README.md 20.9 KB
Newer Older
G
Guanghua Yu 已提交
1
简体中文 | [English](README_en.md)
G
Guanghua Yu 已提交
2

G
Guanghua Yu 已提交
3
# PP-PicoDet
G
Guanghua Yu 已提交
4

G
Guanghua Yu 已提交
5
![](../../docs/images/picedet_demo.jpeg)
G
Guanghua Yu 已提交
6

G
Guanghua Yu 已提交
7
## 最新动态
G
Guanghua Yu 已提交
8

G
Guanghua Yu 已提交
9
- 发布全新系列PP-PicoDet模型:**(2022.03.20)**
10
  - (1)引入TAL及ETA Head,优化PAN等结构,精度大幅提升;
G
Guanghua Yu 已提交
11 12
  - (2)优化CPU端预测速度,同时训练速度大幅提升;
  - (3)导出模型将后处理包含在网络中,预测直接输出box结果,无需二次开发,迁移成本更低。
G
Guanghua Yu 已提交
13

G
Guanghua Yu 已提交
14
## 历史版本模型
G
Guanghua Yu 已提交
15

G
Guanghua Yu 已提交
16
- 详情请参考:[PicoDet 2021.10版本](./legacy_model/)
G
Guanghua Yu 已提交
17

G
Guanghua Yu 已提交
18
## 简介
G
Guanghua Yu 已提交
19

G
Guanghua Yu 已提交
20
PaddleDetection中提出了全新的轻量级系列模型`PP-PicoDet`,在移动端具有卓越的性能,成为全新SOTA轻量级模型。详细的技术细节可以参考我们的[arXiv技术报告](https://arxiv.org/abs/2111.00902)
G
Guanghua Yu 已提交
21

G
Guanghua Yu 已提交
22 23 24 25 26 27
PP-PicoDet模型有如下特点:

- 🌟 更高的mAP: 第一个在1M参数量之内`mAP(0.5:0.95)`超越**30+**(输入416像素时)。
- 🚀 更快的预测速度: 网络预测在ARM CPU下可达150FPS。
- 😊 部署友好: 支持PaddleLite/MNN/NCNN/OpenVINO等预测库,支持转出ONNX,提供了C++/Python/Android的demo。
- 😍 先进的算法: 我们在现有SOTA算法中进行了创新, 包括:ESNet, CSP-PAN, SimOTA等等。
28

G
Guanghua Yu 已提交
29 30 31 32 33

<div align="center">
  <img src="../../docs/images/picodet_map.png" width='600'/>
</div>

G
Guanghua Yu 已提交
34
## 基线
G
Guanghua Yu 已提交
35

36 37 38 39 40 41 42 43 44 45 46
| 模型     | 输入尺寸 | mAP<sup>val<br>0.5:0.95 | mAP<sup>val<br>0.5 | 参数量<br><sup>(M) | FLOPS<br><sup>(G) | 预测时延<sup><small>[CPU](#latency)</small><sup><br><sup>(ms) | 预测时延<sup><small>[Lite](#latency)</small><sup><br><sup>(ms) |  下载  | 配置文件 | 导出模型  |
| :-------- | :--------: | :---------------------: | :----------------: | :----------------: | :---------------: | :-----------------------------: | :-----------------------------: | :----------------------------------------: | :--------------------------------------- | :--------------------------------------- |
| PicoDet-XS |  320*320   |          23.5           |        36.1       |        0.70        |       0.67        |              3.9ms              |            7.81ms             | [model](https://paddledet.bj.bcebos.com/models/picodet_xs_320_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_xs_320_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_xs_320_coco_lcnet.yml) | [w/ 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_xs_320_coco_lcnet.tar) &#124; [w/o 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_xs_320_coco_lcnet_non_postprocess.tar) |
| PicoDet-XS |  416*416   |          26.2           |        39.3        |        0.70        |       1.13        |              6.1ms             |            12.38ms             | [model](https://paddledet.bj.bcebos.com/models/picodet_xs_416_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_xs_416_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_xs_416_coco_lcnet.yml) | [w/ 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_xs_416_coco_lcnet.tar) &#124; [w/o 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_xs_416_coco_lcnet_non_postprocess.tar) |
| PicoDet-S |  320*320   |          29.1           |        43.4        |        1.18       |       0.97       |             4.8ms              |            9.56ms             | [model](https://paddledet.bj.bcebos.com/models/picodet_s_320_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_s_320_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_s_320_coco_lcnet.yml) | [w/ 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_s_320_coco_lcnet.tar) &#124; [w/o 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_s_320_coco_lcnet_non_postprocess.tar) |
| PicoDet-S |  416*416   |          32.5           |        47.6        |        1.18        |       1.65       |              6.6ms              |            15.20ms             | [model](https://paddledet.bj.bcebos.com/models/picodet_s_416_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_s_416_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_s_416_coco_lcnet.yml) | [w/ 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_s_416_coco_lcnet.tar) &#124; [w/o 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_s_416_coco_lcnet_non_postprocess.tar) |
| PicoDet-M |  320*320   |          34.4           |        50.0        |        3.46        |       2.57       |             8.2ms              |            17.68ms             | [model](https://paddledet.bj.bcebos.com/models/picodet_m_320_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_m_320_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_m_320_coco_lcnet.yml) | [w/ 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_m_320_coco_lcnet.tar) &#124; [w/o 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_m_320_coco_lcnet_non_postprocess.tar) |
| PicoDet-M |  416*416   |          37.5           |        53.4       |        3.46        |       4.34        |              12.7ms              |            28.39ms            | [model](https://paddledet.bj.bcebos.com/models/picodet_m_416_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_m_416_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_m_416_coco_lcnet.yml) | [w/ 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_m_416_coco_lcnet.tar) &#124; [w/o 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_m_416_coco_lcnet_non_postprocess.tar) |
| PicoDet-L |  320*320   |          36.1           |        52.0        |        5.80       |       4.20        |              11.5ms             |            25.21ms           | [model](https://paddledet.bj.bcebos.com/models/picodet_l_320_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_l_320_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_l_320_coco_lcnet.yml) | [w/ 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_l_320_coco_lcnet.tar) &#124; [w/o 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_l_320_coco_lcnet_non_postprocess.tar) |
| PicoDet-L |  416*416   |          39.4           |        55.7        |        5.80        |       7.10       |              20.7ms              |            42.23ms            | [model](https://paddledet.bj.bcebos.com/models/picodet_l_416_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_l_416_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_l_416_coco_lcnet.yml) | [w/ 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_l_416_coco_lcnet.tar) &#124; [w/o 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_l_416_coco_lcnet_non_postprocess.tar) |
| PicoDet-L |  640*640   |          42.6           |        59.2        |        5.80        |       16.81        |              62.5ms              |            108.1ms          | [model](https://paddledet.bj.bcebos.com/models/picodet_l_640_coco_lcnet.pdparams) &#124; [log](https://paddledet.bj.bcebos.com/logs/train_picodet_l_640_coco_lcnet.log) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/picodet_l_640_coco_lcnet.yml) | [w/ 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_l_640_coco_lcnet.tar) &#124; [w/o 后处理](https://paddledet.bj.bcebos.com/deploy/Inference/picodet_l_640_coco_lcnet_non_postprocess.tar) |
G
Guanghua Yu 已提交
47

48

G
Guanghua Yu 已提交
49
<details open>
G
Guanghua Yu 已提交
50
<summary><b>注意事项:</b></summary>
G
Guanghua Yu 已提交
51

P
pk_hk 已提交
52
- <a name="latency">时延测试:</a> 我们所有的模型都在英特尔酷睿i7 10750H 的CPU 和`骁龙865(4xA77+4xA55)`的ARM CPU上测试(4线程,FP16预测)。上面表格中标有`CPU`的是使用OpenVINO测试,标有`Lite`的是使用[Paddle Lite](https://github.com/PaddlePaddle/Paddle-Lite)进行测试。
G
Guanghua Yu 已提交
53 54
- PicoDet在COCO train2017上训练,并且在COCO val2017上进行验证。使用4卡GPU训练,并且上表所有的预训练模型都是通过发布的默认配置训练得到。
- Benchmark测试:测试速度benchmark性能时,导出模型后处理不包含在网络中,需要设置`-o export.benchmark=True` 或手动修改[runtime.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/runtime.yml#L12)
G
Guanghua Yu 已提交
55 56

</details>
57

G
Guanghua Yu 已提交
58
#### 其他模型的基线
G
Guanghua Yu 已提交
59

G
Guanghua Yu 已提交
60
| 模型     | 输入尺寸 | mAP<sup>val<br>0.5:0.95 | mAP<sup>val<br>0.5 | 参数量<br><sup>(M) | FLOPS<br><sup>(G) | 预测时延<sup><small>[NCNN](#latency)</small><sup><br><sup>(ms) |
G
Guanghua Yu 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73
| :-------- | :--------: | :---------------------: | :----------------: | :----------------: | :---------------: | :-----------------------------: |
| YOLOv3-Tiny |  416*416   |          16.6           |        33.1      |        8.86        |       5.62        |             25.42               |
| YOLOv4-Tiny |  416*416   |          21.7           |        40.2        |        6.06           |       6.96           |             23.69               |
| PP-YOLO-Tiny |  320*320       |          20.6         |        -              |   1.08             |    0.58             |    6.75                           |  
| PP-YOLO-Tiny |  416*416   |          22.7          |    -               |    1.08               |    1.02             |    10.48                          |  
| Nanodet-M |  320*320      |          20.6            |    -               |    0.95               |    0.72             |    8.71                           |  
| Nanodet-M |  416*416   |          23.5             |    -               |    0.95               |    1.2              |  13.35                          |
| Nanodet-M 1.5x |  416*416   |          26.8        |    -                  | 2.08               |    2.42             |    15.83                          |
| YOLOX-Nano     |  416*416   |          25.8          |    -               |    0.91               |    1.08             |    19.23                          |
| YOLOX-Tiny     |  416*416   |          32.8          |    -               |    5.06               |    6.45             |    32.77                          |
| YOLOv5n |  640*640       |          28.4             |    46.0            |    1.9                |    4.5              |    40.35                          |
| YOLOv5s |  640*640       |          37.2             |    56.0            |    7.2                |    16.5             |    78.05                          |

G
Guanghua Yu 已提交
74
- ARM测试的benchmark脚本来自: [MobileDetBenchmark](https://github.com/JiweiMaster/MobileDetBenchmark)
G
Guanghua Yu 已提交
75

G
Guanghua Yu 已提交
76
## 快速开始
G
Guanghua Yu 已提交
77 78

<details open>
G
Guanghua Yu 已提交
79
<summary>依赖包:</summary>
G
Guanghua Yu 已提交
80

G
Guanghua Yu 已提交
81
- PaddlePaddle == 2.2.2
G
Guanghua Yu 已提交
82 83 84 85

</details>

<details>
G
Guanghua Yu 已提交
86
<summary>安装</summary>
G
Guanghua Yu 已提交
87

G
Guanghua Yu 已提交
88 89
- [安装指导文档](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/INSTALL.md)
- [准备数据文档](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/PrepareDataSet_en.md)
G
Guanghua Yu 已提交
90 91 92 93

</details>

<details>
G
Guanghua Yu 已提交
94
<summary>训练&评估</summary>
G
Guanghua Yu 已提交
95

G
Guanghua Yu 已提交
96
- 单卡GPU上训练:
G
Guanghua Yu 已提交
97 98 99 100

```shell
# training on single-GPU
export CUDA_VISIBLE_DEVICES=0
G
Guanghua Yu 已提交
101
python tools/train.py -c configs/picodet/picodet_s_320_coco_lcnet.yml --eval
G
Guanghua Yu 已提交
102 103
```

G
Guanghua Yu 已提交
104 105 106
**注意:**如果训练时显存out memory,将TrainReader中batch_size调小,同时LearningRate中base_lr等比例减小。同时我们发布的config均由4卡训练得到,如果改变GPU卡数为1,那么base_lr需要减小4倍。

- 多卡GPU上训练:
G
Guanghua Yu 已提交
107 108 109


```shell
G
Guanghua Yu 已提交
110
# training on multi-GPU
G
Guanghua Yu 已提交
111
export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
G
Guanghua Yu 已提交
112
python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/picodet/picodet_s_320_coco_lcnet.yml --eval
G
Guanghua Yu 已提交
113 114
```

G
Guanghua Yu 已提交
115
- 评估:
G
Guanghua Yu 已提交
116 117

```shell
G
Guanghua Yu 已提交
118 119
python tools/eval.py -c configs/picodet/picodet_s_320_coco_lcnet.yml \
              -o weights=https://paddledet.bj.bcebos.com/models/picodet_s_320_coco_lcnet.pdparams
G
Guanghua Yu 已提交
120 121
```

G
Guanghua Yu 已提交
122
- 测试:
G
Guanghua Yu 已提交
123 124

```shell
G
Guanghua Yu 已提交
125 126
python tools/infer.py -c configs/picodet/picodet_s_320_coco_lcnet.yml \
              -o weights=https://paddledet.bj.bcebos.com/models/picodet_s_320_coco_lcnet.pdparams
G
Guanghua Yu 已提交
127 128
```

G
Guanghua Yu 已提交
129
详情请参考[快速开始文档](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/docs/tutorials/GETTING_STARTED.md).
G
Guanghua Yu 已提交
130 131 132 133

</details>


G
Guanghua Yu 已提交
134
## 部署
G
Guanghua Yu 已提交
135

G
Guanghua Yu 已提交
136
### 导出及转换模型
G
Guanghua Yu 已提交
137 138

<details>
G
Guanghua Yu 已提交
139
<summary>1. 导出模型 (点击展开)</summary>
G
Guanghua Yu 已提交
140 141 142

```shell
cd PaddleDetection
G
Guanghua Yu 已提交
143 144
python tools/export_model.py -c configs/picodet/picodet_s_320_coco_lcnet.yml \
              -o weights=https://paddledet.bj.bcebos.com/models/picodet_s_320_coco_lcnet.pdparams \
P
pk_hk 已提交
145
              --output_dir=output_inference
G
Guanghua Yu 已提交
146 147
```

G
Guanghua Yu 已提交
148 149 150
- 如无需导出后处理,请指定:`-o export.benchmark=True`(如果-o已出现过,此处删掉-o)或者手动修改[runtime.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/runtime.yml) 中相应字段。
- 如无需导出NMS,请指定:`-o export.nms=False`或者手动修改[runtime.yml](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/configs/runtime.yml) 中相应字段。

G
Guanghua Yu 已提交
151 152 153
</details>

<details>
G
Guanghua Yu 已提交
154
<summary>2. 转换模型至Paddle Lite (点击展开)</summary>
G
Guanghua Yu 已提交
155

G
Guanghua Yu 已提交
156
- 安装Paddlelite>=2.10:
G
Guanghua Yu 已提交
157 158 159 160 161

```shell
pip install paddlelite
```

G
Guanghua Yu 已提交
162
- 转换模型至Paddle Lite格式:
G
Guanghua Yu 已提交
163 164 165

```shell
# FP32
P
pk_hk 已提交
166
paddle_lite_opt --model_dir=output_inference/picodet_s_320_coco_lcnet --valid_targets=arm --optimize_out=picodet_s_320_coco_fp32
G
Guanghua Yu 已提交
167
# FP16
P
pk_hk 已提交
168
paddle_lite_opt --model_dir=output_inference/picodet_s_320_coco_lcnet --valid_targets=arm --optimize_out=picodet_s_320_coco_fp16 --enable_fp16=true
G
Guanghua Yu 已提交
169 170 171 172 173
```

</details>

<details>
G
Guanghua Yu 已提交
174
<summary>3. 转换模型至ONNX (点击展开)</summary>
G
Guanghua Yu 已提交
175

G
Guanghua Yu 已提交
176
- 安装[Paddle2ONNX](https://github.com/PaddlePaddle/Paddle2ONNX) >= 0.7 并且 ONNX > 1.10.1, 细节请参考[导出ONNX模型教程](../../deploy/EXPORT_ONNX_MODEL.md)
G
Guanghua Yu 已提交
177 178 179

```shell
pip install onnx
G
Guanghua Yu 已提交
180
pip install paddle2onnx==0.9.2
G
Guanghua Yu 已提交
181 182
```

G
Guanghua Yu 已提交
183
- 转换模型:
G
Guanghua Yu 已提交
184 185

```shell
G
Guanghua Yu 已提交
186
paddle2onnx --model_dir output_inference/picodet_s_320_coco_lcnet/ \
G
Guanghua Yu 已提交
187 188 189 190 191 192
            --model_filename model.pdmodel  \
            --params_filename model.pdiparams \
            --opset_version 11 \
            --save_file picodet_s_320_coco.onnx
```

G
Guanghua Yu 已提交
193
- 简化ONNX模型: 使用`onnx-simplifier`库来简化ONNX模型。
G
Guanghua Yu 已提交
194

G
Guanghua Yu 已提交
195
  - 安装 onnx-simplifier >= 0.3.6:
G
Guanghua Yu 已提交
196 197 198
  ```shell
  pip install onnx-simplifier
  ```
G
Guanghua Yu 已提交
199
  - 简化ONNX模型:
G
Guanghua Yu 已提交
200 201 202 203 204 205
  ```shell
  python -m onnxsim picodet_s_320_coco.onnx picodet_s_processed.onnx
  ```

</details>

G
Guanghua Yu 已提交
206
- 部署用的模型
G
Guanghua Yu 已提交
207

P
pk_hk 已提交
208
| 模型     | 输入尺寸 | ONNX( w/o 后处理)  | Paddle Lite(fp32) | Paddle Lite(fp16) |
G
Guanghua Yu 已提交
209
| :-------- | :--------: | :---------------------: | :----------------: | :----------------: |
P
pk_hk 已提交
210 211 212 213 214 215 216 217
| PicoDet-XS |  320*320   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_xs_320_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_416.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_416_fp16.tar) |
| PicoDet-XS |  416*416   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_xs_416_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_416.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_416_fp16.tar) |
| PicoDet-S |  320*320   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_320_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_320.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_320_fp16.tar) |
| PicoDet-S |  416*416   |  [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_s_416_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_416.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_s_416_fp16.tar) |
| PicoDet-M |  320*320   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_320_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_320.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_320_fp16.tar) |
| PicoDet-M |  416*416   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_m_416_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_416.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_m_416_fp16.tar) |
| PicoDet-L |  320*320   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_320_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_320.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_320_fp16.tar) |
| PicoDet-L |  416*416   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_416_coco_lcnet.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_416.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_416_fp16.tar) |
G
Guanghua Yu 已提交
218 219 220
| PicoDet-L |  640*640   | [model](https://paddledet.bj.bcebos.com/deploy/third_engine/picodet_l_640_coco.onnx) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_640.tar) | [model](https://paddledet.bj.bcebos.com/deploy/paddlelite/picodet_l_640_fp16.tar) |


G
Guanghua Yu 已提交
221
### 部署
G
Guanghua Yu 已提交
222 223 224

- PaddleInference demo [Python](../../deploy/python) & [C++](../../deploy/cpp)
- [PaddleLite C++ demo](../../deploy/lite)
G
Guanghua Yu 已提交
225
- [Android demo(Paddle Lite)](https://github.com/PaddlePaddle/Paddle-Lite-Demo/tree/develop/object_detection/android/app/cxx/picodet_detection_demo)
G
Guanghua Yu 已提交
226 227


G
Guanghua Yu 已提交
228
Android demo可视化:
G
Guanghua Yu 已提交
229 230 231 232
<div align="center">
  <img src="../../docs/images/picodet_android_demo1.jpg" height="500px" ><img src="../../docs/images/picodet_android_demo2.jpg" height="500px" ><img src="../../docs/images/picodet_android_demo3.jpg" height="500px" ><img src="../../docs/images/picodet_android_demo4.jpg" height="500px" >
</div>

G
Guanghua Yu 已提交
233

G
Guanghua Yu 已提交
234
## 量化
G
Guanghua Yu 已提交
235

G
Guanghua Yu 已提交
236
<details open>
G
Guanghua Yu 已提交
237
<summary>依赖包:</summary>
G
Guanghua Yu 已提交
238

G
Guanghua Yu 已提交
239 240
- PaddlePaddle >= 2.2.2
- PaddleSlim >= 2.2.1
G
Guanghua Yu 已提交
241

G
Guanghua Yu 已提交
242
**安装:**
G
Guanghua Yu 已提交
243 244

```shell
G
Guanghua Yu 已提交
245
pip install paddleslim==2.2.1
G
Guanghua Yu 已提交
246 247 248 249
```

</details>

G
Guanghua Yu 已提交
250
<details>
G
Guanghua Yu 已提交
251
<summary>量化训练 (点击展开)</summary>
G
Guanghua Yu 已提交
252

G
Guanghua Yu 已提交
253
开始量化训练:
G
Guanghua Yu 已提交
254 255

```shell
G
Guanghua Yu 已提交
256
python tools/train.py -c configs/picodet/picodet_s_320_coco_lcnet.yml \
G
Guanghua Yu 已提交
257 258 259
          --slim_config configs/slim/quant/picodet_s_quant.yml --eval
```

G
Guanghua Yu 已提交
260
- 更多细节请参考[slim文档](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/slim)
G
Guanghua Yu 已提交
261

G
Guanghua Yu 已提交
262 263 264
</details>

<details>
G
Guanghua Yu 已提交
265
<summary>离线量化 (点击展开)</summary>
G
Guanghua Yu 已提交
266

G
Guanghua Yu 已提交
267
校准及导出量化模型:
G
Guanghua Yu 已提交
268 269

```shell
G
Guanghua Yu 已提交
270
python tools/post_quant.py -c configs/picodet/picodet_s_320_coco_lcnet.yml \
G
Guanghua Yu 已提交
271
          --slim_config configs/slim/post_quant/picodet_s_ptq.yml
G
Guanghua Yu 已提交
272 273
```

G
Guanghua Yu 已提交
274
- 注意: 离线量化模型精度问题正在解决中.
G
Guanghua Yu 已提交
275

G
Guanghua Yu 已提交
276
</details>
G
Guanghua Yu 已提交
277

G
Guanghua Yu 已提交
278
## 非结构化剪枝
M
minghaoBD 已提交
279 280

<details open>
G
Guanghua Yu 已提交
281
<summary>教程:</summary>
M
minghaoBD 已提交
282

G
Guanghua Yu 已提交
283
训练及部署细节请参考[非结构化剪枝文档](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/picodet/pruner/README.md)
M
minghaoBD 已提交
284 285 286

</details>

G
Guanghua Yu 已提交
287
## 应用
G
Guanghua Yu 已提交
288

G
Guanghua Yu 已提交
289
- **行人检测:** `PicoDet-S-Pedestrian`行人检测模型请参考[PP-TinyPose](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/keypoint/tiny_pose#%E8%A1%8C%E4%BA%BA%E6%A3%80%E6%B5%8B%E6%A8%A1%E5%9E%8B)
G
Guanghua Yu 已提交
290

291
- **主体检测:** `PicoDet-L-Mainbody`主体检测模型请参考[主体检测文档](./legacy_model/application/mainbody_detection/README.md)
littletomatodonkey's avatar
littletomatodonkey 已提交
292

G
Guanghua Yu 已提交
293 294 295
## FAQ

<details>
G
Guanghua Yu 已提交
296
<summary>显存爆炸(Out of memory error)</summary>
G
Guanghua Yu 已提交
297

G
Guanghua Yu 已提交
298
请减小配置文件中`TrainReader``batch_size`
G
Guanghua Yu 已提交
299 300 301

</details>

G
Guanghua Yu 已提交
302
<details>
G
Guanghua Yu 已提交
303
<summary>如何迁移学习</summary>
G
Guanghua Yu 已提交
304

G
Guanghua Yu 已提交
305
请重新设置配置文件中的`pretrain_weights`字段,比如利用COCO上训好的模型在自己的数据上继续训练:
G
Guanghua Yu 已提交
306
```yaml
G
Guanghua Yu 已提交
307
pretrain_weights: https://paddledet.bj.bcebos.com/models/picodet_l_640_coco_lcnet.pdparams
G
Guanghua Yu 已提交
308 309 310 311 312
```

</details>

<details>
G
Guanghua Yu 已提交
313
<summary>`transpose`算子在某些硬件上耗时验证</summary>
G
Guanghua Yu 已提交
314

G
Guanghua Yu 已提交
315
请使用`PicoDet-LCNet`模型,`transpose`较少。
G
Guanghua Yu 已提交
316 317 318 319

</details>


W
Wenyu 已提交
320
<details>
G
Guanghua Yu 已提交
321
<summary>如何计算模型参数量。</summary>
W
Wenyu 已提交
322

G
Guanghua Yu 已提交
323
可以将以下代码插入:[trainer.py](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/ppdet/engine/trainer.py#L141) 来计算参数量。
W
Wenyu 已提交
324 325 326 327 328 329 330 331 332 333 334

```python
params = sum([
    p.numel() for n, p in self.model. named_parameters()
    if all([x not in n for x in ['_mean', '_variance']])
]) # exclude BatchNorm running status
print('params: ', params)
```

</details>

G
Guanghua Yu 已提交
335 336
## 引用PP-PicoDet
如果需要在你的研究中使用PP-PicoDet,请通过一下方式引用我们的技术报告:
G
Guanghua Yu 已提交
337
```
G
Guanghua Yu 已提交
338 339 340 341 342 343 344 345
@misc{yu2021pppicodet,
      title={PP-PicoDet: A Better Real-Time Object Detector on Mobile Devices},
      author={Guanghua Yu and Qinyao Chang and Wenyu Lv and Chang Xu and Cheng Cui and Wei Ji and Qingqing Dang and Kaipeng Deng and Guanzhong Wang and Yuning Du and Baohua Lai and Qiwen Liu and Xiaoguang Hu and Dianhai Yu and Yanjun Ma},
      year={2021},
      eprint={2111.00902},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}
G
Guanghua Yu 已提交
346 347

```