layer.cc 7.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/layer.h"
#include <deque>
#include <limits>
#include <map>
#include <random>
#include <utility>

#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/string/printf.h"

namespace paddle {
namespace imperative {

using framework::Variable;

void AddTo(Variable* src, Variable* dst) {
  framework::LoDTensor* dst_tensor = dst->GetMutable<framework::LoDTensor>();
  framework::LoDTensor* src_tensor = src->GetMutable<framework::LoDTensor>();
  PADDLE_ENFORCE(dst_tensor->numel() == src_tensor->numel(), "%lld vs %lld",
                 dst_tensor->numel(), src_tensor->numel());
  float* dst_data = dst_tensor->mutable_data<float>(platform::CPUPlace());
  const float* src_data = src_tensor->data<float>();
  for (size_t i = 0; i < src_tensor->numel(); ++i) {
    dst_data[i] += src_data[i];
  }
}

class Autograd {
 public:
  explicit Autograd(framework::Scope* scope) : scope_(scope) {}

  void RunBackward(VarBase* var) {
    PADDLE_ENFORCE(var->pre_op_->op_desc_);
    // TODO(panyx0718): Only create for vars that "require_grad"
    (*var->pre_op_->output_vars_)[var->pre_op_out_idx_]->grads_ = var->grads_;

    std::deque<OpBase*> ready;
    ready.push_back(var->pre_op_);

    std::map<OpBase*, int> dep_counts = ComputeDepCounts(var->pre_op_);

    while (!ready.empty()) {
      OpBase* ready_op = ready.front();
      ready.pop_front();
      std::vector<Variable*> input_grads = ready_op->ApplyGrad(scope_);

      for (size_t i = 0; i < input_grads.size(); ++i) {
        if (!input_grads[i]) continue;
        OpBase* pre_op = ready_op->pre_ops_->at(i);
        if (!pre_op) continue;

        dep_counts[pre_op] -= 1;
        PADDLE_ENFORCE(dep_counts[pre_op] >= 0);
        bool pre_op_ready = dep_counts[pre_op] == 0;
        if (pre_op_ready) {
          ready.push_back(pre_op);
        }
      }
    }
  }

 private:
  std::map<OpBase*, int> ComputeDepCounts(OpBase* op) {
    std::map<OpBase*, int> ret;

    std::deque<OpBase*> queue;
    queue.push_back(op);
    std::unordered_set<OpBase*> visited;
    visited.insert(op);
    while (!queue.empty()) {
      OpBase* candidate = queue.front();
      queue.pop_front();
      for (OpBase* pre_op : *(candidate->pre_ops_)) {
        if (!pre_op) continue;
        if (visited.find(pre_op) == visited.end()) {
          visited.insert(pre_op);
          queue.push_back(pre_op);
        }
        ret[pre_op] += 1;
      }
    }

    return ret;
  }

  framework::Scope* scope_;
};

framework::Variable* CreateVariable(const std::string& name,
                                    const framework::DDim& dim, float val,
                                    framework::Scope* scope,
                                    bool random_name = true) {
  std::string varname = name;
  if (random_name) {
    std::mt19937 rng;
    rng.seed(std::random_device()());
    std::uniform_int_distribution<std::mt19937::result_type> dist6(
        1, std::numeric_limits<int>::max());
    int id = dist6(rng);
    varname = string::Sprintf("%s@%d", varname, id);
  }

  VLOG(3) << "creating var " << varname;
  framework::Variable* var = scope->Var(varname);
  framework::LoDTensor* tensor = var->GetMutable<framework::LoDTensor>();

  float* data = tensor->mutable_data<float>(dim, platform::CPUPlace());
  std::fill(data, data + tensor->numel(), val);
  return var;
}

framework::LoDTensor& VarBase::Grad() {
  VLOG(3) << "get var grad " << var_desc_->Name();
  return *grads_->GetMutable<framework::LoDTensor>();
}

void VarBase::ApplyGrad(framework::Scope* scope, Variable* grad) {
  VLOG(3) << "apply var grad " << var_desc_->Name() << " "
          << grad->Get<framework::LoDTensor>().data<float>()[0];
  if (!grads_) {
    grads_ =
        CreateVariable(string::Sprintf("%s@IGrad", var_desc_->Name()),
                       var_->Get<framework::LoDTensor>().dims(), 0.0, scope);
  }
  AddTo(grad, grads_);
  VLOG(3) << "grad_ after apply var grad " << var_desc_->Name() << " "
          << grads_->Get<framework::LoDTensor>().data<float>()[0];
}

std::vector<Variable*> OpBase::ApplyGrad(framework::Scope* scope) {
  VLOG(3) << "op grad " << grad_op_desc_->Type();

  for (const std::string& grad_invar : grad_op_desc_->InputArgumentNames()) {
    if (grad_to_var_->find(grad_invar) == grad_to_var_->end()) {
      // grad op inputs can be forward inputs, so not in grad_to_var.
      continue;
    }
    VLOG(3) << "op grad in var " << grad_invar;
    block_->FindRecursiveOrCreateVar(grad_invar);
    framework::Variable* var = scope->Var(grad_invar);
    const std::string& invar = grad_to_var_->at(grad_invar);
    for (VarBase* varbase : *output_vars_) {
      // Use the accumulated grads_ by sharing the input with grads_.
      if (varbase->var_desc_->Name() == invar) {
        var->GetMutable<framework::LoDTensor>()->ShareDataWith(
            varbase->grads_->Get<framework::LoDTensor>());
        break;
      }
    }
  }

  for (const std::string& outvar : grad_op_desc_->OutputArgumentNames()) {
    VLOG(3) << "grad outvar " << outvar;
    block_->FindRecursiveOrCreateVar(outvar);
    framework::Variable* var = scope->Var(outvar);
    if (!var->IsInitialized()) {
      framework::VarDesc* var_desc = block_->FindVar(outvar);
      if (var_desc->GetType() == framework::proto::VarType::LOD_TENSOR) {
        var->GetMutable<framework::LoDTensor>();
      } else {
        LOG(ERROR) << "tracer doesn't support yet";
      }
    }
  }
  grad_op_desc_->InferShape(*block_);
  grad_op_desc_->InferVarType(block_);
  std::unique_ptr<framework::OperatorBase> opbase =
      framework::OpRegistry::CreateOp(*grad_op_desc_);

  opbase->Run(*scope, platform::CPUPlace());

  // `ret` matches exactly with `input_vars_` of forward op.
  std::vector<Variable*> ret;
  for (size_t i = 0; i < input_vars_->size(); ++i) {
    bool found = false;
X
Xin Pan 已提交
191
    VarBase* origin_var = (*input_vars_)[i];
192 193 194
    for (const std::string& outvar : grad_op_desc_->OutputArgumentNames()) {
      Variable* var = scope->FindVar(outvar);
      std::string orig_var = grad_to_var_->at(outvar);
X
Xin Pan 已提交
195 196 197
      if (origin_var->var_desc_->Name() != orig_var) {
        continue;
      }
198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
      VLOG(3) << "apply grad " << outvar << " with origin " << orig_var;
      origin_var->ApplyGrad(scope, var);
      found = true;
      ret.push_back(var);
      // TODO(panyx0718): There might be another outvar with the same name.
      // In that case, it doesn't matter the first one or the second one is
      // used.
      break;
    }
    if (!found) {
      ret.push_back(nullptr);
    }
  }
  return ret;
}

void VarBase::RunBackward(framework::Scope* scope) {
  grads_ = CreateVariable(framework::GradVarName(var_desc_->Name()),
                          var_->Get<framework::LoDTensor>().dims(), 1.0, scope,
                          false);
  if (!pre_op_) return;
  Autograd(scope).RunBackward(this);
}

}  // namespace imperative
}  // namespace paddle