layer.cc 9.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/layer.h"
M
minqiyang 已提交
16

17 18 19 20 21 22 23 24
#include <deque>
#include <limits>
#include <map>
#include <random>
#include <utility>

#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
25
#include "paddle/fluid/framework/operator.h"
M
minqiyang 已提交
26 27 28
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/platform/device_context.h"
29 30 31 32 33
#include "paddle/fluid/string/printf.h"

namespace paddle {
namespace imperative {

X
Xin Pan 已提交
34 35
std::map<int, py::object> py_funcs_;

36 37
using framework::Variable;

M
minqiyang 已提交
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
namespace detail {

template <typename T>
class TensorAddToFunctor : public boost::static_visitor<> {
 public:
  TensorAddToFunctor(int64_t numel, const T* x, T* y)
      : numel_(numel), x_(x), y_(y) {}

  void operator()(const platform::CPUPlace& place) {
    platform::CPUDeviceContext* ctx = dynamic_cast<platform::CPUDeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto blas =
        operators::math::GetBlas<platform::CPUDeviceContext, float>(*ctx);
    blas.AXPY(numel_, 1., x_, y_);
  }

#ifdef PADDLE_WITH_CUDA
  void operator()(const platform::CUDAPlace& place) {
    platform::CUDADeviceContext* ctx =
        dynamic_cast<platform::CUDADeviceContext*>(
            platform::DeviceContextPool::Instance().Get(place));
    auto blas =
        operators::math::GetBlas<platform::CUDADeviceContext, float>(*ctx);
    blas.AXPY(numel_, 1., x_, y_);
  }
#else
  void operator()(const platform::CUDAPlace& place) {
    PADDLE_THROW("Do NOT support gradient merge in place %s", place);
  }
#endif

  // there is NO blas in CUDAPinnedPlace
  void operator()(const platform::CUDAPinnedPlace& place) {
    PADDLE_THROW("Do NOT support gradient merge in place %s", place);
  }

 private:
  int64_t numel_;
  const T* x_;
  T* y_;
};

}  // namespace detail

void AddGradTo(Variable* src, Variable* dst, platform::Place place) {
  framework::Tensor* dst_tensor = dst->GetMutable<framework::LoDTensor>();
  framework::Tensor* src_tensor = src->GetMutable<framework::LoDTensor>();

M
minqiyang 已提交
86 87 88 89 90
  // FIXME(minqiyang): loss_grad op will pass a zero grad of label
  // ugly fix for it
  if (src_tensor->numel() == 0) {
    return;
  }
M
minqiyang 已提交
91

92 93 94
  PADDLE_ENFORCE(dst_tensor->numel() == src_tensor->numel(),
                 "dst_numel %lld vs. src_numel %lld", dst_tensor->numel(),
                 src_tensor->numel());
M
minqiyang 已提交
95 96 97 98 99

  detail::TensorAddToFunctor<float> func(
      src_tensor->numel(), src_tensor->data<float>(),
      dst_tensor->mutable_data<float>(place));
  boost::apply_visitor(func, place);
100 101 102 103
}

class Autograd {
 public:
X
Xin Pan 已提交
104
  Autograd() {}
105 106

  void RunBackward(VarBase* var) {
107 108 109
    if (var->stop_gradient_) {
      return;
    }
X
Xin Pan 已提交
110
    VLOG(3) << "start autograd";
111 112 113 114 115 116 117 118 119

    std::deque<OpBase*> ready;
    ready.push_back(var->pre_op_);

    std::map<OpBase*, int> dep_counts = ComputeDepCounts(var->pre_op_);

    while (!ready.empty()) {
      OpBase* ready_op = ready.front();
      ready.pop_front();
X
Xin Pan 已提交
120 121 122 123 124 125 126
      std::map<std::string, std::vector<VarBase*>> input_grads =
          ready_op->ApplyGrad();

      for (auto it : input_grads) {
        const std::vector<VarBase*>& ingrads = it.second;
        for (size_t i = 0; i < ingrads.size(); ++i) {
          if (!ingrads[i]) continue;
127 128 129
          if (ready_op->input_vars_[it.first][i]->stop_gradient_) {
            continue;
          }
X
Xin Pan 已提交
130
          OpBase* pre_op = ready_op->pre_ops_[it.first][i];
X
Xin Pan 已提交
131 132 133 134 135 136 137 138
          if (!pre_op) continue;

          dep_counts[pre_op] -= 1;
          PADDLE_ENFORCE(dep_counts[pre_op] >= 0);
          bool pre_op_ready = dep_counts[pre_op] == 0;
          if (pre_op_ready) {
            ready.push_back(pre_op);
          }
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
        }
      }
    }
  }

 private:
  std::map<OpBase*, int> ComputeDepCounts(OpBase* op) {
    std::map<OpBase*, int> ret;

    std::deque<OpBase*> queue;
    queue.push_back(op);
    std::unordered_set<OpBase*> visited;
    visited.insert(op);
    while (!queue.empty()) {
      OpBase* candidate = queue.front();
      queue.pop_front();
X
Xin Pan 已提交
155
      for (auto it : candidate->pre_ops_) {
X
Xin Pan 已提交
156 157 158 159 160 161 162
        for (OpBase* pre_op : it.second) {
          if (!pre_op) continue;
          if (visited.find(pre_op) == visited.end()) {
            visited.insert(pre_op);
            queue.push_back(pre_op);
          }
          ret[pre_op] += 1;
163 164 165 166 167 168 169
        }
      }
    }
    return ret;
  }
};

M
minqiyang 已提交
170
framework::LoDTensor& VarBase::GradValue() {
171
  VLOG(3) << "get var grad " << var_desc_->Name();
M
minqiyang 已提交
172
  return *(grads_->var_->GetMutable<framework::LoDTensor>());
173 174
}

X
Xin Pan 已提交
175
std::map<std::string, std::vector<VarBase*>> OpBase::ApplyGrad() {
X
Xin Pan 已提交
176
  if (!grad_op_desc_ && backward_id_ <= 0) {
177
    LOG(WARNING) << "op with no grad: " << op_desc_->Type();
X
Xin Pan 已提交
178
    return {};
179 180
  }

X
Xin Pan 已提交
181
  std::map<std::string, std::vector<framework::Variable*>> grad_outputs;
X
Xin Pan 已提交
182 183
  if (backward_id_ > 0) {
    VLOG(3) << "py_layer_grad";
X
polish  
Xin Pan 已提交
184 185
    grad_outputs["Out@GRAD"] =
        PyLayer::ApplyGrad(backward_id_, grad_input_vars_["X@GRAD"]);
X
Xin Pan 已提交
186 187
  } else {
    VLOG(3) << "op grad " << grad_op_desc_->Type();
X
polish  
Xin Pan 已提交
188 189 190 191 192 193 194 195
    for (auto it : grad_output_vars_) {
      auto& outputs = grad_outputs[it.first];
      for (size_t i = 0; i < it.second.size(); ++i) {
        // Allocate a new variable
        Variable* tmp_var = new framework::Variable();
        tmp_var->GetMutable<framework::LoDTensor>();
        outputs.push_back(tmp_var);
      }
196 197
    }

X
Xin Pan 已提交
198
    framework::RuntimeContext ctx(grad_input_vars_, grad_outputs);
199

X
Xin Pan 已提交
200 201 202
    // No need to do compile time infer shape here.
    // grad_op_desc_->InferShape(*block_);
    grad_op_desc_->InferVarType(block_);
X
Xin Pan 已提交
203

X
Xin Pan 已提交
204 205 206 207 208
    std::unique_ptr<framework::OperatorBase> opbase =
        framework::OpRegistry::CreateOp(*grad_op_desc_);
    framework::OperatorWithKernel* op_kernel =
        dynamic_cast<framework::OperatorWithKernel*>(opbase.get());
    PADDLE_ENFORCE_NOT_NULL(op_kernel, "only support op with kernel");
X
Xin Pan 已提交
209

X
Xin Pan 已提交
210
    framework::Scope scope;
M
minqiyang 已提交
211
    platform::Place place = expected_place_;
X
Xin Pan 已提交
212 213 214 215
    PreparedOp p = PreparedOp::Prepare(ctx, *op_kernel, place);
    p.op.RuntimeInferShape(scope, place, ctx);
    p.func(framework::ExecutionContext(p.op, scope, *p.dev_ctx, p.ctx));
  }
X
Xin Pan 已提交
216 217 218 219

  for (auto it : grad_output_vars_) {
    auto& outputs = grad_outputs[it.first];
    auto& origin_outputs = it.second;
X
polish  
Xin Pan 已提交
220
    PADDLE_ENFORCE_EQ(outputs.size(), origin_outputs.size());
221

X
Xin Pan 已提交
222
    for (size_t i = 0; i < outputs.size(); ++i) {
X
polish  
Xin Pan 已提交
223
      framework::Variable* grad = outputs[i];
M
minqiyang 已提交
224
      framework::Variable* orig_grad = origin_outputs[i];
M
minqiyang 已提交
225
      AddGradTo(grad, orig_grad, expected_place_);
X
polish  
Xin Pan 已提交
226
      delete grad;
227 228
    }
  }
X
Xin Pan 已提交
229
  return input_vars_;
230 231
}

X
Xin Pan 已提交
232
void VarBase::RunBackward() {
233
  if (!pre_op_) return;
X
Xin Pan 已提交
234

X
Xin Pan 已提交
235
  VLOG(3) << "start backward";
M
minqiyang 已提交
236
  auto grads_t = grads_->var_->GetMutable<framework::LoDTensor>();
M
minqiyang 已提交
237 238 239 240
  operators::math::set_constant(
      *(platform::DeviceContextPool::Instance().Get(
          var_->GetMutable<framework::LoDTensor>()->place())),
      grads_t, 1.0);
X
Xin Pan 已提交
241

X
Xin Pan 已提交
242 243 244
  PADDLE_ENFORCE(
      grads_ ==
      pre_op_->output_vars_[pre_op_out_name_][pre_op_out_idx_]->grads_);
X
Xin Pan 已提交
245
  Autograd().RunBackward(this);
246 247
}

X
Xin Pan 已提交
248 249 250 251
void PyLayer::RegisterFunc(int func_id, const py::object& py_func) {
  py_funcs_[func_id] = py_func;
}

X
polish  
Xin Pan 已提交
252 253
int PyLayer::NumFuncs() { return py_funcs_.size(); }

X
Xin Pan 已提交
254
std::vector<VarBase*> PyLayer::Apply(int func_id,
X
Xin Pan 已提交
255
                                     const std::vector<VarBase*>& inputs) {
X
polish  
Xin Pan 已提交
256
  std::vector<framework::Variable*> invars;
X
Xin Pan 已提交
257
  for (const VarBase* in : inputs) {
X
polish  
Xin Pan 已提交
258
    invars.push_back(in->var_);
X
Xin Pan 已提交
259 260
  }
  PADDLE_ENFORCE(py_funcs_.find(func_id) != py_funcs_.end());
X
polish  
Xin Pan 已提交
261 262 263
  std::vector<Variable*> outvars = CallPythonFunc(py_funcs_[func_id], invars);
  std::vector<VarBase*> ret;
  for (Variable* v : outvars) {
264
    ret.push_back(new VarBase(v, new VarBase(true)));
X
polish  
Xin Pan 已提交
265
  }
X
Xin Pan 已提交
266 267 268
  return ret;
}

X
polish  
Xin Pan 已提交
269 270 271 272 273
std::vector<Variable*> PyLayer::ApplyGrad(
    int func_id, const std::vector<framework::Variable*>& inputs) {
  PADDLE_ENFORCE(py_funcs_.find(func_id) != py_funcs_.end());
  return CallPythonFunc(py_funcs_[func_id], inputs);
}
X
Xin Pan 已提交
274

X
polish  
Xin Pan 已提交
275 276 277 278 279 280 281
std::vector<framework::Variable*> PyLayer::CallPythonFunc(
    const py::object& callable, const std::vector<framework::Variable*>& ins) {
  py::gil_scoped_acquire guard;
  py::tuple in_args(ins.size());
  for (size_t i = 0; i < ins.size(); ++i) {
    const framework::LoDTensor& t = ins[i]->Get<framework::LoDTensor>();
    in_args[i] = t.IsInitialized() ? py::cast(t) : py::cast(nullptr);
X
Xin Pan 已提交
282
  }
X
polish  
Xin Pan 已提交
283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
  VLOG(3) << "pyfunc in " << py::len(in_args);

  // TODO(panyx0718): Who owns the returned LoDTensor.
  auto ret = callable(in_args);
  auto ret_tuple = py::cast<py::tuple>(ret);
  size_t ret_num = py::len(ret_tuple);
  std::vector<framework::Variable*> outs;
  VLOG(3) << "pyfunc out " << ret_num;
  for (size_t i = 0; i < ret_num; ++i) {
    try {
      auto* py_out_tensor = py::cast<framework::LoDTensor*>(ret_tuple[i]);
      PADDLE_ENFORCE_NOT_NULL(py_out_tensor,
                              "Output tensor %d should not be nullptr", i);
      auto* var = new framework::Variable();
      auto* tensor = var->GetMutable<framework::LoDTensor>();
      tensor->ShareDataWith(*py_out_tensor);
      tensor->set_lod(py_out_tensor->lod());
      outs.push_back(var);
    } catch (py::cast_error&) {
      PADDLE_THROW("The %d-th output must be LoDTensor", i);
    }
  }
  return outs;
X
Xin Pan 已提交
306 307
}

308 309
}  // namespace imperative
}  // namespace paddle