infer.py 34.7 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
G
Guanghua Yu 已提交
17
import glob
18 19
import json
from pathlib import Path
Q
qingqing01 已提交
20 21 22 23
from functools import reduce

import cv2
import numpy as np
C
cnn 已提交
24
import math
Q
qingqing01 已提交
25 26 27 28
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor

W
wangguanzhong 已提交
29 30 31 32 33
import sys
# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'])))
sys.path.insert(0, parent_path)

34
from benchmark_utils import PaddleInferBenchmark
35
from picodet_postprocess import PicoDetPostProcess
F
Feng Ni 已提交
36
from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride, LetterBoxResize, WarpAffine, Pad, decode_image
W
wangguanzhong 已提交
37
from keypoint_preprocess import EvalAffine, TopDownEvalAffine, expand_crop
G
Guanghua Yu 已提交
38
from visualize import visualize_box_mask
39
from utils import argsparser, Timer, get_current_memory_mb
G
Guanghua Yu 已提交
40

Q
qingqing01 已提交
41 42
# Global dictionary
SUPPORT_MODELS = {
F
Feng Ni 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    'YOLO',
    'RCNN',
    'SSD',
    'Face',
    'FCOS',
    'SOLOv2',
    'TTFNet',
    'S2ANet',
    'JDE',
    'FairMOT',
    'DeepSORT',
    'GFL',
    'PicoDet',
    'CenterNet',
    'TOOD',
    'RetinaNet',
    'StrongBaseline',
    'STGCN',
    'YOLOX',
Q
qingqing01 已提交
62 63 64
}


W
wangguanzhong 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
def bench_log(detector, img_list, model_info, batch_size=1, name=None):
    mems = {
        'cpu_rss_mb': detector.cpu_mem / len(img_list),
        'gpu_rss_mb': detector.gpu_mem / len(img_list),
        'gpu_util': detector.gpu_util * 100 / len(img_list)
    }
    perf_info = detector.det_times.report(average=True)
    data_info = {
        'batch_size': batch_size,
        'shape': "dynamic_shape",
        'data_num': perf_info['img_num']
    }
    log = PaddleInferBenchmark(detector.config, model_info, data_info,
                               perf_info, mems)
    log(name)


Q
qingqing01 已提交
82 83 84
class Detector(object):
    """
    Args:
85
        pred_config (object): config of model, defined by `Config(model_dir)`
Q
qingqing01 已提交
86
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
87
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
88
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
89
        batch_size (int): size of pre batch in inference
90 91 92
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
93 94 95 96
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
97
        enable_mkldnn_bfloat16 (bool): whether to turn on mkldnn bfloat16
W
wangguanzhong 已提交
98 99
        output_dir (str): The path of output
        threshold (float): The threshold of score for visualization
J
JYChen 已提交
100 101
        delete_shuffle_pass (bool): whether to remove shuffle_channel_detect_pass in TensorRT. 
                                    Used by action model.
Q
qingqing01 已提交
102 103
    """

J
JYChen 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    def __init__(self,
                 model_dir,
                 device='CPU',
                 run_mode='paddle',
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
                 enable_mkldnn_bfloat16=False,
                 output_dir='output',
                 threshold=0.5,
                 delete_shuffle_pass=False):
W
wangguanzhong 已提交
119
        self.pred_config = self.set_config(model_dir)
120
        self.predictor, self.config = load_predictor(
Q
qingqing01 已提交
121 122
            model_dir,
            run_mode=run_mode,
123
            batch_size=batch_size,
Q
qingqing01 已提交
124
            min_subgraph_size=self.pred_config.min_subgraph_size,
G
Guanghua Yu 已提交
125
            device=device,
126
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
127 128
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
129
            trt_opt_shape=trt_opt_shape,
130 131
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
132
            enable_mkldnn=enable_mkldnn,
J
JYChen 已提交
133 134
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
            delete_shuffle_pass=delete_shuffle_pass)
G
Guanghua Yu 已提交
135 136
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
W
wangguanzhong 已提交
137 138 139 140 141 142
        self.batch_size = batch_size
        self.output_dir = output_dir
        self.threshold = threshold

    def set_config(self, model_dir):
        return PredictConfig(model_dir)
Q
qingqing01 已提交
143

C
cnn 已提交
144
    def preprocess(self, image_list):
Q
qingqing01 已提交
145 146 147 148 149
        preprocess_ops = []
        for op_info in self.pred_config.preprocess_infos:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            preprocess_ops.append(eval(op_type)(**new_op_info))
C
cnn 已提交
150 151 152 153

        input_im_lst = []
        input_im_info_lst = []
        for im_path in image_list:
154
            im, im_info = preprocess(im_path, preprocess_ops)
C
cnn 已提交
155 156 157
            input_im_lst.append(im)
            input_im_info_lst.append(im_info)
        inputs = create_inputs(input_im_lst, input_im_info_lst)
W
wangguanzhong 已提交
158 159 160
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
161 162 163 164
            if input_names[i] == 'x':
                input_tensor.copy_from_cpu(inputs['image'])
            else:
                input_tensor.copy_from_cpu(inputs[input_names[i]])
W
wangguanzhong 已提交
165

Q
qingqing01 已提交
166 167
        return inputs

W
wangguanzhong 已提交
168
    def postprocess(self, inputs, result):
Q
qingqing01 已提交
169
        # postprocess output of predictor
W
wangguanzhong 已提交
170 171 172 173 174 175
        np_boxes_num = result['boxes_num']
        if np_boxes_num[0] <= 0:
            print('[WARNNING] No object detected.')
            result = {'boxes': np.zeros([0, 6]), 'boxes_num': [0]}
        result = {k: v for k, v in result.items() if v is not None}
        return result
Q
qingqing01 已提交
176

177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
    def filter_box(self, result, threshold):
        np_boxes_num = result['boxes_num']
        boxes = result['boxes']
        start_idx = 0
        filter_boxes = []
        filter_num = []
        for i in range(len(np_boxes_num)):
            boxes_num = np_boxes_num[i]
            boxes_i = boxes[start_idx:start_idx + boxes_num, :]
            idx = boxes_i[:, 1] > threshold
            filter_boxes_i = boxes_i[idx, :]
            filter_boxes.append(filter_boxes_i)
            filter_num.append(filter_boxes_i.shape[0])
            start_idx += boxes_num
        boxes = np.concatenate(filter_boxes)
        filter_num = np.array(filter_num)
        filter_res = {'boxes': boxes, 'boxes_num': filter_num}
        return filter_res

W
wangguanzhong 已提交
196
    def predict(self, repeats=1):
Q
qingqing01 已提交
197 198
        '''
        Args:
W
wangguanzhong 已提交
199
            repeats (int): repeats number for prediction
Q
qingqing01 已提交
200
        Returns:
W
wangguanzhong 已提交
201
            result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
Q
qingqing01 已提交
202
                            matix element:[class, score, x_min, y_min, x_max, y_max]
W
wangguanzhong 已提交
203
                            MaskRCNN's result include 'masks': np.ndarray:
G
Guanghua Yu 已提交
204
                            shape: [N, im_h, im_w]
Q
qingqing01 已提交
205
        '''
W
wangguanzhong 已提交
206
        # model prediction
W
wangguanzhong 已提交
207
        np_boxes, np_masks = None, None
Q
qingqing01 已提交
208 209 210 211 212
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
C
cnn 已提交
213 214
            boxes_num = self.predictor.get_output_handle(output_names[1])
            np_boxes_num = boxes_num.copy_to_cpu()
G
Guanghua Yu 已提交
215
            if self.pred_config.mask:
Q
qingqing01 已提交
216 217
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()
W
wangguanzhong 已提交
218 219 220 221 222 223 224 225 226 227 228 229
        result = dict(boxes=np_boxes, masks=np_masks, boxes_num=np_boxes_num)
        return result

    def merge_batch_result(self, batch_result):
        if len(batch_result) == 1:
            return batch_result[0]
        res_key = batch_result[0].keys()
        results = {k: [] for k in res_key}
        for res in batch_result:
            for k, v in res.items():
                results[k].append(v)
        for k, v in results.items():
230
            if k not in ['masks', 'segm']:
W
wangguanzhong 已提交
231
                results[k] = np.concatenate(v)
W
wangguanzhong 已提交
232
        return results
Q
qingqing01 已提交
233

W
wangguanzhong 已提交
234 235
    def get_timer(self):
        return self.det_times
W
wangguanzhong 已提交
236

W
wangguanzhong 已提交
237 238 239 240
    def predict_image(self,
                      image_list,
                      run_benchmark=False,
                      repeats=1,
241 242
                      visual=True,
                      save_file=None):
W
wangguanzhong 已提交
243
        batch_loop_cnt = math.ceil(float(len(image_list)) / self.batch_size)
Q
qingqing01 已提交
244
        results = []
W
wangguanzhong 已提交
245 246 247 248 249 250 251 252 253 254 255 256
        for i in range(batch_loop_cnt):
            start_index = i * self.batch_size
            end_index = min((i + 1) * self.batch_size, len(image_list))
            batch_image_list = image_list[start_index:end_index]
            if run_benchmark:
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
257
                result = self.predict(repeats=50)  # warmup
W
wangguanzhong 已提交
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
                self.det_times.inference_time_s.start()
                result = self.predict(repeats=repeats)
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(batch_image_list)

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu
            else:
                # preprocess
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                # postprocess
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(batch_image_list)

                if visual:
                    visualize(
                        batch_image_list,
                        result,
                        self.pred_config.labels,
                        output_dir=self.output_dir,
                        threshold=self.threshold)

            results.append(result)
            if visual:
                print('Test iter {}'.format(i))

302 303 304 305
        if save_file is not None:
            Path(self.output_dir).mkdir(exist_ok=True)
            self.format_coco_results(image_list, results, save_file=save_file)

W
wangguanzhong 已提交
306
        results = self.merge_batch_result(results)
Q
qingqing01 已提交
307 308
        return results

W
wangguanzhong 已提交
309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
    def predict_video(self, video_file, camera_id):
        video_out_name = 'output.mp4'
        if camera_id != -1:
            capture = cv2.VideoCapture(camera_id)
        else:
            capture = cv2.VideoCapture(video_file)
            video_out_name = os.path.split(video_file)[-1]
        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
        print("fps: %d, frame_count: %d" % (fps, frame_count))

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
326
        fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
W
wangguanzhong 已提交
327 328 329 330 331 332 333 334
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
        index = 1
        while (1):
            ret, frame = capture.read()
            if not ret:
                break
            print('detect frame: %d' % (index))
            index += 1
L
lazyn1997 已提交
335
            results = self.predict_image([frame[:, :, ::-1]], visual=False)
W
wangguanzhong 已提交
336 337 338 339 340 341 342 343 344 345 346 347 348

            im = visualize_box_mask(
                frame,
                results,
                self.pred_config.labels,
                threshold=self.threshold)
            im = np.array(im)
            writer.write(im)
            if camera_id != -1:
                cv2.imshow('Mask Detection', im)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
        writer.release()
W
wangguanzhong 已提交
349

350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
    @staticmethod
    def format_coco_results(image_list, results, save_file=None):
        coco_results = []
        image_id = 0

        for result in results:
            start_idx = 0
            for box_num in result['boxes_num']:
                idx_slice = slice(start_idx, start_idx + box_num)
                start_idx += box_num

                image_file = image_list[image_id]
                image_id += 1

                if 'boxes' in result:
                    boxes = result['boxes'][idx_slice, :]
                    per_result = [
                        {
                            'image_file': image_file,
                            'bbox':
                            [box[2], box[3], box[4] - box[2],
                             box[5] - box[3]],  # xyxy -> xywh
                            'score': box[1],
                            'category_id': int(box[0]),
                        } for k, box in enumerate(boxes.tolist())
                    ]

                elif 'segm' in result:
                    import pycocotools.mask as mask_util

                    scores = result['score'][idx_slice].tolist()
                    category_ids = result['label'][idx_slice].tolist()
                    segms = result['segm'][idx_slice, :]
                    rles = [
                        mask_util.encode(
                            np.array(
                                mask[:, :, np.newaxis],
                                dtype=np.uint8,
                                order='F'))[0] for mask in segms
                    ]
                    for rle in rles:
                        rle['counts'] = rle['counts'].decode('utf-8')

                    per_result = [{
                        'image_file': image_file,
                        'segmentation': rle,
                        'score': scores[k],
                        'category_id': category_ids[k],
                    } for k, rle in enumerate(rles)]

                else:
                    raise RuntimeError('')

                # per_result = [item for item in per_result if item['score'] > threshold]
                coco_results.extend(per_result)

        if save_file:
            with open(os.path.join(save_file), 'w') as f:
                json.dump(coco_results, f)

        return coco_results

Q
qingqing01 已提交
412

G
Guanghua Yu 已提交
413 414 415 416
class DetectorSOLOv2(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
417
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
418
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
419
        batch_size (int): size of pre batch in inference
420 421 422
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
423 424 425 426
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN 
427
        enable_mkldnn_bfloat16 (bool): Whether to turn on mkldnn bfloat16
W
wangguanzhong 已提交
428 429 430
        output_dir (str): The path of output
        threshold (float): The threshold of score for visualization
       
G
Guanghua Yu 已提交
431 432
    """

W
wangguanzhong 已提交
433 434
    def __init__(
            self,
G
Guanghua Yu 已提交
435
            model_dir,
W
wangguanzhong 已提交
436 437 438 439 440 441 442 443 444
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1280,
            trt_opt_shape=640,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
445
            enable_mkldnn_bfloat16=False,
W
wangguanzhong 已提交
446 447 448 449 450
            output_dir='./',
            threshold=0.5, ):
        super(DetectorSOLOv2, self).__init__(
            model_dir=model_dir,
            device=device,
G
Guanghua Yu 已提交
451
            run_mode=run_mode,
452
            batch_size=batch_size,
453 454
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
455
            trt_opt_shape=trt_opt_shape,
456 457
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
W
wangguanzhong 已提交
458
            enable_mkldnn=enable_mkldnn,
459
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
W
wangguanzhong 已提交
460 461
            output_dir=output_dir,
            threshold=threshold, )
G
Guanghua Yu 已提交
462

W
wangguanzhong 已提交
463
    def predict(self, repeats=1):
G
Guanghua Yu 已提交
464 465
        '''
        Args:
W
wangguanzhong 已提交
466
            repeats (int): repeat number for prediction
G
Guanghua Yu 已提交
467
        Returns:
W
wangguanzhong 已提交
468
            result (dict): 'segm': np.ndarray,shape:[N, im_h, im_w]
G
Guanghua Yu 已提交
469 470
                            'cate_label': label of segm, shape:[N]
                            'cate_score': confidence score of segm, shape:[N]
G
Guanghua Yu 已提交
471 472 473 474 475
        '''
        np_label, np_score, np_segms = None, None, None
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
W
wangguanzhong 已提交
476 477
            np_boxes_num = self.predictor.get_output_handle(output_names[
                0]).copy_to_cpu()
G
Guanghua Yu 已提交
478 479
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
480
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
481
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
482 483
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
G
Guanghua Yu 已提交
484

W
wangguanzhong 已提交
485
        result = dict(
W
wangguanzhong 已提交
486 487 488 489
            segm=np_segms,
            label=np_label,
            score=np_score,
            boxes_num=np_boxes_num)
W
wangguanzhong 已提交
490
        return result
G
Guanghua Yu 已提交
491 492


493 494 495 496 497
class DetectorPicoDet(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
498
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
499 500 501 502 503 504 505
        batch_size (int): size of pre batch in inference
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
506 507
        enable_mkldnn (bool): whether to turn on MKLDNN
        enable_mkldnn_bfloat16 (bool): whether to turn on MKLDNN_BFLOAT16
508 509
    """

W
wangguanzhong 已提交
510 511
    def __init__(
            self,
512
            model_dir,
W
wangguanzhong 已提交
513 514 515 516 517 518 519 520 521
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1280,
            trt_opt_shape=640,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
522
            enable_mkldnn_bfloat16=False,
W
wangguanzhong 已提交
523 524 525 526 527
            output_dir='./',
            threshold=0.5, ):
        super(DetectorPicoDet, self).__init__(
            model_dir=model_dir,
            device=device,
528 529 530 531 532 533 534
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
W
wangguanzhong 已提交
535
            enable_mkldnn=enable_mkldnn,
536
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
W
wangguanzhong 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552
            output_dir=output_dir,
            threshold=threshold, )

    def postprocess(self, inputs, result):
        # postprocess output of predictor
        np_score_list = result['boxes']
        np_boxes_list = result['boxes_num']
        postprocessor = PicoDetPostProcess(
            inputs['image'].shape[2:],
            inputs['im_shape'],
            inputs['scale_factor'],
            strides=self.pred_config.fpn_stride,
            nms_threshold=self.pred_config.nms['nms_threshold'])
        np_boxes, np_boxes_num = postprocessor(np_score_list, np_boxes_list)
        result = dict(boxes=np_boxes, boxes_num=np_boxes_num)
        return result
553

W
wangguanzhong 已提交
554
    def predict(self, repeats=1):
555 556
        '''
        Args:
W
wangguanzhong 已提交
557
            repeats (int): repeat number for prediction
558
        Returns:
W
wangguanzhong 已提交
559
            result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575
                            matix element:[class, score, x_min, y_min, x_max, y_max]
        '''
        np_score_list, np_boxes_list = [], []
        for i in range(repeats):
            self.predictor.run()
            np_score_list.clear()
            np_boxes_list.clear()
            output_names = self.predictor.get_output_names()
            num_outs = int(len(output_names) / 2)
            for out_idx in range(num_outs):
                np_score_list.append(
                    self.predictor.get_output_handle(output_names[out_idx])
                    .copy_to_cpu())
                np_boxes_list.append(
                    self.predictor.get_output_handle(output_names[
                        out_idx + num_outs]).copy_to_cpu())
W
wangguanzhong 已提交
576 577
        result = dict(boxes=np_score_list, boxes_num=np_boxes_list)
        return result
578 579


C
cnn 已提交
580
def create_inputs(imgs, im_info):
Q
qingqing01 已提交
581 582
    """generate input for different model type
    Args:
W
wangguanzhong 已提交
583 584
        imgs (list(numpy)): list of images (np.ndarray)
        im_info (list(dict)): list of image info
Q
qingqing01 已提交
585 586 587 588 589
    Returns:
        inputs (dict): input of model
    """
    inputs = {}

C
cnn 已提交
590 591
    im_shape = []
    scale_factor = []
592 593 594 595 596 597 598 599
    if len(imgs) == 1:
        inputs['image'] = np.array((imgs[0], )).astype('float32')
        inputs['im_shape'] = np.array(
            (im_info[0]['im_shape'], )).astype('float32')
        inputs['scale_factor'] = np.array(
            (im_info[0]['scale_factor'], )).astype('float32')
        return inputs

C
cnn 已提交
600 601 602 603
    for e in im_info:
        im_shape.append(np.array((e['im_shape'], )).astype('float32'))
        scale_factor.append(np.array((e['scale_factor'], )).astype('float32'))

C
cnn 已提交
604 605
    inputs['im_shape'] = np.concatenate(im_shape, axis=0)
    inputs['scale_factor'] = np.concatenate(scale_factor, axis=0)
C
cnn 已提交
606 607 608 609 610 611 612 613 614 615 616 617

    imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
    max_shape_h = max([e[0] for e in imgs_shape])
    max_shape_w = max([e[1] for e in imgs_shape])
    padding_imgs = []
    for img in imgs:
        im_c, im_h, im_w = img.shape[:]
        padding_im = np.zeros(
            (im_c, max_shape_h, max_shape_w), dtype=np.float32)
        padding_im[:, :im_h, :im_w] = img
        padding_imgs.append(padding_im)
    inputs['image'] = np.stack(padding_imgs, axis=0)
Q
qingqing01 已提交
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
    return inputs


class PredictConfig():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
G
Guanghua Yu 已提交
637
        self.mask = False
638
        self.use_dynamic_shape = yml_conf['use_dynamic_shape']
G
Guanghua Yu 已提交
639 640
        if 'mask' in yml_conf:
            self.mask = yml_conf['mask']
641 642 643
        self.tracker = None
        if 'tracker' in yml_conf:
            self.tracker = yml_conf['tracker']
644 645 646 647
        if 'NMS' in yml_conf:
            self.nms = yml_conf['NMS']
        if 'fpn_stride' in yml_conf:
            self.fpn_stride = yml_conf['fpn_stride']
648 649 650 651
        if self.arch == 'RCNN' and yml_conf.get('export_onnx', False):
            print(
                'The RCNN export model is used for ONNX and it only supports batch_size = 1'
            )
Q
qingqing01 已提交
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
        for support_model in SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
            'arch'], SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


def load_predictor(model_dir,
675
                   run_mode='paddle',
Q
qingqing01 已提交
676
                   batch_size=1,
G
Guanghua Yu 已提交
677
                   device='CPU',
678 679 680 681
                   min_subgraph_size=3,
                   use_dynamic_shape=False,
                   trt_min_shape=1,
                   trt_max_shape=1280,
G
Guanghua Yu 已提交
682
                   trt_opt_shape=640,
683 684
                   trt_calib_mode=False,
                   cpu_threads=1,
685
                   enable_mkldnn=False,
J
JYChen 已提交
686 687
                   enable_mkldnn_bfloat16=False,
                   delete_shuffle_pass=False):
Q
qingqing01 已提交
688 689 690
    """set AnalysisConfig, generate AnalysisPredictor
    Args:
        model_dir (str): root path of __model__ and __params__
G
Guanghua Yu 已提交
691
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
692
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16/trt_int8)
693 694 695 696
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
G
Guanghua Yu 已提交
697 698
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
J
JYChen 已提交
699 700
        delete_shuffle_pass (bool): whether to remove shuffle_channel_detect_pass in TensorRT. 
                                    Used by action model.
Q
qingqing01 已提交
701 702 703
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
G
Guanghua Yu 已提交
704
        ValueError: predict by TensorRT need device == 'GPU'.
Q
qingqing01 已提交
705
    """
706
    if device != 'GPU' and run_mode != 'paddle':
Q
qingqing01 已提交
707
        raise ValueError(
G
Guanghua Yu 已提交
708 709
            "Predict by TensorRT mode: {}, expect device=='GPU', but device == {}"
            .format(run_mode, device))
710 711 712 713 714 715 716 717 718
    infer_model = os.path.join(model_dir, 'model.pdmodel')
    infer_params = os.path.join(model_dir, 'model.pdiparams')
    if not os.path.exists(infer_model):
        infer_model = os.path.join(model_dir, 'inference.pdmodel')
        infer_params = os.path.join(model_dir, 'inference.pdiparams')
        if not os.path.exists(infer_model):
            raise ValueError(
                "Cannot find any inference model in dir: {},".format(model_dir))
    config = Config(infer_model, infer_params)
G
Guanghua Yu 已提交
719
    if device == 'GPU':
Q
qingqing01 已提交
720 721 722
        # initial GPU memory(M), device ID
        config.enable_use_gpu(200, 0)
        # optimize graph and fuse op
723
        config.switch_ir_optim(True)
G
Guanghua Yu 已提交
724
    elif device == 'XPU':
725
        config.enable_lite_engine()
G
Guanghua Yu 已提交
726
        config.enable_xpu(10 * 1024 * 1024)
Q
qingqing01 已提交
727 728
    else:
        config.disable_gpu()
729 730
        config.set_cpu_math_library_num_threads(cpu_threads)
        if enable_mkldnn:
G
Guanghua Yu 已提交
731 732 733 734
            try:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
735 736
                if enable_mkldnn_bfloat16:
                    config.enable_mkldnn_bfloat16()
G
Guanghua Yu 已提交
737 738 739 740 741
            except Exception as e:
                print(
                    "The current environment does not support `mkldnn`, so disable mkldnn."
                )
                pass
Q
qingqing01 已提交
742

G
Guanghua Yu 已提交
743 744 745 746 747
    precision_map = {
        'trt_int8': Config.Precision.Int8,
        'trt_fp32': Config.Precision.Float32,
        'trt_fp16': Config.Precision.Half
    }
Q
qingqing01 已提交
748 749
    if run_mode in precision_map.keys():
        config.enable_tensorrt_engine(
W
wangxinxin08 已提交
750
            workspace_size=(1 << 25) * batch_size,
Q
qingqing01 已提交
751 752 753 754
            max_batch_size=batch_size,
            min_subgraph_size=min_subgraph_size,
            precision_mode=precision_map[run_mode],
            use_static=False,
G
Guanghua Yu 已提交
755
            use_calib_mode=trt_calib_mode)
756 757

        if use_dynamic_shape:
758 759 760 761 762 763 764 765 766
            min_input_shape = {
                'image': [batch_size, 3, trt_min_shape, trt_min_shape]
            }
            max_input_shape = {
                'image': [batch_size, 3, trt_max_shape, trt_max_shape]
            }
            opt_input_shape = {
                'image': [batch_size, 3, trt_opt_shape, trt_opt_shape]
            }
767 768 769
            config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                              opt_input_shape)
            print('trt set dynamic shape done!')
Q
qingqing01 已提交
770 771 772 773 774 775 776

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
    # disable feed, fetch OP, needed by zero_copy_run
    config.switch_use_feed_fetch_ops(False)
J
JYChen 已提交
777 778
    if delete_shuffle_pass:
        config.delete_pass("shuffle_channel_detect_pass")
Q
qingqing01 已提交
779
    predictor = create_predictor(config)
780
    return predictor, config
Q
qingqing01 已提交
781 782


G
Guanghua Yu 已提交
783 784 785 786 787
def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
J
JYChen 已提交
788
        "--image_file or --image_dir should be set"
G
Guanghua Yu 已提交
789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    print("Found {} inference images in total.".format(len(images)))

    return images


W
wangguanzhong 已提交
814
def visualize(image_list, result, labels, output_dir='output/', threshold=0.5):
Q
qingqing01 已提交
815
    # visualize the predict result
C
cnn 已提交
816 817
    start_idx = 0
    for idx, image_file in enumerate(image_list):
W
wangguanzhong 已提交
818
        im_bboxes_num = result['boxes_num'][idx]
C
cnn 已提交
819
        im_results = {}
W
wangguanzhong 已提交
820 821 822 823 824 825 826 827 828 829 830 831 832 833 834
        if 'boxes' in result:
            im_results['boxes'] = result['boxes'][start_idx:start_idx +
                                                  im_bboxes_num, :]
        if 'masks' in result:
            im_results['masks'] = result['masks'][start_idx:start_idx +
                                                  im_bboxes_num, :]
        if 'segm' in result:
            im_results['segm'] = result['segm'][start_idx:start_idx +
                                                im_bboxes_num, :]
        if 'label' in result:
            im_results['label'] = result['label'][start_idx:start_idx +
                                                  im_bboxes_num]
        if 'score' in result:
            im_results['score'] = result['score'][start_idx:start_idx +
                                                  im_bboxes_num]
W
wangguanzhong 已提交
835

C
cnn 已提交
836 837 838 839 840 841 842 843 844
        start_idx += im_bboxes_num
        im = visualize_box_mask(
            image_file, im_results, labels, threshold=threshold)
        img_name = os.path.split(image_file)[-1]
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        out_path = os.path.join(output_dir, img_name)
        im.save(out_path, quality=95)
        print("save result to: " + out_path)
Q
qingqing01 已提交
845 846 847 848 849 850 851 852 853 854


def print_arguments(args):
    print('-----------  Running Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------')


def main():
W
wangguanzhong 已提交
855 856 857 858
    deploy_file = os.path.join(FLAGS.model_dir, 'infer_cfg.yml')
    with open(deploy_file) as f:
        yml_conf = yaml.safe_load(f)
    arch = yml_conf['arch']
859
    detector_func = 'Detector'
W
wangguanzhong 已提交
860
    if arch == 'SOLOv2':
861
        detector_func = 'DetectorSOLOv2'
W
wangguanzhong 已提交
862
    elif arch == 'PicoDet':
863 864
        detector_func = 'DetectorPicoDet'

865 866 867 868 869 870 871 872 873 874 875 876 877 878
    detector = eval(detector_func)(
        FLAGS.model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
        batch_size=FLAGS.batch_size,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn,
        enable_mkldnn_bfloat16=FLAGS.enable_mkldnn_bfloat16,
        threshold=FLAGS.threshold,
        output_dir=FLAGS.output_dir)
G
Guanghua Yu 已提交
879

Q
qingqing01 已提交
880
    # predict from video file or camera video stream
G
Guanghua Yu 已提交
881
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
W
wangguanzhong 已提交
882
        detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
G
Guanghua Yu 已提交
883 884
    else:
        # predict from image
C
cnn 已提交
885 886
        if FLAGS.image_dir is None and FLAGS.image_file is not None:
            assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None"
G
Guanghua Yu 已提交
887
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
888 889 890 891
        save_file = os.path.join(FLAGS.output_dir,
                                 'results.json') if FLAGS.save_results else None
        detector.predict_image(
            img_list, FLAGS.run_benchmark, repeats=100, save_file=save_file)
G
Guanghua Yu 已提交
892 893 894
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
895
            mode = FLAGS.run_mode
W
wangguanzhong 已提交
896
            model_dir = FLAGS.model_dir
897
            model_info = {
898 899
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
900
            }
W
wangguanzhong 已提交
901
            bench_log(detector, img_list, model_info, name='DET')
Q
qingqing01 已提交
902 903 904 905


if __name__ == '__main__':
    paddle.enable_static()
G
Guanghua Yu 已提交
906
    parser = argsparser()
Q
qingqing01 已提交
907 908
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
G
Guanghua Yu 已提交
909 910 911 912
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
    assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
Q
qingqing01 已提交
913

914 915 916
    assert not (
        FLAGS.enable_mkldnn == False and FLAGS.enable_mkldnn_bfloat16 == True
    ), 'To enable mkldnn bfloat, please turn on both enable_mkldnn and enable_mkldnn_bfloat16'
917

Q
qingqing01 已提交
918
    main()