layer.cc 11.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/layer.h"
M
minqiyang 已提交
16

17 18 19 20 21 22 23 24
#include <deque>
#include <limits>
#include <map>
#include <random>
#include <utility>

#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
25
#include "paddle/fluid/framework/operator.h"
M
minqiyang 已提交
26 27 28
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/platform/device_context.h"
29 30 31 32 33
#include "paddle/fluid/string/printf.h"

namespace paddle {
namespace imperative {

X
polish  
Xin Pan 已提交
34 35
const char* PyLayer::kFwdInp = "X";
const char* PyLayer::kFwdOut = "Out";
X
polish  
Xin Pan 已提交
36

X
Xin Pan 已提交
37 38
std::map<int, py::object> py_funcs_;

39 40
using framework::Variable;

M
minqiyang 已提交
41 42 43 44 45 46 47 48 49 50 51
namespace detail {

template <typename T>
class TensorAddToFunctor : public boost::static_visitor<> {
 public:
  TensorAddToFunctor(int64_t numel, const T* x, T* y)
      : numel_(numel), x_(x), y_(y) {}

  void operator()(const platform::CPUPlace& place) {
    platform::CPUDeviceContext* ctx = dynamic_cast<platform::CPUDeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
P
Paddle CI 已提交
52
    auto blas = operators::math::GetBlas<platform::CPUDeviceContext, T>(*ctx);
M
minqiyang 已提交
53 54 55 56 57 58 59 60
    blas.AXPY(numel_, 1., x_, y_);
  }

#ifdef PADDLE_WITH_CUDA
  void operator()(const platform::CUDAPlace& place) {
    platform::CUDADeviceContext* ctx =
        dynamic_cast<platform::CUDADeviceContext*>(
            platform::DeviceContextPool::Instance().Get(place));
P
Paddle CI 已提交
61
    auto blas = operators::math::GetBlas<platform::CUDADeviceContext, T>(*ctx);
M
minqiyang 已提交
62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
    blas.AXPY(numel_, 1., x_, y_);
  }
#else
  void operator()(const platform::CUDAPlace& place) {
    PADDLE_THROW("Do NOT support gradient merge in place %s", place);
  }
#endif

  // there is NO blas in CUDAPinnedPlace
  void operator()(const platform::CUDAPinnedPlace& place) {
    PADDLE_THROW("Do NOT support gradient merge in place %s", place);
  }

 private:
  int64_t numel_;
  const T* x_;
  T* y_;
};

}  // namespace detail

P
Paddle CI 已提交
83
void AddTo(Variable* src, Variable* dst, platform::Place place) {
M
minqiyang 已提交
84 85 86
  framework::Tensor* dst_tensor = dst->GetMutable<framework::LoDTensor>();
  framework::Tensor* src_tensor = src->GetMutable<framework::LoDTensor>();

M
minqiyang 已提交
87 88 89 90 91
  // FIXME(minqiyang): loss_grad op will pass a zero grad of label
  // ugly fix for it
  if (src_tensor->numel() == 0) {
    return;
  }
M
minqiyang 已提交
92

93 94 95
  PADDLE_ENFORCE(dst_tensor->numel() == src_tensor->numel(),
                 "dst_numel %lld vs. src_numel %lld", dst_tensor->numel(),
                 src_tensor->numel());
M
minqiyang 已提交
96 97 98 99 100

  detail::TensorAddToFunctor<float> func(
      src_tensor->numel(), src_tensor->data<float>(),
      dst_tensor->mutable_data<float>(place));
  boost::apply_visitor(func, place);
101 102 103 104
}

class Autograd {
 public:
X
Xin Pan 已提交
105
  Autograd() {}
106 107

  void RunBackward(VarBase* var) {
X
Xin Pan 已提交
108
    if (var->IsStopGradient()) {
109 110
      return;
    }
X
Xin Pan 已提交
111
    VLOG(3) << "start autograd";
112 113

    std::deque<OpBase*> ready;
X
Xin Pan 已提交
114
    ready.push_back(var->PreOp());
115

X
Xin Pan 已提交
116
    std::map<OpBase*, int> dep_counts = ComputeDepCounts(var->PreOp());
117 118 119 120

    while (!ready.empty()) {
      OpBase* ready_op = ready.front();
      ready.pop_front();
X
Xin Pan 已提交
121 122 123 124 125 126 127
      std::map<std::string, std::vector<VarBase*>> input_grads =
          ready_op->ApplyGrad();

      for (auto it : input_grads) {
        const std::vector<VarBase*>& ingrads = it.second;
        for (size_t i = 0; i < ingrads.size(); ++i) {
          if (!ingrads[i]) continue;
X
Xin Pan 已提交
128
          if (ready_op->input_vars_[it.first][i]->IsStopGradient()) {
129 130
            continue;
          }
X
Xin Pan 已提交
131
          OpBase* pre_op = ready_op->pre_ops_[it.first][i];
X
Xin Pan 已提交
132 133 134 135 136 137 138 139
          if (!pre_op) continue;

          dep_counts[pre_op] -= 1;
          PADDLE_ENFORCE(dep_counts[pre_op] >= 0);
          bool pre_op_ready = dep_counts[pre_op] == 0;
          if (pre_op_ready) {
            ready.push_back(pre_op);
          }
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
        }
      }
    }
  }

 private:
  std::map<OpBase*, int> ComputeDepCounts(OpBase* op) {
    std::map<OpBase*, int> ret;

    std::deque<OpBase*> queue;
    queue.push_back(op);
    std::unordered_set<OpBase*> visited;
    visited.insert(op);
    while (!queue.empty()) {
      OpBase* candidate = queue.front();
      queue.pop_front();
X
Xin Pan 已提交
156
      for (auto it : candidate->pre_ops_) {
X
Xin Pan 已提交
157 158
        for (OpBase* pre_op : it.second) {
          if (!pre_op) continue;
M
minqiyang 已提交
159 160
          VLOG(5) << "op dep " << candidate->op_desc_->Type() << " <---- "
                  << it.first << " <---- " << pre_op->op_desc_->Type();
X
Xin Pan 已提交
161 162 163 164 165
          if (visited.find(pre_op) == visited.end()) {
            visited.insert(pre_op);
            queue.push_back(pre_op);
          }
          ret[pre_op] += 1;
166 167 168 169 170 171 172
        }
      }
    }
    return ret;
  }
};

M
minqiyang 已提交
173 174
std::unique_ptr<VarBase> VarBase::NewVarBase(const platform::Place& dst_place,
                                             const bool blocking) const {
M
minqiyang 已提交
175 176 177
  PADDLE_ENFORCE(var_->IsInitialized(),
                 "Variable must be initialized when getting numpy tensor");

M
minqiyang 已提交
178
  std::unique_ptr<VarBase> new_var(new VarBase());
P
Paddle CI 已提交
179 180 181 182
  framework::LoDTensor* tensor =
      new_var->var_->GetMutable<framework::LoDTensor>();
  tensor->Resize(var_->Get<framework::LoDTensor>().dims());
  tensor->set_lod(var_->Get<framework::LoDTensor>().lod());
M
minqiyang 已提交
183

P
Paddle CI 已提交
184
  if (blocking) {
M
minqiyang 已提交
185
    platform::DeviceContext* dev_ctx =
P
Paddle CI 已提交
186 187 188 189 190
        platform::DeviceContextPool::Instance().Get(dst_place);

    framework::TensorCopySync(var_->Get<framework::LoDTensor>(), dst_place,
                              tensor);

M
minqiyang 已提交
191 192
    dev_ctx->Wait();
  } else {
P
Paddle CI 已提交
193 194 195 196 197
    framework::TensorCopy(var_->Get<framework::LoDTensor>(), dst_place, tensor);
  }

  if (platform::is_gpu_place(dst_place)) {
    VLOG(3) << "copy tensor " << var_desc_->Name() << " from gpu";
M
minqiyang 已提交
198 199
  }

P
Paddle CI 已提交
200
  return new_var;
M
minqiyang 已提交
201 202
}

M
minqiyang 已提交
203
framework::LoDTensor& VarBase::GradValue() {
204
  VLOG(3) << "get var grad " << var_desc_->Name();
M
minqiyang 已提交
205
  return *(grads_->var_->GetMutable<framework::LoDTensor>());
206 207
}

X
Xin Pan 已提交
208
std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() {
X
Xin Pan 已提交
209
  if (grad_op_descs_.empty() && backward_id_ <= 0) {
210
    LOG(WARNING) << "op with no grad: " << op_desc_->Type();
X
Xin Pan 已提交
211
    return {};
212 213
  }

X
Xin Pan 已提交
214
  std::vector<framework::VariableValueMap> grad_outputs;
X
Xin Pan 已提交
215 216
  if (backward_id_ > 0) {
    VLOG(3) << "py_layer_grad";
X
polish  
Xin Pan 已提交
217
    grad_outputs.resize(1);
X
Xin Pan 已提交
218 219 220 221
    grad_outputs[0][framework::GradVarName(PyLayer::kFwdOut)] =
        PyLayer::ApplyGrad(
            backward_id_,
            grad_input_vars_[0][framework::GradVarName(PyLayer::kFwdInp)]);
X
Xin Pan 已提交
222
  } else {
X
Xin Pan 已提交
223 224 225 226 227 228 229 230 231 232 233 234
    grad_outputs.resize(grad_op_descs_.size());
    for (size_t k = 0; k < grad_op_descs_.size(); ++k) {
      framework::OpDesc* grad_op_desc = grad_op_descs_[k];
      VLOG(3) << "op grad " << grad_op_desc->Type();
      for (auto it : grad_output_vars_[k]) {
        auto& outputs = grad_outputs[k][it.first];
        for (size_t i = 0; i < it.second.size(); ++i) {
          // Allocate a new variable
          Variable* tmp_var = new framework::Variable();
          tmp_var->GetMutable<framework::LoDTensor>();
          outputs.push_back(tmp_var);
        }
X
polish  
Xin Pan 已提交
235
      }
236

X
Xin Pan 已提交
237
      framework::RuntimeContext ctx(grad_input_vars_[k], grad_outputs[k]);
238

X
Xin Pan 已提交
239 240 241
      // No need to do compile time infer shape here.
      // grad_op_desc_->InferShape(*block_);
      grad_op_desc->InferVarType(block_);
X
Xin Pan 已提交
242

X
Xin Pan 已提交
243 244 245 246 247
      std::unique_ptr<framework::OperatorBase> opbase =
          framework::OpRegistry::CreateOp(*grad_op_desc);
      framework::OperatorWithKernel* op_kernel =
          dynamic_cast<framework::OperatorWithKernel*>(opbase.get());
      PADDLE_ENFORCE_NOT_NULL(op_kernel, "only support op with kernel");
X
Xin Pan 已提交
248

X
Xin Pan 已提交
249 250 251 252 253
      framework::Scope scope;
      PreparedOp p = PreparedOp::Prepare(ctx, *op_kernel, place_);
      p.op.RuntimeInferShape(scope, place_, ctx);
      p.func(framework::ExecutionContext(p.op, scope, *p.dev_ctx, p.ctx));
    }
X
Xin Pan 已提交
254
  }
X
Xin Pan 已提交
255

X
Xin Pan 已提交
256 257 258 259 260 261 262 263 264 265 266 267
  for (size_t k = 0; k < grad_output_vars_.size(); ++k) {
    for (auto it : grad_output_vars_[k]) {
      auto& outputs = grad_outputs[k][it.first];
      auto& origin_outputs = it.second;
      PADDLE_ENFORCE_EQ(outputs.size(), origin_outputs.size());

      for (size_t i = 0; i < outputs.size(); ++i) {
        framework::Variable* grad = outputs[i];
        framework::Variable* orig_grad = origin_outputs[i];
        AddTo(grad, orig_grad, place_);
        delete grad;
      }
268 269
    }
  }
X
Xin Pan 已提交
270

X
Xin Pan 已提交
271
  return input_vars_;
272 273
}

X
Xin Pan 已提交
274
void VarBase::RunBackward() {
275
  if (!pre_op_) return;
X
Xin Pan 已提交
276

X
Xin Pan 已提交
277
  VLOG(3) << "start backward";
M
minqiyang 已提交
278
  auto grads_t = grads_->var_->GetMutable<framework::LoDTensor>();
M
minqiyang 已提交
279 280 281 282
  operators::math::set_constant(
      *(platform::DeviceContextPool::Instance().Get(
          var_->GetMutable<framework::LoDTensor>()->place())),
      grads_t, 1.0);
X
Xin Pan 已提交
283

X
Xin Pan 已提交
284 285 286
  PADDLE_ENFORCE(
      grads_ ==
      pre_op_->output_vars_[pre_op_out_name_][pre_op_out_idx_]->grads_);
X
Xin Pan 已提交
287
  Autograd().RunBackward(this);
288 289
}

X
Xin Pan 已提交
290 291 292 293
void PyLayer::RegisterFunc(int func_id, const py::object& py_func) {
  py_funcs_[func_id] = py_func;
}

X
polish  
Xin Pan 已提交
294 295
int PyLayer::NumFuncs() { return py_funcs_.size(); }

X
Xin Pan 已提交
296
std::vector<VarBase*> PyLayer::Apply(int func_id,
X
Xin Pan 已提交
297
                                     const std::vector<VarBase*>& inputs) {
X
polish  
Xin Pan 已提交
298
  std::vector<framework::Variable*> invars;
X
Xin Pan 已提交
299
  for (const VarBase* in : inputs) {
X
polish  
Xin Pan 已提交
300
    invars.push_back(in->var_);
X
Xin Pan 已提交
301 302
  }
  PADDLE_ENFORCE(py_funcs_.find(func_id) != py_funcs_.end());
X
polish  
Xin Pan 已提交
303 304 305
  std::vector<Variable*> outvars = CallPythonFunc(py_funcs_[func_id], invars);
  std::vector<VarBase*> ret;
  for (Variable* v : outvars) {
M
minqiyang 已提交
306
    ret.push_back(new VarBase(v, new VarBase(true)));
X
polish  
Xin Pan 已提交
307
  }
X
Xin Pan 已提交
308 309 310
  return ret;
}

X
polish  
Xin Pan 已提交
311 312 313 314 315
std::vector<Variable*> PyLayer::ApplyGrad(
    int func_id, const std::vector<framework::Variable*>& inputs) {
  PADDLE_ENFORCE(py_funcs_.find(func_id) != py_funcs_.end());
  return CallPythonFunc(py_funcs_[func_id], inputs);
}
X
Xin Pan 已提交
316

X
polish  
Xin Pan 已提交
317 318 319 320 321 322 323
std::vector<framework::Variable*> PyLayer::CallPythonFunc(
    const py::object& callable, const std::vector<framework::Variable*>& ins) {
  py::gil_scoped_acquire guard;
  py::tuple in_args(ins.size());
  for (size_t i = 0; i < ins.size(); ++i) {
    const framework::LoDTensor& t = ins[i]->Get<framework::LoDTensor>();
    in_args[i] = t.IsInitialized() ? py::cast(t) : py::cast(nullptr);
X
Xin Pan 已提交
324
  }
X
polish  
Xin Pan 已提交
325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
  VLOG(3) << "pyfunc in " << py::len(in_args);

  // TODO(panyx0718): Who owns the returned LoDTensor.
  auto ret = callable(in_args);
  auto ret_tuple = py::cast<py::tuple>(ret);
  size_t ret_num = py::len(ret_tuple);
  std::vector<framework::Variable*> outs;
  VLOG(3) << "pyfunc out " << ret_num;
  for (size_t i = 0; i < ret_num; ++i) {
    try {
      auto* py_out_tensor = py::cast<framework::LoDTensor*>(ret_tuple[i]);
      PADDLE_ENFORCE_NOT_NULL(py_out_tensor,
                              "Output tensor %d should not be nullptr", i);
      auto* var = new framework::Variable();
      auto* tensor = var->GetMutable<framework::LoDTensor>();
      tensor->ShareDataWith(*py_out_tensor);
      tensor->set_lod(py_out_tensor->lod());
      outs.push_back(var);
    } catch (py::cast_error&) {
      PADDLE_THROW("The %d-th output must be LoDTensor", i);
    }
  }
  return outs;
X
Xin Pan 已提交
348 349
}

350 351
}  // namespace imperative
}  // namespace paddle