Tracking enabled')
272 273
        if self.with_human_attr:
            print('Human Attribute Recognition enabled')
Z
zhiboniu 已提交
274 275

        # only for pphuman
Z
zhiboniu 已提交
276 277 278
        self.with_skeleton_action = cfg.get(
            'SKELETON_ACTION', False)['enable'] if cfg.get('SKELETON_ACTION',
                                                           False) else False
Z
zhiboniu 已提交
279 280 281 282 283 284 285 286 287
        self.with_video_action = cfg.get(
            'VIDEO_ACTION', False)['enable'] if cfg.get('VIDEO_ACTION',
                                                        False) else False
        self.with_idbased_detaction = cfg.get(
            'ID_BASED_DETACTION', False)['enable'] if cfg.get(
                'ID_BASED_DETACTION', False) else False
        self.with_idbased_clsaction = cfg.get(
            'ID_BASED_CLSACTION', False)['enable'] if cfg.get(
                'ID_BASED_CLSACTION', False) else False
Z
zhiboniu 已提交
288 289
        self.with_mtmct = cfg.get('REID', False)['enable'] if cfg.get(
            'REID', False) else False
290

Z
zhiboniu 已提交
291 292
        if self.with_skeleton_action:
            print('SkeletonAction Recognition enabled')
Z
zhiboniu 已提交
293 294 295 296 297 298
        if self.with_video_action:
            print('VideoAction Recognition enabled')
        if self.with_idbased_detaction:
            print('IDBASED Detection Action Recognition enabled')
        if self.with_idbased_clsaction:
            print('IDBASED Classification Action Recognition enabled')
Z
zhiboniu 已提交
299 300
        if self.with_mtmct:
            print("MTMCT enabled")
W
wangguanzhong 已提交
301

Z
zhiboniu 已提交
302 303 304 305 306 307 308
        # only for ppvehicle
        self.with_vehicleplate = cfg.get(
            'VEHICLE_PLATE', False)['enable'] if cfg.get('VEHICLE_PLATE',
                                                         False) else False
        if self.with_vehicleplate:
            print('Vehicle Plate Recognition enabled')

309 310 311 312 313 314
        self.with_vehicle_attr = cfg.get(
            'VEHICLE_ATTR', False)['enable'] if cfg.get('VEHICLE_ATTR',
                                                        False) else False
        if self.with_vehicle_attr:
            print('Vehicle Attribute Recognition enabled')

L
LokeZhou 已提交
315 316 317 318 319 320 321 322 323 324 325 326
        self.with_vehicle_press = cfg.get(
            'VEHICLE_PRESSING', False)['enable'] if cfg.get('VEHICLE_PRESSING',
                                                            False) else False
        if self.with_vehicle_press:
            print('Vehicle Pressing Recognition enabled')

        self.with_vehicle_retrograde = cfg.get(
            'VEHICLE_RETROGRADE', False)['enable'] if cfg.get(
                'VEHICLE_RETROGRADE', False) else False
        if self.with_vehicle_retrograde:
            print('Vehicle Retrograde Recognition enabled')

327 328 329 330 331 332
        self.modebase = {
            "framebased": False,
            "videobased": False,
            "idbased": False,
            "skeletonbased": False
        }
333

334 335 336 337 338 339 340 341 342 343
        self.basemode = {
            "MOT": "idbased",
            "ATTR": "idbased",
            "VIDEO_ACTION": "videobased",
            "SKELETON_ACTION": "skeletonbased",
            "ID_BASED_DETACTION": "idbased",
            "ID_BASED_CLSACTION": "idbased",
            "REID": "idbased",
            "VEHICLE_PLATE": "idbased",
            "VEHICLE_ATTR": "idbased",
L
LokeZhou 已提交
344 345
            "VEHICLE_PRESSING": "idbased",
            "VEHICLE_RETROGRADE": "idbased",
346 347
        }

348 349 350
        self.is_video = is_video
        self.multi_camera = multi_camera
        self.cfg = cfg
351

J
JYChen 已提交
352 353 354 355 356 357 358
        self.output_dir = args.output_dir
        self.draw_center_traj = args.draw_center_traj
        self.secs_interval = args.secs_interval
        self.do_entrance_counting = args.do_entrance_counting
        self.do_break_in_counting = args.do_break_in_counting
        self.region_type = args.region_type
        self.region_polygon = args.region_polygon
359
        self.illegal_parking_time = args.illegal_parking_time
360

J
JYChen 已提交
361
        self.warmup_frame = self.cfg['warmup_frame']
362 363
        self.pipeline_res = Result()
        self.pipe_timer = PipeTimer()
364
        self.file_name = None
Z
zhiboniu 已提交
365
        self.collector = DataCollector()
366

Z
zhiboniu 已提交
367 368
        self.pushurl = args.pushurl

369
        # auto download inference model
J
JYChen 已提交
370
        get_model_dir(self.cfg)
371

Z
zhiboniu 已提交
372 373 374 375 376 377 378 379 380 381
        if self.with_vehicleplate:
            vehicleplate_cfg = self.cfg['VEHICLE_PLATE']
            self.vehicleplate_detector = PlateRecognizer(args, vehicleplate_cfg)
            basemode = self.basemode['VEHICLE_PLATE']
            self.modebase[basemode] = True

        if self.with_human_attr:
            attr_cfg = self.cfg['ATTR']
            basemode = self.basemode['ATTR']
            self.modebase[basemode] = True
J
JYChen 已提交
382
            self.attr_predictor = AttrDetector.init_with_cfg(args, attr_cfg)
Z
zhiboniu 已提交
383 384 385 386 387

        if self.with_vehicle_attr:
            vehicleattr_cfg = self.cfg['VEHICLE_ATTR']
            basemode = self.basemode['VEHICLE_ATTR']
            self.modebase[basemode] = True
J
JYChen 已提交
388 389
            self.vehicle_attr_predictor = VehicleAttr.init_with_cfg(
                args, vehicleattr_cfg)
Z
zhiboniu 已提交
390

L
LokeZhou 已提交
391 392 393 394 395 396 397 398 399 400 401 402
        if self.with_vehicle_press:
            vehiclepress_cfg = self.cfg['VEHICLE_PRESSING']
            basemode = self.basemode['VEHICLE_PRESSING']
            self.modebase[basemode] = True
            self.vehicle_press_predictor = VehiclePressingRecognizer(
                vehiclepress_cfg)

        if self.with_vehicle_press or self.with_vehicle_retrograde:
            laneseg_cfg = self.cfg['LANE_SEG']
            self.laneseg_predictor = LaneSegPredictor(
                laneseg_cfg['lane_seg_config'], laneseg_cfg['model_dir'])

403
        if not is_video:
L
LokeZhou 已提交
404

405
            det_cfg = self.cfg['DET']
J
JYChen 已提交
406
            model_dir = det_cfg['model_dir']
407 408
            batch_size = det_cfg['batch_size']
            self.det_predictor = Detector(
J
JYChen 已提交
409 410 411
                model_dir, args.device, args.run_mode, batch_size,
                args.trt_min_shape, args.trt_max_shape, args.trt_opt_shape,
                args.trt_calib_mode, args.cpu_threads, args.enable_mkldnn)
412
        else:
Z
zhiboniu 已提交
413
            if self.with_idbased_detaction:
J
JYChen 已提交
414
                idbased_detaction_cfg = self.cfg['ID_BASED_DETACTION']
415
                basemode = self.basemode['ID_BASED_DETACTION']
J
JYChen 已提交
416
                self.modebase[basemode] = True
417

J
JYChen 已提交
418 419
                self.det_action_predictor = DetActionRecognizer.init_with_cfg(
                    args, idbased_detaction_cfg)
J
JYChen 已提交
420 421
                self.det_action_visual_helper = ActionVisualHelper(1)

Z
zhiboniu 已提交
422
            if self.with_idbased_clsaction:
J
JYChen 已提交
423
                idbased_clsaction_cfg = self.cfg['ID_BASED_CLSACTION']
424
                basemode = self.basemode['ID_BASED_CLSACTION']
J
JYChen 已提交
425
                self.modebase[basemode] = True
426

J
JYChen 已提交
427 428
                self.cls_action_predictor = ClsActionRecognizer.init_with_cfg(
                    args, idbased_clsaction_cfg)
J
JYChen 已提交
429 430
                self.cls_action_visual_helper = ActionVisualHelper(1)

Z
zhiboniu 已提交
431 432 433 434
            if self.with_skeleton_action:
                skeleton_action_cfg = self.cfg['SKELETON_ACTION']
                display_frames = skeleton_action_cfg['display_frames']
                self.coord_size = skeleton_action_cfg['coord_size']
435
                basemode = self.basemode['SKELETON_ACTION']
436
                self.modebase[basemode] = True
J
JYChen 已提交
437
                skeleton_action_frames = skeleton_action_cfg['max_frames']
438

J
JYChen 已提交
439 440
                self.skeleton_action_predictor = SkeletonActionRecognizer.init_with_cfg(
                    args, skeleton_action_cfg)
J
JYChen 已提交
441
                self.skeleton_action_visual_helper = ActionVisualHelper(
Z
zhiboniu 已提交
442
                    display_frames)
443

J
JYChen 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
                kpt_cfg = self.cfg['KPT']
                kpt_model_dir = kpt_cfg['model_dir']
                kpt_batch_size = kpt_cfg['batch_size']
                self.kpt_predictor = KeyPointDetector(
                    kpt_model_dir,
                    args.device,
                    args.run_mode,
                    kpt_batch_size,
                    args.trt_min_shape,
                    args.trt_max_shape,
                    args.trt_opt_shape,
                    args.trt_calib_mode,
                    args.cpu_threads,
                    args.enable_mkldnn,
                    use_dark=False)
                self.kpt_buff = KeyPointBuff(skeleton_action_frames)
Z
zhiboniu 已提交
460

461 462 463 464 465 466 467
            if self.with_vehicleplate:
                vehicleplate_cfg = self.cfg['VEHICLE_PLATE']
                self.vehicleplate_detector = PlateRecognizer(args,
                                                             vehicleplate_cfg)
                basemode = self.basemode['VEHICLE_PLATE']
                self.modebase[basemode] = True

Z
zhiboniu 已提交
468 469
            if self.with_mtmct:
                reid_cfg = self.cfg['REID']
470
                basemode = self.basemode['REID']
Z
zhiboniu 已提交
471
                self.modebase[basemode] = True
J
JYChen 已提交
472
                self.reid_predictor = ReID.init_with_cfg(args, reid_cfg)
Z
zhiboniu 已提交
473

L
LokeZhou 已提交
474 475 476 477 478 479 480
            if self.with_vehicle_retrograde:
                vehicleretrograde_cfg = self.cfg['VEHICLE_RETROGRADE']
                basemode = self.basemode['VEHICLE_RETROGRADE']
                self.modebase[basemode] = True
                self.vehicle_retrograde_predictor = VehicleRetrogradeRecognizer(
                    vehicleretrograde_cfg)

Z
zhiboniu 已提交
481 482 483
            if self.with_mot or self.modebase["idbased"] or self.modebase[
                    "skeletonbased"]:
                mot_cfg = self.cfg['MOT']
J
JYChen 已提交
484
                model_dir = mot_cfg['model_dir']
Z
zhiboniu 已提交
485 486
                tracker_config = mot_cfg['tracker_config']
                batch_size = mot_cfg['batch_size']
487
                skip_frame_num = mot_cfg.get('skip_frame_num', -1)
488
                basemode = self.basemode['MOT']
Z
zhiboniu 已提交
489 490 491 492
                self.modebase[basemode] = True
                self.mot_predictor = SDE_Detector(
                    model_dir,
                    tracker_config,
J
JYChen 已提交
493 494
                    args.device,
                    args.run_mode,
Z
zhiboniu 已提交
495
                    batch_size,
J
JYChen 已提交
496 497 498 499 500 501
                    args.trt_min_shape,
                    args.trt_max_shape,
                    args.trt_opt_shape,
                    args.trt_calib_mode,
                    args.cpu_threads,
                    args.enable_mkldnn,
502
                    skip_frame_num=skip_frame_num,
J
JYChen 已提交
503 504 505 506 507 508
                    draw_center_traj=self.draw_center_traj,
                    secs_interval=self.secs_interval,
                    do_entrance_counting=self.do_entrance_counting,
                    do_break_in_counting=self.do_break_in_counting,
                    region_type=self.region_type,
                    region_polygon=self.region_polygon)
Z
zhiboniu 已提交
509

510 511
            if self.with_video_action:
                video_action_cfg = self.cfg['VIDEO_ACTION']
512
                basemode = self.basemode['VIDEO_ACTION']
513
                self.modebase[basemode] = True
J
JYChen 已提交
514 515
                self.video_action_predictor = VideoActionRecognizer.init_with_cfg(
                    args, video_action_cfg)
516

517
    def set_file_name(self, path):
L
LokeZhou 已提交
518
        if type(path) == int:
Z
zhiboniu 已提交
519 520
            self.file_name = path
        elif path is not None:
521 522 523
            self.file_name = os.path.split(path)[-1]
            if "." in self.file_name:
                self.file_name = self.file_name.split(".")[-2]
W
wangguanzhong 已提交
524 525 526
        else:
            # use camera id
            self.file_name = None
527

528
    def get_result(self):
Z
zhiboniu 已提交
529
        return self.collector.get_res()
530

531
    def run(self, input, thread_idx=0):
532
        if self.is_video:
533
            self.predict_video(input, thread_idx=thread_idx)
534 535
        else:
            self.predict_image(input)
536
        self.pipe_timer.info()
Z
zhiboniu 已提交
537 538
        if hasattr(self, 'mot_predictor'):
            self.mot_predictor.det_times.tracking_info(average=True)
539 540 541 542 543 544

    def predict_image(self, input):
        # det
        # det -> attr
        batch_loop_cnt = math.ceil(
            float(len(input)) / self.det_predictor.batch_size)
L
LokeZhou 已提交
545
        self.warmup_frame = min(10, len(input) // 2) - 1
546 547 548 549 550 551 552 553 554 555 556 557
        for i in range(batch_loop_cnt):
            start_index = i * self.det_predictor.batch_size
            end_index = min((i + 1) * self.det_predictor.batch_size, len(input))
            batch_file = input[start_index:end_index]
            batch_input = [decode_image(f, {})[0] for f in batch_file]

            if i > self.warmup_frame:
                self.pipe_timer.total_time.start()
                self.pipe_timer.module_time['det'].start()
            # det output format: class, score, xmin, ymin, xmax, ymax
            det_res = self.det_predictor.predict_image(
                batch_input, visual=False)
558 559
            det_res = self.det_predictor.filter_box(det_res,
                                                    self.cfg['crop_thresh'])
560 561
            if i > self.warmup_frame:
                self.pipe_timer.module_time['det'].end()
Z
zhiboniu 已提交
562
                self.pipe_timer.track_num += len(det_res['boxes'])
563 564
            self.pipeline_res.update(det_res, 'det')

565
            if self.with_human_attr:
566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582
                crop_inputs = crop_image_with_det(batch_input, det_res)
                attr_res_list = []

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].start()

                for crop_input in crop_inputs:
                    attr_res = self.attr_predictor.predict_image(
                        crop_input, visual=False)
                    attr_res_list.extend(attr_res['output'])

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['attr'].end()

                attr_res = {'output': attr_res_list}
                self.pipeline_res.update(attr_res, 'attr')

583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
            if self.with_vehicle_attr:
                crop_inputs = crop_image_with_det(batch_input, det_res)
                vehicle_attr_res_list = []

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['vehicle_attr'].start()

                for crop_input in crop_inputs:
                    attr_res = self.vehicle_attr_predictor.predict_image(
                        crop_input, visual=False)
                    vehicle_attr_res_list.extend(attr_res['output'])

                if i > self.warmup_frame:
                    self.pipe_timer.module_time['vehicle_attr'].end()

                attr_res = {'output': vehicle_attr_res_list}
                self.pipeline_res.update(attr_res, 'vehicle_attr')

Z
zhiboniu 已提交
601 602 603 604 605 606 607 608 609 610 611 612 613 614
            if self.with_vehicleplate:
                if i > self.warmup_frame:
                    self.pipe_timer.module_time['vehicleplate'].start()
                crop_inputs = crop_image_with_det(batch_input, det_res)
                platelicenses = []
                for crop_input in crop_inputs:
                    platelicense = self.vehicleplate_detector.get_platelicense(
                        crop_input)
                    platelicenses.extend(platelicense['plate'])
                if i > self.warmup_frame:
                    self.pipe_timer.module_time['vehicleplate'].end()
                vehicleplate_res = {'vehicleplate': platelicenses}
                self.pipeline_res.update(vehicleplate_res, 'vehicleplate')

L
LokeZhou 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632
            if self.with_vehicle_press:
                vehicle_press_res_list = []
                if i > self.warmup_frame:
                    self.pipe_timer.module_time['vehicle_press'].start()

                lanes, direction = self.laneseg_predictor.run(batch_input)
                if len(lanes) == 0:
                    print(" no lanes!")
                    continue

                lanes_res = {'output': lanes, 'direction': direction}
                self.pipeline_res.update(lanes_res, 'lanes')

                vehicle_press_res_list = self.vehicle_press_predictor.run(
                    lanes, det_res)
                vehiclepress_res = {'output': vehicle_press_res_list}
                self.pipeline_res.update(vehiclepress_res, 'vehicle_press')

633 634 635 636 637 638 639
            self.pipe_timer.img_num += len(batch_input)
            if i > self.warmup_frame:
                self.pipe_timer.total_time.end()

            if self.cfg['visual']:
                self.visualize_image(batch_file, batch_input, self.pipeline_res)

640 641
    def capturevideo(self, capture, queue):
        frame_id = 0
L
LokeZhou 已提交
642
        while (1):
643 644 645 646 647 648 649 650 651
            if queue.full():
                time.sleep(0.1)
            else:
                ret, frame = capture.read()
                if not ret:
                    return
                frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                queue.put(frame_rgb)

652
    def predict_video(self, video_file, thread_idx=0):
653 654 655
        # mot
        # mot -> attr
        # mot -> pose -> action
Z
zhiboniu 已提交
656
        capture = cv2.VideoCapture(video_file)
657 658 659 660 661 662

        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
663
        print("video fps: %d, frame_count: %d" % (fps, frame_count))
664

Z
zhiboniu 已提交
665 666 667 668 669 670 671
        if len(self.pushurl) > 0:
            video_out_name = 'output' if self.file_name is None else self.file_name
            pushurl = os.path.join(self.pushurl, video_out_name)
            print("the result will push stream to url:{}".format(pushurl))
            pushstream = PushStream(pushurl)
            pushstream.initcmd(fps, width, height)
        elif self.cfg['visual']:
L
LokeZhou 已提交
672 673 674 675
            video_out_name = 'output' if (
                self.file_name is None or
                type(self.file_name) == int) else self.file_name
            if type(video_file) == str and "rtsp" in video_file:
Z
zhiboniu 已提交
676 677 678 679
                video_out_name = video_out_name + "_t" + str(thread_idx).zfill(
                    2) + "_rtsp"
            if not os.path.exists(self.output_dir):
                os.makedirs(self.output_dir)
L
LokeZhou 已提交
680
            out_path = os.path.join(self.output_dir, video_out_name + ".mp4")
Z
zhiboniu 已提交
681 682 683
            fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
            writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))

684
        frame_id = 0
685 686 687 688 689 690 691 692 693 694

        entrance, records, center_traj = None, None, None
        if self.draw_center_traj:
            center_traj = [{}]
        id_set = set()
        interval_id_set = set()
        in_id_list = list()
        out_id_list = list()
        prev_center = dict()
        records = list()
695
        if self.do_entrance_counting or self.do_break_in_counting or self.illegal_parking_time != -1:
696 697 698 699 700 701 702 703 704
            if self.region_type == 'horizontal':
                entrance = [0, height / 2., width, height / 2.]
            elif self.region_type == 'vertical':
                entrance = [width / 2, 0., width / 2, height]
            elif self.region_type == 'custom':
                entrance = []
                assert len(
                    self.region_polygon
                ) % 2 == 0, "region_polygon should be pairs of coords points when do break_in counting."
J
JYChen 已提交
705 706 707 708
                assert len(
                    self.region_polygon
                ) > 6, 'region_type is custom, region_polygon should be at least 3 pairs of point coords.'

709 710 711 712 713 714 715 716
                for i in range(0, len(self.region_polygon), 2):
                    entrance.append(
                        [self.region_polygon[i], self.region_polygon[i + 1]])
                entrance.append([width, height])
            else:
                raise ValueError("region_type:{} unsupported.".format(
                    self.region_type))

717 718
        video_fps = fps

719 720
        video_action_imgs = []

721 722 723 724
        if self.with_video_action:
            short_size = self.cfg["VIDEO_ACTION"]["short_size"]
            scale = ShortSizeScale(short_size)

725 726 727
        object_in_region_info = {
        }  # store info for vehicle parking in region       
        illegal_parking_dict = None
L
LokeZhou 已提交
728 729
        cars_count = 0
        retrograde_traj_len = 0
730 731 732
        framequeue = queue.Queue(10)

        thread = threading.Thread(
L
LokeZhou 已提交
733
            target=self.capturevideo, args=(capture, framequeue))
734 735 736
        thread.start()
        time.sleep(1)

L
LokeZhou 已提交
737
        while (not framequeue.empty()):
738
            if frame_id % 10 == 0:
739
                print('Thread: {}; frame id: {}'.format(thread_idx, frame_id))
740

741
            frame_rgb = framequeue.get()
Z
zhiboniu 已提交
742 743
            if frame_id > self.warmup_frame:
                self.pipe_timer.total_time.start()
744

745
            if self.modebase["idbased"] or self.modebase["skeletonbased"]:
746
                if frame_id > self.warmup_frame:
747
                    self.pipe_timer.module_time['mot'].start()
748

749 750 751 752 753 754 755
                mot_skip_frame_num = self.mot_predictor.skip_frame_num
                reuse_det_result = False
                if mot_skip_frame_num > 1 and frame_id > 0 and frame_id % mot_skip_frame_num > 0:
                    reuse_det_result = True
                res = self.mot_predictor.predict_image(
                    [copy.deepcopy(frame_rgb)],
                    visual=False,
756 757
                    reuse_det_result=reuse_det_result,
                    frame_count=frame_id)
758 759 760

                # mot output format: id, class, score, xmin, ymin, xmax, ymax
                mot_res = parse_mot_res(res)
Z
zhiboniu 已提交
761 762 763
                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['mot'].end()
                    self.pipe_timer.track_num += len(mot_res['boxes'])
764

765 766 767 768
                if frame_id % 10 == 0:
                    print("Thread: {}; trackid number: {}".format(
                        thread_idx, len(mot_res['boxes'])))

769 770 771 772 773
                # flow_statistic only support single class MOT
                boxes, scores, ids = res[0]  # batch size = 1 in MOT
                mot_result = (frame_id + 1, boxes[0], scores[0],
                              ids[0])  # single class
                statistic = flow_statistic(
F
Feng Ni 已提交
774 775 776 777 778 779 780 781 782 783 784 785 786 787
                    mot_result,
                    self.secs_interval,
                    self.do_entrance_counting,
                    self.do_break_in_counting,
                    self.region_type,
                    video_fps,
                    entrance,
                    id_set,
                    interval_id_set,
                    in_id_list,
                    out_id_list,
                    prev_center,
                    records,
                    ids2names=self.mot_predictor.pred_config.labels)
788 789
                records = statistic['records']

790 791 792 793 794 795 796 797 798 799
                if self.illegal_parking_time != -1:
                    object_in_region_info, illegal_parking_dict = update_object_info(
                        object_in_region_info, mot_result, self.region_type,
                        entrance, video_fps, self.illegal_parking_time)
                    if len(illegal_parking_dict) != 0:
                        # build relationship between id and plate
                        for key, value in illegal_parking_dict.items():
                            plate = self.collector.get_carlp(key)
                            illegal_parking_dict[key]['plate'] = plate

800 801 802
                # nothing detected
                if len(mot_res['boxes']) == 0:
                    frame_id += 1
J
JYChen 已提交
803
                    if frame_id > self.warmup_frame:
804 805 806 807
                        self.pipe_timer.img_num += 1
                        self.pipe_timer.total_time.end()
                    if self.cfg['visual']:
                        _, _, fps = self.pipe_timer.get_total_time()
808 809 810
                        im = self.visualize_video(
                            frame_rgb, mot_res, self.collector, frame_id, fps,
                            entrance, records, center_traj)  # visualize
L
LokeZhou 已提交
811
                        if len(self.pushurl) > 0:
Z
zhiboniu 已提交
812 813 814 815 816 817 818
                            pushstream.pipe.stdin.write(im.tobytes())
                        else:
                            writer.write(im)
                            if self.file_name is None:  # use camera_id
                                cv2.imshow('Paddle-Pipeline', im)
                                if cv2.waitKey(1) & 0xFF == ord('q'):
                                    break
819 820 821
                    continue

                self.pipeline_res.update(mot_res, 'mot')
J
JYChen 已提交
822
                crop_input, new_bboxes, ori_bboxes = crop_image_with_mot(
823
                    frame_rgb, mot_res)
824

825
                if self.with_vehicleplate and frame_id % 10 == 0:
Z
zhiboniu 已提交
826 827
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['vehicleplate'].start()
Z
zhiboniu 已提交
828 829
                    plate_input, _, _ = crop_image_with_mot(
                        frame_rgb, mot_res, expand=False)
Z
zhiboniu 已提交
830
                    platelicense = self.vehicleplate_detector.get_platelicense(
Z
zhiboniu 已提交
831
                        plate_input)
Z
zhiboniu 已提交
832 833
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['vehicleplate'].end()
Z
zhiboniu 已提交
834
                    self.pipeline_res.update(platelicense, 'vehicleplate')
835 836
                else:
                    self.pipeline_res.clear('vehicleplate')
Z
zhiboniu 已提交
837

838
                if self.with_human_attr:
J
JYChen 已提交
839
                    if frame_id > self.warmup_frame:
840 841 842 843 844 845 846
                        self.pipe_timer.module_time['attr'].start()
                    attr_res = self.attr_predictor.predict_image(
                        crop_input, visual=False)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['attr'].end()
                    self.pipeline_res.update(attr_res, 'attr')

847 848 849 850 851 852 853 854 855
                if self.with_vehicle_attr:
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['vehicle_attr'].start()
                    attr_res = self.vehicle_attr_predictor.predict_image(
                        crop_input, visual=False)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['vehicle_attr'].end()
                    self.pipeline_res.update(attr_res, 'vehicle_attr')

L
LokeZhou 已提交
856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888
                if self.with_vehicle_press or self.with_vehicle_retrograde:
                    if frame_id == 0 or cars_count == 0 or cars_count > len(
                            mot_res['boxes']):

                        if frame_id > self.warmup_frame:
                            self.pipe_timer.module_time['lanes'].start()
                        lanes, directions = self.laneseg_predictor.run(
                            [copy.deepcopy(frame_rgb)])
                        lanes_res = {'output': lanes, 'directions': directions}
                        if frame_id > self.warmup_frame:
                            self.pipe_timer.module_time['lanes'].end()

                        if frame_id == 0 or (len(lanes) > 0 and frame_id > 0):
                            self.pipeline_res.update(lanes_res, 'lanes')

                        cars_count = len(mot_res['boxes'])

                if self.with_vehicle_press:
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['vehicle_press'].start()
                    press_lane = copy.deepcopy(self.pipeline_res.get('lanes'))
                    if press_lane is None:
                        continue

                    vehicle_press_res_list = self.vehicle_press_predictor.mot_run(
                        press_lane, mot_res['boxes'])
                    vehiclepress_res = {'output': vehicle_press_res_list}

                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['vehicle_press'].end()

                    self.pipeline_res.update(vehiclepress_res, 'vehicle_press')

Z
zhiboniu 已提交
889
                if self.with_idbased_detaction:
J
JYChen 已提交
890 891 892 893 894 895 896 897 898 899
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['det_action'].start()
                    det_action_res = self.det_action_predictor.predict(
                        crop_input, mot_res)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['det_action'].end()
                    self.pipeline_res.update(det_action_res, 'det_action')

                    if self.cfg['visual']:
                        self.det_action_visual_helper.update(det_action_res)
Z
zhiboniu 已提交
900 901

                if self.with_idbased_clsaction:
J
JYChen 已提交
902 903 904 905 906 907 908 909 910 911
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['cls_action'].start()
                    cls_action_res = self.cls_action_predictor.predict_with_mot(
                        crop_input, mot_res)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['cls_action'].end()
                    self.pipeline_res.update(cls_action_res, 'cls_action')

                    if self.cfg['visual']:
                        self.cls_action_visual_helper.update(cls_action_res)
Z
zhiboniu 已提交
912

Z
zhiboniu 已提交
913
                if self.with_skeleton_action:
Z
zhiboniu 已提交
914 915 916 917 918 919 920 921 922 923 924 925 926
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['kpt'].start()
                    kpt_pred = self.kpt_predictor.predict_image(
                        crop_input, visual=False)
                    keypoint_vector, score_vector = translate_to_ori_images(
                        kpt_pred, np.array(new_bboxes))
                    kpt_res = {}
                    kpt_res['keypoint'] = [
                        keypoint_vector.tolist(), score_vector.tolist()
                    ] if len(keypoint_vector) > 0 else [[], []]
                    kpt_res['bbox'] = ori_bboxes
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['kpt'].end()
927

Z
zhiboniu 已提交
928
                    self.pipeline_res.update(kpt_res, 'kpt')
929

Z
zhiboniu 已提交
930
                    self.kpt_buff.update(kpt_res, mot_res)  # collect kpt output
931 932 933
                    state = self.kpt_buff.get_state(
                    )  # whether frame num is enough or lost tracker

Z
zhiboniu 已提交
934
                    skeleton_action_res = {}
935 936
                    if state:
                        if frame_id > self.warmup_frame:
Z
zhiboniu 已提交
937 938
                            self.pipe_timer.module_time[
                                'skeleton_action'].start()
939 940
                        collected_keypoint = self.kpt_buff.get_collected_keypoint(
                        )  # reoragnize kpt output with ID
Z
zhiboniu 已提交
941 942 943 944
                        skeleton_action_input = parse_mot_keypoint(
                            collected_keypoint, self.coord_size)
                        skeleton_action_res = self.skeleton_action_predictor.predict_skeleton_with_mot(
                            skeleton_action_input)
945
                        if frame_id > self.warmup_frame:
Z
zhiboniu 已提交
946 947 948
                            self.pipe_timer.module_time['skeleton_action'].end()
                        self.pipeline_res.update(skeleton_action_res,
                                                 'skeleton_action')
949 950

                    if self.cfg['visual']:
Z
zhiboniu 已提交
951 952
                        self.skeleton_action_visual_helper.update(
                            skeleton_action_res)
953 954 955

                if self.with_mtmct and frame_id % 10 == 0:
                    crop_input, img_qualities, rects = self.reid_predictor.crop_image_with_mot(
956
                        frame_rgb, mot_res)
957 958 959 960 961 962
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['reid'].start()
                    reid_res = self.reid_predictor.predict_batch(crop_input)

                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['reid'].end()
J
JYChen 已提交
963

964 965 966 967 968 969 970 971
                    reid_res_dict = {
                        'features': reid_res,
                        "qualities": img_qualities,
                        "rects": rects
                    }
                    self.pipeline_res.update(reid_res_dict, 'reid')
                else:
                    self.pipeline_res.clear('reid')
Z
zhiboniu 已提交
972

Z
zhiboniu 已提交
973
            if self.with_video_action:
974 975 976 977 978 979 980 981 982 983 984 985 986
                # get the params
                frame_len = self.cfg["VIDEO_ACTION"]["frame_len"]
                sample_freq = self.cfg["VIDEO_ACTION"]["sample_freq"]

                if sample_freq * frame_len > frame_count:  # video is too short
                    sample_freq = int(frame_count / frame_len)

                # filter the warmup frames
                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['video_action'].start()

                # collect frames
                if frame_id % sample_freq == 0:
987
                    # Scale image
988
                    scaled_img = scale(frame_rgb)
989
                    video_action_imgs.append(scaled_img)
990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003

                # the number of collected frames is enough to predict video action
                if len(video_action_imgs) == frame_len:
                    classes, scores = self.video_action_predictor.predict(
                        video_action_imgs)
                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['video_action'].end()

                    video_action_res = {"class": classes[0], "score": scores[0]}
                    self.pipeline_res.update(video_action_res, 'video_action')

                    print("video_action_res:", video_action_res)

                    video_action_imgs.clear()  # next clip
Z
zhiboniu 已提交
1004

L
LokeZhou 已提交
1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067
            if self.with_vehicle_retrograde:
                # get the params
                frame_len = self.cfg["VEHICLE_RETROGRADE"]["frame_len"]
                sample_freq = self.cfg["VEHICLE_RETROGRADE"]["sample_freq"]

                if sample_freq * frame_len > frame_count:  # video is too short
                    sample_freq = int(frame_count / frame_len)

                # filter the warmup frames
                if frame_id > self.warmup_frame:
                    self.pipe_timer.module_time['vehicle_retrograde'].start()

                if frame_id % sample_freq == 0:

                    frame_mot_res = copy.deepcopy(self.pipeline_res.get('mot'))
                    self.vehicle_retrograde_predictor.update_center_traj(
                        frame_mot_res, max_len=frame_len)
                    retrograde_traj_len = retrograde_traj_len + 1

                #the number of collected frames is enough to predict 
                if retrograde_traj_len == frame_len:
                    retrograde_mot_res = copy.deepcopy(
                        self.pipeline_res.get('mot'))
                    retrograde_lanes = copy.deepcopy(
                        self.pipeline_res.get('lanes'))
                    frame_shape = frame_rgb.shape

                    if retrograde_lanes is None:
                        continue
                    retrograde_res, fence_line = self.vehicle_retrograde_predictor.mot_run(
                        lanes_res=retrograde_lanes,
                        det_res=retrograde_mot_res,
                        frame_shape=frame_shape)

                    retrograde_res_update = self.pipeline_res.get(
                        'vehicle_retrograde')

                    if retrograde_res_update is not None:
                        retrograde_res_update = retrograde_res_update['output']
                        if retrograde_res is not None:
                            for retrograde_res_id in retrograde_res:
                                if retrograde_res_id not in retrograde_res_update:
                                    retrograde_res_update.append(
                                        retrograde_res_id)
                    else:
                        retrograde_res_update = []

                    retrograde_res_dict = {
                        'output': retrograde_res_update,
                        "fence_line": fence_line,
                    }

                    if retrograde_res is not None and len(retrograde_res) > 0:
                        print("retrograde res:", retrograde_res)

                    self.pipeline_res.update(retrograde_res_dict,
                                             'vehicle_retrograde')

                    if frame_id > self.warmup_frame:
                        self.pipe_timer.module_time['vehicle_retrograde'].end()

                    retrograde_traj_len = 0

Z
zhiboniu 已提交
1068
            self.collector.append(frame_id, self.pipeline_res)
1069 1070 1071 1072 1073 1074 1075

            if frame_id > self.warmup_frame:
                self.pipe_timer.img_num += 1
                self.pipe_timer.total_time.end()
            frame_id += 1

            if self.cfg['visual']:
1076
                _, _, fps = self.pipe_timer.get_total_time()
1077

1078
                im = self.visualize_video(frame_rgb, self.pipeline_res,
1079 1080 1081 1082
                                          self.collector, frame_id, fps,
                                          entrance, records, center_traj,
                                          self.illegal_parking_time != -1,
                                          illegal_parking_dict)  # visualize
L
LokeZhou 已提交
1083
                if len(self.pushurl) > 0:
Z
zhiboniu 已提交
1084 1085 1086 1087 1088 1089 1090
                    pushstream.pipe.stdin.write(im.tobytes())
                else:
                    writer.write(im)
                    if self.file_name is None:  # use camera_id
                        cv2.imshow('Paddle-Pipeline', im)
                        if cv2.waitKey(1) & 0xFF == ord('q'):
                            break
L
LokeZhou 已提交
1091 1092

        if self.cfg['visual'] and len(self.pushurl) == 0:
Z
zhiboniu 已提交
1093 1094
            writer.release()
            print('save result to {}'.format(out_path))
1095

1096
    def visualize_video(self,
1097
                        image_rgb,
1098
                        result,
1099
                        collector,
1100 1101 1102 1103
                        frame_id,
                        fps,
                        entrance=None,
                        records=None,
1104 1105 1106
                        center_traj=None,
                        do_illegal_parking_recognition=False,
                        illegal_parking_dict=None):
1107
        image = cv2.cvtColor(image_rgb, cv2.COLOR_RGB2BGR)
Z
zhiboniu 已提交
1108
        mot_res = copy.deepcopy(result.get('mot'))
L
LokeZhou 已提交
1109

1110 1111
        if mot_res is not None:
            ids = mot_res['boxes'][:, 0]
W
wangguanzhong 已提交
1112
            scores = mot_res['boxes'][:, 2]
1113 1114 1115 1116 1117 1118
            boxes = mot_res['boxes'][:, 3:]
            boxes[:, 2] = boxes[:, 2] - boxes[:, 0]
            boxes[:, 3] = boxes[:, 3] - boxes[:, 1]
        else:
            boxes = np.zeros([0, 4])
            ids = np.zeros([0])
W
wangguanzhong 已提交
1119
            scores = np.zeros([0])
1120 1121 1122 1123 1124 1125 1126 1127 1128 1129

        # single class, still need to be defaultdict type for ploting
        num_classes = 1
        online_tlwhs = defaultdict(list)
        online_scores = defaultdict(list)
        online_ids = defaultdict(list)
        online_tlwhs[0] = boxes
        online_scores[0] = scores
        online_ids[0] = ids

F
Feng Ni 已提交
1130 1131 1132 1133 1134 1135 1136 1137 1138
        if mot_res is not None:
            image = plot_tracking_dict(
                image,
                num_classes,
                online_tlwhs,
                online_ids,
                online_scores,
                frame_id=frame_id,
                fps=fps,
1139
                ids2names=self.mot_predictor.pred_config.labels,
F
Feng Ni 已提交
1140
                do_entrance_counting=self.do_entrance_counting,
1141
                do_break_in_counting=self.do_break_in_counting,
1142 1143
                do_illegal_parking_recognition=do_illegal_parking_recognition,
                illegal_parking_dict=illegal_parking_dict,
F
Feng Ni 已提交
1144 1145 1146
                entrance=entrance,
                records=records,
                center_traj=center_traj)
1147

1148 1149 1150 1151 1152 1153 1154 1155 1156
        human_attr_res = result.get('attr')
        if human_attr_res is not None:
            boxes = mot_res['boxes'][:, 1:]
            human_attr_res = human_attr_res['output']
            image = visualize_attr(image, human_attr_res, boxes)
            image = np.array(image)

        vehicle_attr_res = result.get('vehicle_attr')
        if vehicle_attr_res is not None:
1157
            boxes = mot_res['boxes'][:, 1:]
1158 1159
            vehicle_attr_res = vehicle_attr_res['output']
            image = visualize_attr(image, vehicle_attr_res, boxes)
1160 1161
            image = np.array(image)

L
LokeZhou 已提交
1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175
        lanes_res = result.get('lanes')
        if lanes_res is not None:
            lanes = lanes_res['output'][0]
            image = visualize_lane(image, lanes)
            image = np.array(image)

        vehiclepress_res = result.get('vehicle_press')
        if vehiclepress_res is not None:
            press_vehicle = vehiclepress_res['output']
            if len(press_vehicle) > 0:
                image = visualize_vehiclepress(
                    image, press_vehicle, threshold=self.cfg['crop_thresh'])
                image = np.array(image)

1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189
        if mot_res is not None:
            vehicleplate = False
            plates = []
            for trackid in mot_res['boxes'][:, 0]:
                plate = collector.get_carlp(trackid)
                if plate != None:
                    vehicleplate = True
                    plates.append(plate)
                else:
                    plates.append("")
            if vehicleplate:
                boxes = mot_res['boxes'][:, 1:]
                image = visualize_vehicleplate(image, plates, boxes)
                image = np.array(image)
Z
zhiboniu 已提交
1190

J
JYChen 已提交
1191 1192 1193 1194 1195 1196 1197 1198
        kpt_res = result.get('kpt')
        if kpt_res is not None:
            image = visualize_pose(
                image,
                kpt_res,
                visual_thresh=self.cfg['kpt_thresh'],
                returnimg=True)

1199
        video_action_res = result.get('video_action')
J
JYChen 已提交
1200
        if video_action_res is not None:
1201 1202 1203
            video_action_score = None
            if video_action_res and video_action_res["class"] == 1:
                video_action_score = video_action_res["score"]
1204 1205 1206
            mot_boxes = None
            if mot_res:
                mot_boxes = mot_res['boxes']
1207 1208
            image = visualize_action(
                image,
1209
                mot_boxes,
J
JYChen 已提交
1210
                action_visual_collector=None,
1211 1212 1213
                action_text="SkeletonAction",
                video_action_score=video_action_score,
                video_action_text="Fight")
J
JYChen 已提交
1214

L
LokeZhou 已提交
1215 1216 1217 1218 1219 1220 1221
        vehicle_retrograde_res = result.get('vehicle_retrograde')
        if vehicle_retrograde_res is not None:
            mot_retrograde_res = copy.deepcopy(result.get('mot'))
            image = visualize_vehicle_retrograde(image, mot_retrograde_res,
                                                 vehicle_retrograde_res)
            image = np.array(image)

J
JYChen 已提交
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
        visual_helper_for_display = []
        action_to_display = []

        skeleton_action_res = result.get('skeleton_action')
        if skeleton_action_res is not None:
            visual_helper_for_display.append(self.skeleton_action_visual_helper)
            action_to_display.append("Falling")

        det_action_res = result.get('det_action')
        if det_action_res is not None:
            visual_helper_for_display.append(self.det_action_visual_helper)
            action_to_display.append("Smoking")

        cls_action_res = result.get('cls_action')
        if cls_action_res is not None:
            visual_helper_for_display.append(self.cls_action_visual_helper)
            action_to_display.append("Calling")

        if len(visual_helper_for_display) > 0:
            image = visualize_action(image, mot_res['boxes'],
                                     visual_helper_for_display,
                                     action_to_display)

1245 1246 1247 1248 1249
        return image

    def visualize_image(self, im_files, images, result):
        start_idx, boxes_num_i = 0, 0
        det_res = result.get('det')
1250 1251
        human_attr_res = result.get('attr')
        vehicle_attr_res = result.get('vehicle_attr')
Z
zhiboniu 已提交
1252
        vehicleplate_res = result.get('vehicleplate')
L
LokeZhou 已提交
1253 1254
        lanes_res = result.get('lanes')
        vehiclepress_res = result.get('vehicle_press')
1255

1256 1257 1258 1259 1260 1261 1262 1263 1264
        for i, (im_file, im) in enumerate(zip(im_files, images)):
            if det_res is not None:
                det_res_i = {}
                boxes_num_i = det_res['boxes_num'][i]
                det_res_i['boxes'] = det_res['boxes'][start_idx:start_idx +
                                                      boxes_num_i, :]
                im = visualize_box_mask(
                    im,
                    det_res_i,
Z
zhiboniu 已提交
1265
                    labels=['target'],
1266
                    threshold=self.cfg['crop_thresh'])
1267 1268
                im = np.ascontiguousarray(np.copy(im))
                im = cv2.cvtColor(im, cv2.COLOR_RGB2BGR)
1269 1270 1271 1272 1273 1274 1275 1276
            if human_attr_res is not None:
                human_attr_res_i = human_attr_res['output'][start_idx:start_idx
                                                            + boxes_num_i]
                im = visualize_attr(im, human_attr_res_i, det_res_i['boxes'])
            if vehicle_attr_res is not None:
                vehicle_attr_res_i = vehicle_attr_res['output'][
                    start_idx:start_idx + boxes_num_i]
                im = visualize_attr(im, vehicle_attr_res_i, det_res_i['boxes'])
Z
zhiboniu 已提交
1277 1278 1279 1280 1281
            if vehicleplate_res is not None:
                plates = vehicleplate_res['vehicleplate']
                det_res_i['boxes'][:, 4:6] = det_res_i[
                    'boxes'][:, 4:6] - det_res_i['boxes'][:, 2:4]
                im = visualize_vehicleplate(im, plates, det_res_i['boxes'])
L
LokeZhou 已提交
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
            if vehiclepress_res is not None:
                press_vehicle = vehiclepress_res['output'][i]
                if len(press_vehicle) > 0:
                    im = visualize_vehiclepress(
                        im, press_vehicle, threshold=self.cfg['crop_thresh'])
                    im = np.ascontiguousarray(np.copy(im))
            if lanes_res is not None:
                lanes = lanes_res['output'][i]
                im = visualize_lane(im, lanes)
                im = np.ascontiguousarray(np.copy(im))
1292

1293 1294 1295 1296
            img_name = os.path.split(im_file)[-1]
            if not os.path.exists(self.output_dir):
                os.makedirs(self.output_dir)
            out_path = os.path.join(self.output_dir, img_name)
1297
            cv2.imwrite(out_path, im)
1298 1299 1300 1301 1302
            print("save result to: " + out_path)
            start_idx += boxes_num_i


def main():
1303
    cfg = merge_cfg(FLAGS)  # use command params to update config
1304
    print_arguments(cfg)
1305

Z
zhiboniu 已提交
1306
    pipeline = Pipeline(FLAGS, cfg)
1307 1308
    # pipeline.run()
    pipeline.run_multithreads()
1309 1310 1311 1312


if __name__ == '__main__':
    paddle.enable_static()
1313 1314

    # parse params from command
1315 1316 1317 1318 1319 1320 1321
    parser = argsparser()
    FLAGS = parser.parse_args()
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"

    main()