framework.py 75.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
Q
qiaolongfei 已提交
19
import contextlib
P
peizhilin 已提交
20
import os
F
fengjiayi 已提交
21
import re
22
import six
23

Y
Yu Yang 已提交
24
import numpy as np
Q
qiaolongfei 已提交
25

M
minqiyang 已提交
26
from .. import compat as cpt
27
from .proto import framework_pb2
28 29
try:
    from . import core
30
except ImportError as e:
P
peizhilin 已提交
31 32 33 34 35 36 37 38 39 40 41 42
    if os.name == 'nt':
        raise ImportError(
            """NOTE: You may need to run \"set PATH=c:\python27\lib:%PATH%\"
        if you encounters \"mkldnn.dll not found\" errors. If you have python
        installed in other directory, replace \"c:\python27\lib" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
43
except Exception as e:
44
    raise e
45
from . import unique_name
Y
Yu Yang 已提交
46

47
__all__ = [
48 49 50 51
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
52
    'name_scope',
53
]
Y
Yu Yang 已提交
54

Q
qiaolongfei 已提交
55 56 57 58
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
59 60
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

61 62 63 64 65 66 67 68 69 70
_imperative_tracer_ = None


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
71

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


@contextlib.contextmanager
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
111

112 113 114 115
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
116 117
          with name_scope("attention"):
             ...
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
137 138 139
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
140 141 142 143


def grad_var_name(var_name):
    """
144 145
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
146 147 148
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
149

150
def convert_np_dtype_to_dtype_(np_dtype):
151 152
    """
    Convert the data type in numpy to the data type in Paddle
153

154
    Args:
155
        np_dtype(np.dtype): the data type in numpy.
156

157 158
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
159 160

    """
161 162
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
163
        return core.VarDesc.VarType.FP32
164
    elif dtype == np.float64:
165
        return core.VarDesc.VarType.FP64
166
    elif dtype == np.float16:
167
        return core.VarDesc.VarType.FP16
168
    elif dtype == np.int32:
169
        return core.VarDesc.VarType.INT32
170
    elif dtype == np.int16:
171
        return core.VarDesc.VarType.INT16
172
    elif dtype == np.int64:
173
        return core.VarDesc.VarType.INT64
174
    elif dtype == np.bool:
175
        return core.VarDesc.VarType.BOOL
176 177
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
178 179
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
180 181
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
182
    else:
M
minqiyang 已提交
183
        raise ValueError("Not supported numpy dtype %s" % dtype)
184 185 186


def dtype_is_floating(dtype):
187 188 189
    """
    Check the data type is floating or not.
    Args:
190
        dtype(np.dtype|core.VarDesc.VarType): data type.
191 192 193 194 195
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
196
    if not isinstance(dtype, core.VarDesc.VarType):
197 198
        dtype = convert_np_dtype_to_dtype_(dtype)

199 200 201 202
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
203 204


Y
Yang Yang(Tony) 已提交
205
def _debug_string_(proto, throw_on_error=True):
206 207 208 209 210 211 212 213 214 215 216
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
217
    error_fields = list()
Y
Yang Yang(Tony) 已提交
218
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
219 220
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
221 222 223
    return proto.__str__()


X
Xin Pan 已提交
224
class Variable(object):
225
    """
226 227 228
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
229
    two variables in different blocks could have the same name.
230

231 232
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
233

234
    Most of a Variable's member variables can be setted to be None. It mean
235
    it is not available or will be specified later.
236 237

    Args:
238
        block(Block): The block that the variable belongs to.
239 240
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
241 242
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
243
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
244
            Some kinds of variable do not contain shape, just set it to None.
245 246 247
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
248
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
249
            series data.
250
            Default: None
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
273 274
    """

Y
Yu Yang 已提交
275 276
    def __init__(self,
                 block,
Y
Yu Yang 已提交
277
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
278 279 280 281
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
282
                 capacity=None,
Q
QI JUN 已提交
283
                 persistable=None,
F
fengjiayi 已提交
284
                 error_clip=None,
Y
Yu Yang 已提交
285
                 stop_gradient=False,
F
fengjiayi 已提交
286
                 is_data=False,
Y
Yu Yang 已提交
287
                 **kwargs):
Y
Yu Yang 已提交
288
        self.block = block
F
fengjiayi 已提交
289
        self.error_clip = error_clip
Y
Yu Yang 已提交
290 291

        if name is None:
Y
Yu Yang 已提交
292
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
293
        is_new_var = False
M
minqiyang 已提交
294
        name = cpt.to_text(name)
M
minqiyang 已提交
295
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
296 297

        if self.desc is None:
M
minqiyang 已提交
298
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
299
            is_new_var = True
Y
Yu Yang 已提交
300

Y
Yu Yang 已提交
301 302 303 304 305 306 307 308
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
309
        if shape is not None:
Y
Yu Yang 已提交
310
            if is_new_var:
311
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
312 313 314 315 316 317 318 319
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
320
        if dtype is not None:
321
            if not isinstance(dtype, core.VarDesc.VarType):
322
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
323
            if is_new_var:
F
fengjiayi 已提交
324
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
325
            else:
F
fengjiayi 已提交
326
                old_dtype = self.dtype
Q
QI JUN 已提交
327
                if dtype != old_dtype:
Y
Yu Yang 已提交
328 329 330 331 332
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
333 334

        if lod_level is not None:
Y
Yu Yang 已提交
335
            if is_new_var:
336
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
337 338 339 340 341 342 343
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
344 345 346 347 348 349 350 351 352 353 354
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

355 356 357 358 359 360 361 362
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
363
        self.block.vars[name] = self
Y
Yu Yang 已提交
364
        self.op = None
M
minqiyang 已提交
365
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
366
        self.is_data = is_data
X
Xin Pan 已提交
367
        if _in_imperative_mode():
M
minqiyang 已提交
368 369 370
            self._ivar = kwargs.get("ivar", None)
            if not self._ivar:
                self._ivar = core.VarBase()
X
Xin Pan 已提交
371
            self._ivar.desc = self.desc
372
            self._ivar.stop_gradient = stop_gradient
Y
Yu Yang 已提交
373

374
    def _numpy(self):
M
minqiyang 已提交
375
        tensor = self._ivar.value().get_tensor()
376 377 378
        return np.array(tensor)

    def _backward(self):
X
Xin Pan 已提交
379
        self._ivar._run_backward()
380 381

    def _gradient(self):
X
Xin Pan 已提交
382
        return np.array(self._ivar._grad())
383

384
    def __str__(self):
Y
Yang Yang(Tony) 已提交
385 386
        return self.to_string(True)

F
update  
fengjiayi 已提交
387
    def to_string(self, throw_on_error, with_details=False):
388 389 390 391
        """
        Get debug string.

        Args:
392 393
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
394
            with_details(bool): more details about variables and parameters
395 396
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
397

398 399
        Returns:
            str: The debug string.
400
        """
F
update  
fengjiayi 已提交
401 402
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
403
        protostr = self.desc.serialize_to_string()
404
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
405 406 407 408
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
409 410
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
411
        return res_str
412 413 414

    __repr__ = __str__

W
Wu Yi 已提交
415
    def _set_desc(self, input):
416 417 418 419 420 421 422 423 424
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
425 426
        self.desc = input

427 428 429 430 431 432 433 434
    @property
    def _stop_gradient(self):
        return self._ivar.stop_gradient

    @_stop_gradient.setter
    def _stop_gradient(self, s):
        self._ivar.stop_gradient = s

435 436 437 438
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
439 440 441 442
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
443 444
    @property
    def name(self):
M
minqiyang 已提交
445
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
446

T
typhoonzero 已提交
447 448 449 450
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
451 452 453
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
454
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
455 456

    @property
F
fengjiayi 已提交
457 458
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
459 460 461

    @property
    def lod_level(self):
462
        return self.desc.lod_level()
Y
Yu Yang 已提交
463

Y
Yu Yang 已提交
464 465 466 467
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
468
    def _set_error_clip(self, error_clip):
469 470 471 472 473 474 475 476 477
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
478 479
        self.error_clip = error_clip

Y
Yu Yang 已提交
480

F
fengjiayi 已提交
481 482 483
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
484

485 486
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
487 488 489 490
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
491
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
492 493 494 495 496
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
497 498 499 500
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
501 502 503 504 505 506 507 508 509
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
510
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
511 512 513 514 515 516
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
517 518 519 520 521 522 523 524
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
525 526
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
527 528
        return self.op_proto_map[type]

529 530 531 532
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
533
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
534
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
535 536
        }

F
fengjiayi 已提交
537

X
Xin Pan 已提交
538
class Operator(object):
539
    """
540 541 542 543 544 545 546
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
547
        type(str): The type of operator. Default None.
548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
568
        Block.append_op or Block._prepend_op instead.
569 570 571 572 573 574 575 576 577 578

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
579
    """
580 581 582
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
583 584
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
585
    }
586

Y
Yu Yang 已提交
587 588
    def __init__(self,
                 block,
Y
Yu Yang 已提交
589
                 desc,
Y
Yu Yang 已提交
590 591 592
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
593
                 attrs=None):
Y
Yu Yang 已提交
594
        self.block = block
Y
Yu Yang 已提交
595
        self.desc = desc
G
gongweibao 已提交
596 597 598 599 600
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
601 602 603 604
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
605 606
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
607 608 609

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
610 611
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
612

G
gongweibao 已提交
613 614
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
615

F
fengjiayi 已提交
616 617 618 619 620
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
621
        self.desc.set_type(type)
F
fengjiayi 已提交
622
        proto = OpProtoHolder.instance().get_op_proto(type)
623

624 625 626
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
627 628
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
629
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
630 631
                    return True
            return False
Q
QI JUN 已提交
632

Y
Yang Yang(Tony) 已提交
633 634 635 636 637 638 639
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
640 641 642 643
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
644 645
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
646 647 648
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
649
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
650
                            in_arg_names.append(arg)
651 652
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
653
                        else:
M
minqiyang 已提交
654
                            in_arg_names.append(cpt.to_text(arg.name))
655
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
656 657
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
658

Y
Yu Yang 已提交
659
        if outputs is not None:
660
            for m in proto.outputs:
Q
qingqing01 已提交
661 662 663 664 665 666
                if (m.name not in outputs) and m.dispensable:
                    continue
                if not ((m.name in outputs) or m.dispensable):
                    raise ValueError(
                        ("Incorrect setting for output(s) of "
                         "operator \"%s\", should set: [%s].") % (type, m.name))
F
fengjiayi 已提交
667
            for out_proto in proto.outputs:
Q
qingqing01 已提交
668 669
                if out_proto.name not in outputs:
                    continue
670 671 672 673
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
674 675
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
676 677 678
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
679
                    out_arg_names.append(cpt.to_text(arg.name))
680 681
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
682

G
gongweibao 已提交
683 684
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
685
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
686
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
687
                attr_name = attr.name
G
gongweibao 已提交
688
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
689
                    continue
G
gongweibao 已提交
690
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
691 692
                self._update_desc_attr(attr_name, attr_val)

693
        self.desc.check_attrs()
M
minqiyang 已提交
694

W
Wu Yi 已提交
695
        if self._has_kernel(type):
Q
QI JUN 已提交
696
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
697
            self.desc.infer_shape(self.block.desc)
M
minqiyang 已提交
698

X
Xin Pan 已提交
699 700 701
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
X
Xin Pan 已提交
702
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
703
            if inputs is not None:
X
Xin Pan 已提交
704 705 706 707 708 709
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
710
            if outputs is not None:
X
Xin Pan 已提交
711 712 713 714 715
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
716

W
Wu Yi 已提交
717
    def _has_kernel(self, op_type):
718 719
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
720
    def to_string(self, throw_on_error):
721
        """
722 723
        Get debug string.

724
        Args:
725 726
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
727

728 729
        Returns:
            str: The debug string.
730 731

        """
732
        protostr = self.desc.serialize_to_string()
733
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
734 735 736 737
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
738 739 740

    __repr__ = __str__

F
fengjiayi 已提交
741 742 743 744 745
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
746
        """
747
        Get the input arguments according to the input parameter name.
748

749 750
        Args:
            name(str): The input parameter name.
751

752 753 754
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
755
        """
F
fengjiayi 已提交
756 757
        return self.desc.input(name)

W
Wu Yi 已提交
758
    def _rename_input(self, old_name, new_name):
759 760 761 762 763 764 765 766 767 768
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
769
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
770

W
Wu Yi 已提交
771
    def _rename_output(self, old_name, new_name):
772 773 774 775 776 777 778 779 780 781
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
782
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
783

F
fengjiayi 已提交
784 785 786 787
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
788 789 790 791 792 793 794 795
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
796
    def output(self, name):
797
        """
798
        Get output arguments by the output parameter name.
799

800 801
        Args:
            name(str): The output parameter name.
802

803 804 805
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
806
        """
F
fengjiayi 已提交
807 808 809 810 811 812
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

813 814 815 816 817 818 819 820
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
821
    def has_attr(self, name):
822
        """
823 824
        Whether this Operator has the attribute with name or not.

825
        Args:
826
            name(str): the attribute name.
827

828 829
        Returns:
            bool: True if has this attribute.
830 831

        """
F
fengjiayi 已提交
832 833 834
        return self.desc.has_attr(name)

    def attr_type(self, name):
835
        """
836
        Get the type of attribute by attribute's name.
837

838 839
        Args:
            name(str): the attribute name.
840

841 842
        Returns:
            core.AttrType: the attribute type.
843
        """
F
fengjiayi 已提交
844 845
        return self.desc.attr_type(name)

W
Wu Yi 已提交
846
    def _set_attr(self, name, val):
847 848 849 850 851 852 853 854 855 856
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
857 858 859 860 861 862 863 864 865 866 867 868 869
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
870 871
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
872 873
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
874
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
875 876 877 878
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
879
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
880

F
fengjiayi 已提交
881 882 883 884 885
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
886
        """
887 888
        Get the attribute by name.

889
        Args:
890
            name(str): the attribute name.
891

892 893
        Returns:
            bool|int|str|float|list: The attribute value. The return value
894 895
            can be any valid attribute type.
        """
F
fengjiayi 已提交
896
        return self.desc.attr(name)
Y
Yu Yang 已提交
897

W
Wu Yi 已提交
898
    def _block_attr_id(self, name):
899
        """
G
gongweibao 已提交
900
        Get the block attribute's id by name.
901

902 903
        Args:
            name(str): the attribute name.
904

905 906
        Returns:
            int: the block index.
907
        """
W
Wu Yi 已提交
908
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
909

W
Wu Yi 已提交
910
    def _block_attr(self, name):
G
gongweibao 已提交
911 912 913 914 915 916 917 918 919 920
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
921
        id = self._block_attr_id(name)
G
gongweibao 已提交
922 923 924
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
925
    def _blocks_attr(self, name):
G
gongweibao 已提交
926 927 928 929 930 931 932 933 934 935
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
936
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
937 938 939 940 941
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
942
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
943 944 945 946 947 948 949 950 951 952
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
953
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
954

J
JiayiFeng 已提交
955
    def all_attrs(self):
F
fengjiayi 已提交
956
        """
957 958 959
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
960
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
961 962 963 964
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
965 966
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
967
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
968 969 970
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
971
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
972 973 974 975
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
976 977
        return attr_map

Y
Yu Yang 已提交
978

Y
Yu Yang 已提交
979
class Block(object):
980 981 982 983 984 985 986 987 988 989 990 991 992 993
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
994
        use `Program._create_block()` to create a block.
995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1009
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1010
        self.desc = program.desc.block(idx)
1011
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1012
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1013
        self.program = program
1014
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1015

1016
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1017 1018
        return self.to_string(True)

F
fengjiayi 已提交
1019 1020
    def to_string(self, throw_on_error, with_details=False):
        """
1021 1022
        Get debug string.

F
fengjiayi 已提交
1023 1024
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1025
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1026
            with_details(bool): more details about variables and parameters
1027 1028
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1029

1030 1031
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1032 1033 1034 1035
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1036
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1037 1038
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1039
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1040
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1041
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1042
            for op in self.ops:
F
fengjiayi 已提交
1043 1044
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1045 1046 1047
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1048 1049
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1050 1051
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1052 1053 1054

    __repr__ = __str__

Y
Yu Yang 已提交
1055 1056
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1057
        return self.desc.parent
Y
Yu Yang 已提交
1058

Y
Yu Yang 已提交
1059 1060 1061 1062
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1063
    def _set_forward_block_idx(self, idx):
1064 1065 1066 1067 1068 1069 1070 1071 1072
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1073
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1074

Y
Yu Yang 已提交
1075 1076
    @property
    def idx(self):
Y
Yu Yang 已提交
1077
        return self.desc.id
Y
Yu Yang 已提交
1078

Q
Qiao Longfei 已提交
1079
    def var(self, name):
1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1093
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1094 1095 1096
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1097 1098
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1099
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1100
        return v
Q
Qiao Longfei 已提交
1101

X
Xin Pan 已提交
1102
    def _find_var_recursive(self, name):
1103 1104 1105 1106 1107 1108 1109
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1110
            Variable: the Variable with the giving name. Or None if not found.
1111
        """
Y
Yu Yang 已提交
1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1136
        return None
Y
Yu Yang 已提交
1137

X
Xin Pan 已提交
1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1157

Q
Qiao Longfei 已提交
1158
    def all_parameters(self):
1159
        return list(self.iter_parameters())
1160

1161
    def iter_parameters(self):
M
minqiyang 已提交
1162
        return (item[1] for item in six.iteritems(self.vars)
1163
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1164

Y
Yu Yang 已提交
1165
    def create_var(self, *args, **kwargs):
1166
        var = Variable(block=self, *args, **kwargs)
1167 1168
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1169
        return var
Y
Yu Yang 已提交
1170

Q
Qiao Longfei 已提交
1171 1172 1173
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1174
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1175 1176
        """
        Rename variable in vars and ops' inputs and outputs
1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1189
        """
M
minqiyang 已提交
1190 1191
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1192

T
typhoonzero 已提交
1193
        if not self.has_var(name):
1194
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1195 1196
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1197
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1198 1199 1200 1201 1202 1203 1204
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1205
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1206 1207 1208 1209
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1210
        orig_var_type = v.type
M
minqiyang 已提交
1211
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1212
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1213
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1214
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1215 1216 1217 1218
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1219
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1220 1221 1222 1223 1224 1225 1226
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1227
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1228 1229
            var = Variable(
                self,
T
typhoonzero 已提交
1230
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1231 1232 1233 1234
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1235
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1236 1237 1238
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1239
        self._sync_with_cpp()
1240
        return var
T
typhoonzero 已提交
1241

W
Wu Yi 已提交
1242 1243
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1244
        self.desc._remove_var(cpt.to_bytes(name))
1245 1246
        del self.vars[name]

Y
Yu Yang 已提交
1247 1248
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1249
        param = Parameter(global_block, *args, **kwargs)
1250
        if 'initializer' in kwargs:
1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1271
        return param
Y
Yu Yang 已提交
1272

Y
Yu Yang 已提交
1273
    def append_op(self, *args, **kwargs):
1274 1275 1276 1277 1278 1279
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1280
        op_desc = self.desc.append_op()
1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
        op = Operator(
            block=self,
            desc=op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
        self.ops.append(op)
        self._trace_op(op, kwargs.get("stop_gradient", False))
        return op

    def _trace_op(self, op, stop_gradient=False):
1293
        if _in_imperative_mode():
1294
            _imperative_tracer().trace(op.iop, op.inputs, op.outputs, self.desc,
1295
                                       stop_gradient)
Y
Yu Yang 已提交
1296

W
Wu Yi 已提交
1297
    def _insert_op(self, index, *args, **kwargs):
1298 1299 1300 1301 1302 1303 1304 1305 1306
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1307 1308
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1309 1310 1311 1312
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1313
    def _remove_op(self, index):
1314 1315 1316 1317 1318 1319 1320 1321 1322
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1323 1324
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1325 1326
        del self.ops[index]

W
Wu Yi 已提交
1327
    def _slice_ops(self, start, end):
1328 1329 1330 1331 1332 1333 1334 1335 1336 1337
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1338
        return self.ops[start:end]
Y
Yancey1989 已提交
1339

W
Wu Yi 已提交
1340 1341
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
1342 1343 1344 1345 1346 1347 1348
        op = Operator(
            self,
            op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
Q
qiaolongfei 已提交
1349
        self.ops.insert(0, op)
1350
        self._trace_op(op, kwargs.get("stop_gradient", False))
Y
Yu Yang 已提交
1351 1352
        return op

W
Wu Yi 已提交
1353
    def _sync_with_cpp(self):
1354
        """
1355 1356
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1357
        """
Q
Qiao Longfei 已提交
1358 1359 1360 1361 1362
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1363
        # sync variables removed from c++ end
1364
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1365
            if not self.desc.find_var(cpt.to_bytes(var)):
1366 1367
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1368
        # sync operators from cpp
1369 1370 1371 1372
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1389 1390 1391 1392 1393

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1394
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1395 1396 1397 1398 1399 1400 1401

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1415 1416 1417 1418
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1419
    def _copy_param_info_from(self, other):
1420
        """
1421 1422
        Copy the information of parameters from the other block.

1423
        Args:
1424 1425 1426 1427 1428
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1429 1430 1431 1432 1433

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1434 1435
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1436
        for p in other.iter_parameters():
1437 1438 1439
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1440
                raise ValueError("_copy_param_info_from should be invoked with "
1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1453
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1454
                error_clip=p.error_clip,
1455 1456 1457
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1458
    def _clone_variable(self, var):
1459 1460
        """
        Clone a variable into current block.
1461

1462 1463 1464 1465
        Args:
            var: the variable to be cloned.

        Returns:
1466
            Variable: the new  variable cloned from 'var' in current block.
1467 1468
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1469 1470 1471 1472 1473
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1474 1475
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1476
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1477 1478 1479 1480 1481 1482
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1483 1484
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1485 1486 1487 1488 1489 1490 1491
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1492 1493
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1494
        return ret_var
1495

Y
Yu Yang 已提交
1496 1497

class Program(object):
D
dzhwinter 已提交
1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1509
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1510 1511

    Returns:
Y
yuyang18 已提交
1512
        A empty program.
D
dzhwinter 已提交
1513 1514

    Examples:
Y
yuyang18 已提交
1515 1516 1517 1518 1519 1520
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1521 1522 1523

    """

1524 1525
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1526 1527
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1528
        self._seed = 0
Y
yuyang18 已提交
1529
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1530
        self._op_role_var = []
T
tangwei12 已提交
1531 1532 1533 1534

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1535
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1536
        self._endpoints = []
1537
        self._trainers_endpoints = []
T
tangwei12 已提交
1538
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1539 1540 1541

    @property
    def op_role(self):
Y
yuyang18 已提交
1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1555 1556 1557 1558 1559 1560 1561 1562
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1563 1564 1565 1566 1567 1568 1569
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1570 1571 1572 1573
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1574
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1575 1576

    @contextlib.contextmanager
W
Wu Yi 已提交
1577
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1578 1579 1580 1581 1582 1583 1584
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1585
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1586 1587 1588 1589

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1590
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1591 1592
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1593 1594 1595
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1596 1597
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1598 1599 1600 1601
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1602
        yield
X
Xin Pan 已提交
1603 1604
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
1605

1606
    @contextlib.contextmanager
X
Xin Pan 已提交
1607
    def _lr_schedule_guard(self, is_with_opt=False):
1608 1609 1610 1611 1612 1613 1614
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
1615 1616 1617 1618
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
1619 1620 1621 1622 1623 1624 1625

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
1626 1627 1628 1629

        tmp_role = self._current_role
        tmp_var = self._op_role_var

1630 1631
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
1632 1633
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
1634 1635 1636
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
1637 1638
        self._op_role_var = tmp_var
        self._current_role = tmp_role
1639

1640
    def __str__(self):
Y
yuyang18 已提交
1641 1642 1643 1644 1645 1646 1647 1648 1649
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1650 1651
        return self.to_string(True)

F
fengjiayi 已提交
1652 1653 1654
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1655

F
fengjiayi 已提交
1656
        Args:
Y
yuyang18 已提交
1657 1658
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1659

Y
yuyang18 已提交
1660 1661 1662 1663
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
1664 1665
        Returns:
            str : The debug string.
Y
yuyang18 已提交
1666 1667 1668 1669

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1680 1681
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1682 1683
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1684

W
Wu Yi 已提交
1685
    def _get_desc(self):
Y
yuyang18 已提交
1686 1687 1688 1689 1690 1691 1692
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1693 1694
        return self.desc

X
version  
Xin Pan 已提交
1695 1696 1697
    def _version(self):
        return self.desc._version()

1698
    def clone(self, for_test=False):
Y
yuyang18 已提交
1699 1700 1701
        """
        Create a new, duplicated program.

1702

Y
yuyang18 已提交
1703 1704 1705 1706
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1707

Y
yuyang18 已提交
1708 1709 1710 1711
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1712 1713 1714 1715 1716
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1717 1718

        Args:
Y
yuyang18 已提交
1719 1720
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1721

D
dzhwinter 已提交
1722
        Returns:
Y
yuyang18 已提交
1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1776 1777
        """
        if for_test:
X
Xin Pan 已提交
1778
            p = self._inference_optimize(prune_read_op=False)
1779
        else:
1780
            p = Program()
G
gongweibao 已提交
1781 1782
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1783
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1784 1785 1786
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1787 1788 1789 1790

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1791
            p._sync_with_cpp()
1792

W
Wu Yi 已提交
1793
        p._copy_param_info_from(self)
W
Wu Yi 已提交
1794
        p._copy_data_info_from(self)
1795
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
1796
        return p
1797

W
Wu Yi 已提交
1798
    def _prune(self, targets):
Y
yuyang18 已提交
1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1814 1815 1816 1817 1818 1819
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1820 1821
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1822
                    # and we need to find the current op that generate this
1823 1824 1825 1826 1827 1828 1829 1830
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1831
                    t = t.op
1832 1833 1834 1835
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1836
                else:
1837 1838
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1839 1840 1841 1842

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1843 1844 1845
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1846
        res._sync_with_cpp()
1847 1848
        return res

X
Xin Pan 已提交
1849
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
1850
        """
F
fengjiayi 已提交
1851 1852 1853 1854 1855
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1856
        3. change the :code:`is_test`
Y
yuyang18 已提交
1857 1858 1859
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1860
        Args:
X
Xin Pan 已提交
1861 1862
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
1863

Y
yuyang18 已提交
1864 1865 1866 1867 1868 1869
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1870
        res = Program()
1871
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1872 1873 1874 1875

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
1876
        if prune_read_op:
1877 1878 1879 1880 1881 1882 1883 1884 1885
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1886
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1887 1888

        # change all `is_test` attributes to True
M
minqiyang 已提交
1889
        for i in six.moves.range(res.desc.num_blocks()):
1890
            block = res.desc.block(i)
M
minqiyang 已提交
1891
            for j in six.moves.range(block.op_size()):
1892 1893
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
1894
                    op._set_attr('is_test', True)
M
minqiyang 已提交
1895 1896 1897
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1898
        res._sync_with_cpp()
1899 1900
        return res

1901 1902
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1903 1904 1905 1906 1907 1908 1909
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1910
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1911 1912 1913 1914

        Returns:
            Program: A deserialized program desc.
        """
1915 1916
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1917
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1918
        p._sync_with_cpp()
1919
        return p
Y
Yu Yang 已提交
1920

D
dzhwinter 已提交
1921 1922
    @property
    def random_seed(self):
Y
yuyang18 已提交
1923 1924 1925 1926 1927 1928
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1929 1930
        return self._seed

Q
qiaolongfei 已提交
1931 1932
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1933 1934 1935
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1936 1937
        return self.desc.num_blocks()

D
dzhwinter 已提交
1938 1939 1940 1941 1942 1943
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1944
    def __repr__(self):
1945
        return self.__str__()
1946

Y
Yu Yang 已提交
1947
    def global_block(self):
Y
yuyang18 已提交
1948 1949 1950
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1951 1952
        return self.blocks[0]

Q
Qiao Longfei 已提交
1953
    def block(self, index):
Y
yuyang18 已提交
1954 1955 1956 1957 1958 1959 1960 1961
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1962 1963
        return self.blocks[index]

Y
Yu Yang 已提交
1964
    def current_block(self):
Y
yuyang18 已提交
1965 1966 1967 1968
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1969 1970
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
1971
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
1972 1973 1974 1975 1976 1977 1978 1979 1980 1981
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1982
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1983 1984 1985
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1986 1987 1988 1989
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
1990
    def _rollback(self):
Y
yuyang18 已提交
1991 1992 1993 1994 1995
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1996 1997
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
1998
    def _sync_with_cpp(self):
Y
yuyang18 已提交
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2009 2010 2011
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2012
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2013

W
Wu Yi 已提交
2014
    def _copy_param_info_from(self, other):
2015
        """
2016
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2017

Y
yuyang18 已提交
2018 2019 2020
        Notes: This is a very low level API. Users should not invoke it
        directly.

2021 2022 2023 2024 2025 2026 2027
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2028
            raise TypeError("_copy_param_info_from should be invoked with "
2029 2030 2031
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2032
            raise ValueError("_copy_param_info_from should be invoked with two "
2033
                             "program, with represent the same topology")
W
Wu Yi 已提交
2034
        self.global_block()._copy_param_info_from(other.global_block())
2035

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
        self._slice_vars_and_attrs = other._slice_vars_and_attrs
        self._endpoints = other._endpoints
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2055
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2056 2057
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2058

Y
yuyang18 已提交
2059 2060 2061
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2062 2063 2064 2065 2066 2067 2068
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2069
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2070 2071 2072
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2073
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2074
                             "program, with represent the same topology")
2075
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2076 2077 2078
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2079
    def list_vars(self):
Y
yuyang18 已提交
2080 2081 2082 2083 2084 2085
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2086
        for each_block in self.blocks:
2087
            for each_var in list(each_block.vars.values()):
2088 2089
                yield each_var

Y
Yu Yang 已提交
2090

Y
Yu Yang 已提交
2091
class Parameter(Variable):
2092
    """
2093
    Parameter is derived from Variable. A parameter is a persistable
2094
    Variable, and will be updated by optimizers after each iteration.
2095
    The training of a neural network is essentially the updating of
2096 2097
    its parameters.

2098
    Relative to a general Variable, a Parameter has several its own
2099 2100
    member variables:

2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2113 2114
    """

Y
Yu Yang 已提交
2115 2116 2117 2118 2119 2120 2121 2122 2123 2124
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2125 2126 2127

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2128 2129 2130 2131
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2132 2133
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2134
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2135

W
wanghaoshuang 已提交
2136
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2137

F
fengjiayi 已提交
2138 2139 2140
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2141 2142 2143
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2144

F
update  
fengjiayi 已提交
2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2159
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2160
            for attr_name in additional_attr:
2161 2162
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2163 2164
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2165 2166 2167 2168
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2169

Y
Yu Yang 已提交
2170
# program is a global instance.
Y
Yu Yang 已提交
2171 2172
_main_program_ = Program()
_startup_program_ = Program()
2173

2174

2175
def default_startup_program():
Y
Yu Yang 已提交
2176
    """
Y
yuyang18 已提交
2177 2178 2179 2180 2181 2182 2183 2184 2185
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2186

Y
Yu Yang 已提交
2187 2188 2189
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2190
    return _startup_program_
2191

2192

2193
def default_main_program():
Y
Yu Yang 已提交
2194
    """
Y
yuyang18 已提交
2195 2196 2197 2198 2199 2200 2201 2202 2203
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2204

Y
Yu Yang 已提交
2205 2206 2207
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2208
    return _main_program_
Y
Yu Yang 已提交
2209 2210 2211 2212 2213


def switch_main_program(program):
    """
    Switch the main program to a new program.
2214

Y
Yu Yang 已提交
2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2229
    Switch the startup program to a new program
Y
Yu Yang 已提交
2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2245 2246 2247
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2248

Y
Yu Yang 已提交
2249
    Examples:
Y
yuyang18 已提交
2250 2251 2252 2253 2254 2255 2256 2257 2258 2259

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2260

Y
Yu Yang 已提交
2261
    Examples:
Y
yuyang18 已提交
2262 2263 2264 2265 2266 2267

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2268

Y
Yu Yang 已提交
2269
    Args:
Y
yuyang18 已提交
2270
        main_program(Program): New main program inside `with` statement.
2271
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2285 2286


W
Wu Yi 已提交
2287
def _get_var(name, program=None):
X
xuwei06 已提交
2288
    """
Y
yuyang18 已提交
2289
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2290

X
xuwei06 已提交
2291 2292 2293
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2294
        If None, default_global_program() will be used.
X
xuwei06 已提交
2295 2296 2297 2298 2299 2300 2301

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2302
    assert isinstance(program, Program)
X
xuwei06 已提交
2303 2304

    return program.global_block().var(name)
2305 2306 2307 2308 2309 2310 2311 2312 2313


@contextlib.contextmanager
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
    yield
    _imperative_tracer_ = tmp_trace