README.md 23.9 KB
Newer Older
G
Guanghua Yu 已提交
1
简体中文 | [English](README_en.md)
G
Guanghua Yu 已提交
2

G
Guanghua Yu 已提交
3
# PP-PicoDet
G
Guanghua Yu 已提交
4

G
Guanghua Yu 已提交
5
![](../../docs/images/picedet_demo.jpeg)
G
Guanghua Yu 已提交
6

G
Guanghua Yu 已提交
7
## 最新动态
G
Guanghua Yu 已提交
8

G
Guanghua Yu 已提交
9
- 发布全新系列PP-PicoDet模型:**(2022.03.20)**
G
Guanghua Yu 已提交
10 11 12
  - (1)引入TAL及ETA Head,优化PAN等结构,精度提升2个点以上;
  - (2)优化CPU端预测速度,同时训练速度提升一倍;
  - (3)导出模型将后处理包含在网络中,预测直接输出box结果,无需二次开发,迁移成本更低,端到端预测速度提升10%-20%。
G
Guanghua Yu 已提交
13

G
Guanghua Yu 已提交
14
## 历史版本模型
G
Guanghua Yu 已提交
15

G
Guanghua Yu 已提交
16
- 详情请参考:[PicoDet 2021.10版本](./legacy_model/)
G
Guanghua Yu 已提交
17

G
Guanghua Yu 已提交
18
## 简介
G
Guanghua Yu 已提交
19

G
Guanghua Yu 已提交
20
PaddleDetection中提出了全新的轻量级系列模型`PP-PicoDet`,在移动端具有卓越的性能,成为全新SOTA轻量级模型。详细的技术细节可以参考我们的[arXiv技术报告](https://arxiv.org/abs/2111.00902)
G
Guanghua Yu 已提交
21

G
Guanghua Yu 已提交
22 23 24 25 26 27
PP-PicoDet模型有如下特点:

- 🌟 更高的mAP: 第一个在1M参数量之内`mAP(0.5:0.95)`超越**30+**(输入416像素时)。
- 🚀 更快的预测速度: 网络预测在ARM CPU下可达150FPS。
- 😊 部署友好: 支持PaddleLite/MNN/NCNN/OpenVINO等预测库,支持转出ONNX,提供了C++/Python/Android的demo。
- 😍 先进的算法: 我们在现有SOTA算法中进行了创新, 包括:ESNet, CSP-PAN, SimOTA等等。
28

G
Guanghua Yu 已提交
29 30 31 32 33

<div align="center">
  <img src="../../docs/images/picodet_map.png" width='600'/>
</div>

G
Guanghua Yu 已提交
34
## 基线
G
Guanghua Yu 已提交
35

G
Guanghua Yu 已提交
36
| 模型     | 输入尺寸 | mAP<sup>val<br>0.5:0.95 | mAP<sup>val<br>0.5 | 参数量<br><sup>(M) | FLOPS<br><sup>(G) | 预测时延<sup><small>[CPU](#latency)</small><sup><br><sup>(ms) | 预测时延<sup><small>[Lite](#latency)</small><sup><br><sup>(ms) |  权重下载  | 配置文件 | 导出模型  |
37 38 39 40 41 42 43 44 45 46
| :-------- | :--------: | :---------------------: | :----------------: | :----------------: | :---------------: | :-----------------------------: | :-----------------------------: | :----------------------------------------: | :--------------------------------------- | :--------------------------------------- |
| PicoDet-XS |  320*320   |          23.5           |        36.1       |        0.70        |       0.67        |              3.9ms              |            7.81ms             | [model](https://paddledet.bj.bcebos.com/models/picodet_xs_320_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_xs_320_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_xs_320_coco_lcnet.yml) | [w/ 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_xs_320_coco_lcnet.tar) &#124; [w/o 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_xs_320_coco_lcnet_non_postprocess.tar) |
| PicoDet-XS |  416*416   |          26.2           |        39.3        |        0.70        |       1.13        |              6.1ms             |            12.38ms             | [model](https://paddledet.bj.bcebos.com/models/picodet_xs_416_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_xs_416_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_xs_416_coco_lcnet.yml) | [w/ 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_xs_416_coco_lcnet.tar) &#124; [w/o 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_xs_416_coco_lcnet_non_postprocess.tar) |
| PicoDet-S |  320*320   |          29.1           |        43.4        |        1.18       |       0.97       |             4.8ms              |            9.56ms             | [model](https://paddledet.bj.bcebos.com/models/picodet_s_320_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_s_320_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_s_320_coco_lcnet.yml) | [w/ 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_s_320_coco_lcnet.tar) &#124; [w/o 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_s_320_coco_lcnet_non_postprocess.tar) |
| PicoDet-S |  416*416   |          32.5           |        47.6        |        1.18        |       1.65       |              6.6ms              |            15.20ms             | [model](https://paddledet.bj.bcebos.com/models/picodet_s_416_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_s_416_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_s_416_coco_lcnet.yml) | [w/ 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_s_416_coco_lcnet.tar) &#124; [w/o 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_s_416_coco_lcnet_non_postprocess.tar) |
| PicoDet-M |  320*320   |          34.4           |        50.0        |        3.46        |       2.57       |             8.2ms              |            17.68ms             | [model](https://paddledet.bj.bcebos.com/models/picodet_m_320_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_m_320_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_m_320_coco_lcnet.yml) | [w/ 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_m_320_coco_lcnet.tar) &#124; [w/o 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_m_320_coco_lcnet_non_postprocess.tar) |
| PicoDet-M |  416*416   |          37.5           |        53.4       |        3.46        |       4.34        |              12.7ms              |            28.39ms            | [model](https://paddledet.bj.bcebos.com/models/picodet_m_416_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_m_416_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_m_416_coco_lcnet.yml) | [w/ 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_m_416_coco_lcnet.tar) &#124; [w/o 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_m_416_coco_lcnet_non_postprocess.tar) |
| PicoDet-L |  320*320   |          36.1           |        52.0        |        5.80       |       4.20        |              11.5ms             |            25.21ms           | [model](https://paddledet.bj.bcebos.com/models/picodet_l_320_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_l_320_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_l_320_coco_lcnet.yml) | [w/ 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_l_320_coco_lcnet.tar) &#124; [w/o 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_l_320_coco_lcnet_non_postprocess.tar) |
| PicoDet-L |  416*416   |          39.4           |        55.7        |        5.80        |       7.10       |              20.7ms              |            42.23ms            | [model](https://paddledet.bj.bcebos.com/models/picodet_l_416_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_l_416_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_l_416_coco_lcnet.yml) | [w/ 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_l_416_coco_lcnet.tar) &#124; [w/o 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_l_416_coco_lcnet_non_postprocess.tar) |
| PicoDet-L |  640*640   |          42.6           |        59.2        |        5.80        |       16.81        |              62.5ms              |            108.1ms          | [model](https://paddledet.bj.bcebos.com/models/picodet_l_640_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_l_640_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_l_640_coco_lcnet.yml) | [w/ 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_l_640_coco_lcnet.tar) &#124; [w/o 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_l_640_coco_lcnet_non_postprocess.tar) |
G
Guanghua Yu 已提交
47

48

G
Guanghua Yu 已提交
49
<details open>
G
Guanghua Yu 已提交
50
<summary><b>注意事项:</b></summary>
G
Guanghua Yu 已提交
51

G
Guanghua Yu 已提交
52
- <a name="latency">时延测试:</a> 我们所有的模型都在`英特尔酷睿i7 10750H`的CPU 和`骁龙865(4xA77+4xA55)`的ARM CPU上测试(4线程,FP16预测)。上面表格中标有`CPU`的是使用OpenVINO测试,标有`Lite`的是使用[Paddle Lite](https://github.com/PaddlePaddle/Paddle-Lite)进行测试。
G
Guanghua Yu 已提交
53 54
- PicoDet在COCO train2017上训练,并且在COCO val2017上进行验证。使用4卡GPU训练,并且上表所有的预训练模型都是通过发布的默认配置训练得到。
- Benchmark测试:测试速度benchmark性能时,导出模型后处理不包含在网络中,需要设置`-o export.benchmark=True` 或手动修改[runtime.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/runtime.yml#L12)
G
Guanghua Yu 已提交
55 56

</details>
57

G
Guanghua Yu 已提交
58
#### 其他模型的基线
G
Guanghua Yu 已提交
59

G
Guanghua Yu 已提交
60
| 模型     | 输入尺寸 | mAP<sup>val<br>0.5:0.95 | mAP<sup>val<br>0.5 | 参数量<br><sup>(M) | FLOPS<br><sup>(G) | 预测时延<sup><small>[NCNN](#latency)</small><sup><br><sup>(ms) |
G
Guanghua Yu 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73
| :-------- | :--------: | :---------------------: | :----------------: | :----------------: | :---------------: | :-----------------------------: |
| YOLOv3-Tiny |  416*416   |          16.6           |        33.1      |        8.86        |       5.62        |             25.42               |
| YOLOv4-Tiny |  416*416   |          21.7           |        40.2        |        6.06           |       6.96           |             23.69               |
| PP-YOLO-Tiny |  320*320       |          20.6         |        -              |   1.08             |    0.58             |    6.75                           |  
| PP-YOLO-Tiny |  416*416   |          22.7          |    -               |    1.08               |    1.02             |    10.48                          |  
| Nanodet-M |  320*320      |          20.6            |    -               |    0.95               |    0.72             |    8.71                           |  
| Nanodet-M |  416*416   |          23.5             |    -               |    0.95               |    1.2              |  13.35                          |
| Nanodet-M 1.5x |  416*416   |          26.8        |    -                  | 2.08               |    2.42             |    15.83                          |
| YOLOX-Nano     |  416*416   |          25.8          |    -               |    0.91               |    1.08             |    19.23                          |
| YOLOX-Tiny     |  416*416   |          32.8          |    -               |    5.06               |    6.45             |    32.77                          |
| YOLOv5n |  640*640       |          28.4             |    46.0            |    1.9                |    4.5              |    40.35                          |
| YOLOv5s |  640*640       |          37.2             |    56.0            |    7.2                |    16.5             |    78.05                          |

G
Guanghua Yu 已提交
74
- ARM测试的benchmark脚本来自: [MobileDetBenchmark](https://github.com/JiweiMaster/MobileDetBenchmark)
G
Guanghua Yu 已提交
75

G
Guanghua Yu 已提交
76
## 快速开始
G
Guanghua Yu 已提交
77 78

<details open>
G
Guanghua Yu 已提交
79
<summary>依赖包:</summary>
G
Guanghua Yu 已提交
80

G
Guanghua Yu 已提交
81
- PaddlePaddle == 2.2.2
G
Guanghua Yu 已提交
82 83 84 85

</details>

<details>
G
Guanghua Yu 已提交
86
<summary>安装</summary>
G
Guanghua Yu 已提交
87

G
Guanghua Yu 已提交
88 89
- [安装指导文档](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/INSTALL.md)
- [准备数据文档](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/PrepareDataSet_en.md)
G
Guanghua Yu 已提交
90 91 92 93

</details>

<details>
G
Guanghua Yu 已提交
94
<summary>训练&评估</summary>
G
Guanghua Yu 已提交
95

G
Guanghua Yu 已提交
96
- 单卡GPU上训练:
G
Guanghua Yu 已提交
97 98 99 100

```shell
# training on single-GPU
export CUDA_VISIBLE_DEVICES=0
G
Guanghua Yu 已提交
101
python tools/train.py -c configs/picodet/picodet_s_320_coco_lcnet.yml --eval
G
Guanghua Yu 已提交
102 103
```

G
Guanghua Yu 已提交
104 105 106
**注意:**如果训练时显存out memory,将TrainReader中batch_size调小,同时LearningRate中base_lr等比例减小。同时我们发布的config均由4卡训练得到,如果改变GPU卡数为1,那么base_lr需要减小4倍。

- 多卡GPU上训练:
G
Guanghua Yu 已提交
107 108 109


```shell
G
Guanghua Yu 已提交
110
# training on multi-GPU
G
Guanghua Yu 已提交
111 112
export CUDA_VISIBLE_DEVICES=0,1,2,3
python -m paddle.distributed.launch --gpus 0,1,2,3 tools/train.py -c configs/picodet/picodet_s_320_coco_lcnet.yml --eval
G
Guanghua Yu 已提交
113 114
```

G
Guanghua Yu 已提交
115 116
**注意:**PicoDet所有模型均由4卡GPU训练得到,如果改变训练GPU卡数,需要按线性比例缩放学习率base_lr。

G
Guanghua Yu 已提交
117
- 评估:
G
Guanghua Yu 已提交
118 119

```shell
G
Guanghua Yu 已提交
120 121
python tools/eval.py -c configs/picodet/picodet_s_320_coco_lcnet.yml \
              -o weights=https://paddledet.bj.bcebos.com/models/picodet_s_320_coco_lcnet.pdparams
G
Guanghua Yu 已提交
122 123
```

G
Guanghua Yu 已提交
124
- 测试:
G
Guanghua Yu 已提交
125 126

```shell
G
Guanghua Yu 已提交
127 128
python tools/infer.py -c configs/picodet/picodet_s_320_coco_lcnet.yml \
              -o weights=https://paddledet.bj.bcebos.com/models/picodet_s_320_coco_lcnet.pdparams
G
Guanghua Yu 已提交
129 130
```

G
Guanghua Yu 已提交
131
详情请参考[快速开始文档](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/GETTING_STARTED.md).
G
Guanghua Yu 已提交
132 133 134 135

</details>


G
Guanghua Yu 已提交
136
## 部署
G
Guanghua Yu 已提交
137

G
Guanghua Yu 已提交
138
### 导出及转换模型
G
Guanghua Yu 已提交
139

G
Guanghua Yu 已提交
140 141
<details open>
<summary>1. 导出模型</summary>
G
Guanghua Yu 已提交
142 143 144

```shell
cd PaddleDetection
G
Guanghua Yu 已提交
145 146
python tools/export_model.py -c configs/picodet/picodet_s_320_coco_lcnet.yml \
              -o weights=https://paddledet.bj.bcebos.com/models/picodet_s_320_coco_lcnet.pdparams \
P
pk_hk 已提交
147
              --output_dir=output_inference
G
Guanghua Yu 已提交
148 149
```

G
Guanghua Yu 已提交
150
- 如无需导出后处理,请指定:`-o export.benchmark=True`(如果-o已出现过,此处删掉-o)或者手动修改[runtime.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/runtime.yml) 中相应字段。
G
Guanghua Yu 已提交
151
- 如无需导出NMS,请指定:`-o export.nms=False`或者手动修改[runtime.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/runtime.yml) 中相应字段。 许多导出至ONNX场景只支持单输入及固定shape输出,所以如果导出至ONNX,推荐不导出NMS。
G
Guanghua Yu 已提交
152

G
Guanghua Yu 已提交
153 154 155
</details>

<details>
G
Guanghua Yu 已提交
156
<summary>2. 转换模型至Paddle Lite (点击展开)</summary>
G
Guanghua Yu 已提交
157

G
Guanghua Yu 已提交
158
- 安装Paddlelite>=2.10:
G
Guanghua Yu 已提交
159 160 161 162 163

```shell
pip install paddlelite
```

G
Guanghua Yu 已提交
164
- 转换模型至Paddle Lite格式:
G
Guanghua Yu 已提交
165 166 167

```shell
# FP32
P
pk_hk 已提交
168
paddle_lite_opt --model_dir=output_inference/picodet_s_320_coco_lcnet --valid_targets=arm --optimize_out=picodet_s_320_coco_fp32
G
Guanghua Yu 已提交
169
# FP16
P
pk_hk 已提交
170
paddle_lite_opt --model_dir=output_inference/picodet_s_320_coco_lcnet --valid_targets=arm --optimize_out=picodet_s_320_coco_fp16 --enable_fp16=true
G
Guanghua Yu 已提交
171 172 173 174 175
```

</details>

<details>
G
Guanghua Yu 已提交
176
<summary>3. 转换模型至ONNX (点击展开)</summary>
G
Guanghua Yu 已提交
177

G
Guanghua Yu 已提交
178
- 安装[Paddle2ONNX](https://github.com/PaddlePaddle/Paddle2ONNX) >= 0.7 并且 ONNX > 1.10.1, 细节请参考[导出ONNX模型教程](../../deploy/EXPORT_ONNX_MODEL.md)
G
Guanghua Yu 已提交
179 180 181

```shell
pip install onnx
G
Guanghua Yu 已提交
182
pip install paddle2onnx==0.9.2
G
Guanghua Yu 已提交
183 184
```

G
Guanghua Yu 已提交
185
- 转换模型:
G
Guanghua Yu 已提交
186 187

```shell
G
Guanghua Yu 已提交
188
paddle2onnx --model_dir output_inference/picodet_s_320_coco_lcnet/ \
G
Guanghua Yu 已提交
189 190 191 192 193 194
            --model_filename model.pdmodel  \
            --params_filename model.pdiparams \
            --opset_version 11 \
            --save_file picodet_s_320_coco.onnx
```

G
Guanghua Yu 已提交
195
- 简化ONNX模型: 使用`onnx-simplifier`库来简化ONNX模型。
G
Guanghua Yu 已提交
196

G
Guanghua Yu 已提交
197
  - 安装 onnx-simplifier >= 0.3.6:
G
Guanghua Yu 已提交
198 199 200
  ```shell
  pip install onnx-simplifier
  ```
G
Guanghua Yu 已提交
201
  - 简化ONNX模型:
G
Guanghua Yu 已提交
202 203 204 205
  ```shell
  python -m onnxsim picodet_s_320_coco.onnx picodet_s_processed.onnx
  ```

G
Guanghua Yu 已提交
206 207 208 209 210
  如果模型包含所有后处理,简化模型时需要指定`dynamic-input-shape`
  ```shell
  python -m onnxsim picodet_s_320_coco.onnx picodet_s_processed.onnx --dynamic-input-shape --input-shape image:1,3,320,320
  ```

G
Guanghua Yu 已提交
211 212
</details>

G
Guanghua Yu 已提交
213
- 部署用的模型
G
Guanghua Yu 已提交
214

P
pk_hk 已提交
215
| 模型     | 输入尺寸 | ONNX  | Paddle Lite(fp32) | Paddle Lite(fp16) |
G
Guanghua Yu 已提交
216
| :-------- | :--------: | :---------------------: | :----------------: | :----------------: |
G
Guanghua Yu 已提交
217 218 219 220 221 222 223 224 225
| PicoDet-XS |  320*320   | [( w/ 后处理)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_xs_320_lcnet_postprocessed.onnx) &#124; [( w/o 后处理)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_xs_320_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_xs_320_coco_lcnet.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_xs_320_coco_lcnet_fp16.tar) |
| PicoDet-XS |  416*416   | [( w/ 后处理)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_xs_416_lcnet_postprocessed.onnx) &#124; [( w/o 后处理)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_xs_416_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_xs_416_coco_lcnet.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_xs_416_coco_lcnet_fp16.tar) |
| PicoDet-S |  320*320   | [( w/ 后处理)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_320_lcnet_postprocessed.onnx) &#124; [( w/o 后处理)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_320_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_320_coco_lcnet.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_320_coco_lcnet_fp16.tar) |
| PicoDet-S |  416*416   |  [( w/ 后处理)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_416_lcnet_postprocessed.onnx) &#124; [( w/o 后处理)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_416_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_416_coco_lcnet.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_416_coco_lcnet_fp16.tar) |
| PicoDet-M |  320*320   | [( w/ 后处理)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_320_lcnet_postprocessed.onnx) &#124; [( w/o 后处理)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_320_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_320_coco_lcnet.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_320_coco_lcnet_fp16.tar) |
| PicoDet-M |  416*416   | [( w/ 后处理)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_416_lcnet_postprocessed.onnx) &#124; [( w/o 后处理)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_416_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_416_coco_lcnet.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_416_coco_lcnet_fp16.tar) |
| PicoDet-L |  320*320   | [( w/ 后处理)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_320_lcnet_postprocessed.onnx) &#124; [( w/o 后处理)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_320_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_320_coco_lcnet.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_320_coco_lcnet_fp16.tar) |
| PicoDet-L |  416*416   | [( w/ 后处理)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_416_lcnet_postprocessed.onnx) &#124; [( w/o 后处理)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_416_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_416_coco_lcnet.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_416_coco_lcnet_fp16.tar) |
| PicoDet-L |  640*640   | [( w/ 后处理)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_640_lcnet_postprocessed.onnx) &#124; [( w/o 后处理)](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_640_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_640_coco_lcnet.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_640_coco_lcnet_fp16.tar) |
G
Guanghua Yu 已提交
226

G
Guanghua Yu 已提交
227
### 部署
G
Guanghua Yu 已提交
228

229 230 231 232 233 234 235 236 237 238
| 预测库     | Python | C++  | 带后处理预测 |
| :-------- | :--------: | :---------------------: | :----------------: |
| OpenVINO | [Python](../../deploy/third_engine/demo_openvino/python) | [C++](../../deploy/third_engine/demo_openvino)(带后处理开发中) |  ✔︎ |
| Paddle Lite |  -    |  [C++](../../deploy/lite) | ✔︎ |
| Android Demo |  -  |  [Paddle Lite](https://github.com/PaddlePaddle/Paddle-Lite-Demo/tree/develop/object_detection/android/app/cxx/picodet_detection_demo) | ✔︎ |
| PaddleInference | [Python](../../deploy/python) |  [C++](../../deploy/cpp) | ✔︎ |
| ONNXRuntime  | [Python](../../deploy/third_engine/demo_onnxruntime) | Comming soon | ✔︎ |
| NCNN |  Comming soon  | [C++](../../deploy/third_engine/demo_ncnn) | ✘ |
| MNN  | Comming soon | [C++](../../deploy/third_engine/demo_mnn) |  ✘ |

G
Guanghua Yu 已提交
239 240


G
Guanghua Yu 已提交
241
Android demo可视化:
G
Guanghua Yu 已提交
242 243 244 245
<div align="center">
  <img src="../../docs/images/picodet_android_demo1.jpg" height="500px" ><img src="../../docs/images/picodet_android_demo2.jpg" height="500px" ><img src="../../docs/images/picodet_android_demo3.jpg" height="500px" ><img src="../../docs/images/picodet_android_demo4.jpg" height="500px" >
</div>

G
Guanghua Yu 已提交
246

G
Guanghua Yu 已提交
247
## 量化
G
Guanghua Yu 已提交
248

G
Guanghua Yu 已提交
249
<details open>
G
Guanghua Yu 已提交
250
<summary>依赖包:</summary>
G
Guanghua Yu 已提交
251

G
Guanghua Yu 已提交
252
- PaddlePaddle >= 2.2.2
G
Guanghua Yu 已提交
253
- PaddleSlim >= 2.2.2
G
Guanghua Yu 已提交
254

G
Guanghua Yu 已提交
255
**安装:**
G
Guanghua Yu 已提交
256 257

```shell
G
Guanghua Yu 已提交
258
pip install paddleslim==2.2.2
G
Guanghua Yu 已提交
259 260 261 262
```

</details>

G
Guanghua Yu 已提交
263 264
<details open>
<summary>量化训练</summary>
G
Guanghua Yu 已提交
265

G
Guanghua Yu 已提交
266
开始量化训练:
G
Guanghua Yu 已提交
267 268

```shell
G
Guanghua Yu 已提交
269 270
python tools/train.py -c configs/picodet/picodet_s_416_coco_lcnet.yml \
          --slim_config configs/slim/quant/picodet_s_416_lcnet_quant.yml --eval
G
Guanghua Yu 已提交
271 272
```

G
Guanghua Yu 已提交
273
- 更多细节请参考[slim文档](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/slim)
G
Guanghua Yu 已提交
274

G
Guanghua Yu 已提交
275 276
</details>

G
Guanghua Yu 已提交
277
- 量化训练Model ZOO:
G
Guanghua Yu 已提交
278

G
Guanghua Yu 已提交
279 280 281
| 量化模型     | 输入尺寸 | mAP<sup>val<br>0.5:0.95  | Configs | Weight | Inference Model | Paddle Lite(INT8) |
| :-------- | :--------: | :--------------------: | :-------: | :----------------: | :----------------: | :----------------: |
| PicoDet-S |  416*416   |  31.5  | [config](./picodet_s_416_coco_lcnet.yml) &#124; [slim config](../slim/quant/picodet_s_416_lcnet_quant.yml) | [model](https://paddledet.bj.bcebos.com/models/picodet_s_416_coco_lcnet_quant.pdparams)  | [w/ 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_s_416_coco_lcnet_quant.tar) &#124; [w/o 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_s_416_coco_lcnet_quant_non_postprocess.tar) |  [w/ 后处理](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_416_coco_lcnet_quant.nb) &#124; [w/o 后处理](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_416_coco_lcnet_quant_non_postprocess.nb) |
G
Guanghua Yu 已提交
282

G
Guanghua Yu 已提交
283
## 非结构化剪枝
M
minghaoBD 已提交
284 285

<details open>
G
Guanghua Yu 已提交
286
<summary>教程:</summary>
M
minghaoBD 已提交
287

G
Guanghua Yu 已提交
288
训练及部署细节请参考[非结构化剪枝文档](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/legacy_model/pruner/README.md)
M
minghaoBD 已提交
289 290 291

</details>

G
Guanghua Yu 已提交
292
## 应用
G
Guanghua Yu 已提交
293

G
Guanghua Yu 已提交
294
- **行人检测:** `PicoDet-S-Pedestrian`行人检测模型请参考[PP-TinyPose](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/keypoint/tiny_pose#%E8%A1%8C%E4%BA%BA%E6%A3%80%E6%B5%8B%E6%A8%A1%E5%9E%8B)
G
Guanghua Yu 已提交
295

296
- **主体检测:** `PicoDet-L-Mainbody`主体检测模型请参考[主体检测文档](./legacy_model/application/mainbody_detection/README.md)
littletomatodonkey's avatar
littletomatodonkey 已提交
297

G
Guanghua Yu 已提交
298 299 300
## FAQ

<details>
G
Guanghua Yu 已提交
301
<summary>显存爆炸(Out of memory error)</summary>
G
Guanghua Yu 已提交
302

G
Guanghua Yu 已提交
303
请减小配置文件中`TrainReader``batch_size`
G
Guanghua Yu 已提交
304 305 306

</details>

G
Guanghua Yu 已提交
307
<details>
G
Guanghua Yu 已提交
308
<summary>如何迁移学习</summary>
G
Guanghua Yu 已提交
309

G
Guanghua Yu 已提交
310
请重新设置配置文件中的`pretrain_weights`字段,比如利用COCO上训好的模型在自己的数据上继续训练:
G
Guanghua Yu 已提交
311
```yaml
G
Guanghua Yu 已提交
312
pretrain_weights: https://paddledet.bj.bcebos.com/models/picodet_l_640_coco_lcnet.pdparams
G
Guanghua Yu 已提交
313 314 315 316 317
```

</details>

<details>
G
Guanghua Yu 已提交
318
<summary>`transpose`算子在某些硬件上耗时验证</summary>
G
Guanghua Yu 已提交
319

G
Guanghua Yu 已提交
320
请使用`PicoDet-LCNet`模型,`transpose`较少。
G
Guanghua Yu 已提交
321 322 323 324

</details>


W
Wenyu 已提交
325
<details>
G
Guanghua Yu 已提交
326
<summary>如何计算模型参数量。</summary>
W
Wenyu 已提交
327

G
Guanghua Yu 已提交
328
可以将以下代码插入:[trainer.py](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/engine/trainer.py#L141) 来计算参数量。
W
Wenyu 已提交
329 330 331 332 333 334 335 336 337 338 339

```python
params = sum([
    p.numel() for n, p in self.model. named_parameters()
    if all([x not in n for x in ['_mean', '_variance']])
]) # exclude BatchNorm running status
print('params: ', params)
```

</details>

G
Guanghua Yu 已提交
340 341
## 引用PP-PicoDet
如果需要在你的研究中使用PP-PicoDet,请通过一下方式引用我们的技术报告:
G
Guanghua Yu 已提交
342
```
G
Guanghua Yu 已提交
343 344 345 346 347 348 349 350
@misc{yu2021pppicodet,
      title={PP-PicoDet: A Better Real-Time Object Detector on Mobile Devices},
      author={Guanghua Yu and Qinyao Chang and Wenyu Lv and Chang Xu and Cheng Cui and Wei Ji and Qingqing Dang and Kaipeng Deng and Guanzhong Wang and Yuning Du and Baohua Lai and Qiwen Liu and Xiaoguang Hu and Dianhai Yu and Yanjun Ma},
      year={2021},
      eprint={2111.00902},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
G
Guanghua Yu 已提交
351 352

```