framework.py 75.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
X
Xin Pan 已提交
18
from collections import defaultdict
Q
qiaolongfei 已提交
19
import contextlib
P
peizhilin 已提交
20
import os
F
fengjiayi 已提交
21
import re
22
import six
23

Y
Yu Yang 已提交
24
import numpy as np
Q
qiaolongfei 已提交
25

M
minqiyang 已提交
26
from .. import compat as cpt
27
from .proto import framework_pb2
28 29
try:
    from . import core
30
except ImportError as e:
P
peizhilin 已提交
31 32 33 34 35 36 37 38 39 40 41 42
    if os.name == 'nt':
        raise ImportError(
            """NOTE: You may need to run \"set PATH=c:\python27\lib:%PATH%\"
        if you encounters \"mkldnn.dll not found\" errors. If you have python
        installed in other directory, replace \"c:\python27\lib" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
    else:
        raise ImportError(
            """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
        if you encounters \"libmkldnn.so not found\" errors. If you have python
        installed in other directory, replace \"/usr/local/lib\" with your own
        directory. The original error is: \n""" + cpt.get_exception_message(e))
43
except Exception as e:
44
    raise e
45
from . import unique_name
Y
Yu Yang 已提交
46

47
__all__ = [
48 49 50 51
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
52
    'name_scope',
53
]
Y
Yu Yang 已提交
54

Q
qiaolongfei 已提交
55 56 57 58
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
59 60
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

61 62 63 64 65 66 67 68 69 70
_imperative_tracer_ = None


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
71

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


@contextlib.contextmanager
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
T
Tink_Y 已提交
111

112 113 114 115
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
T
Tink_Y 已提交
116 117
          with name_scope("attention"):
             ...
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
137 138 139
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
140 141 142 143


def grad_var_name(var_name):
    """
144 145
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
146 147 148
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
149

150
def convert_np_dtype_to_dtype_(np_dtype):
151 152
    """
    Convert the data type in numpy to the data type in Paddle
153

154
    Args:
155
        np_dtype(np.dtype): the data type in numpy.
156

157 158
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
159 160

    """
161 162
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
163
        return core.VarDesc.VarType.FP32
164
    elif dtype == np.float64:
165
        return core.VarDesc.VarType.FP64
166
    elif dtype == np.float16:
167
        return core.VarDesc.VarType.FP16
168
    elif dtype == np.int32:
169
        return core.VarDesc.VarType.INT32
170
    elif dtype == np.int16:
171
        return core.VarDesc.VarType.INT16
172
    elif dtype == np.int64:
173
        return core.VarDesc.VarType.INT64
174
    elif dtype == np.bool:
175
        return core.VarDesc.VarType.BOOL
176 177
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
178 179
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
180 181
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
182
    else:
M
minqiyang 已提交
183
        raise ValueError("Not supported numpy dtype %s" % dtype)
184 185 186


def dtype_is_floating(dtype):
187 188 189
    """
    Check the data type is floating or not.
    Args:
190
        dtype(np.dtype|core.VarDesc.VarType): data type.
191 192 193 194 195
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
196
    if not isinstance(dtype, core.VarDesc.VarType):
197 198
        dtype = convert_np_dtype_to_dtype_(dtype)

199 200 201 202
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
203 204


Y
Yang Yang(Tony) 已提交
205
def _debug_string_(proto, throw_on_error=True):
206 207 208 209 210 211 212 213 214 215 216
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
217
    error_fields = list()
Y
Yang Yang(Tony) 已提交
218
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
219 220
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
221 222 223
    return proto.__str__()


X
Xin Pan 已提交
224
class Variable(object):
225
    """
226 227 228
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
229
    two variables in different blocks could have the same name.
230

231 232
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
233

234
    Most of a Variable's member variables can be setted to be None. It mean
235
    it is not available or will be specified later.
236 237

    Args:
238
        block(Block): The block that the variable belongs to.
239 240
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
241 242
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
243
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
244
            Some kinds of variable do not contain shape, just set it to None.
245 246 247
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
248
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
249
            series data.
250
            Default: None
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
273 274
    """

Y
Yu Yang 已提交
275 276
    def __init__(self,
                 block,
Y
Yu Yang 已提交
277
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
278 279 280 281
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
282
                 capacity=None,
Q
QI JUN 已提交
283
                 persistable=None,
F
fengjiayi 已提交
284
                 error_clip=None,
Y
Yu Yang 已提交
285
                 stop_gradient=False,
F
fengjiayi 已提交
286
                 is_data=False,
Y
Yu Yang 已提交
287
                 **kwargs):
Y
Yu Yang 已提交
288
        self.block = block
F
fengjiayi 已提交
289
        self.error_clip = error_clip
Y
Yu Yang 已提交
290 291

        if name is None:
Y
Yu Yang 已提交
292
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
293
        is_new_var = False
M
minqiyang 已提交
294
        name = cpt.to_text(name)
M
minqiyang 已提交
295
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
296 297

        if self.desc is None:
M
minqiyang 已提交
298
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
299
            is_new_var = True
Y
Yu Yang 已提交
300

Y
Yu Yang 已提交
301 302 303 304 305 306 307 308
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
309
        if shape is not None:
Y
Yu Yang 已提交
310
            if is_new_var:
311
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
312 313 314 315 316 317 318 319
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
320
        if dtype is not None:
321
            if not isinstance(dtype, core.VarDesc.VarType):
322
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
323
            if is_new_var:
F
fengjiayi 已提交
324
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
325
            else:
F
fengjiayi 已提交
326
                old_dtype = self.dtype
Q
QI JUN 已提交
327
                if dtype != old_dtype:
Y
Yu Yang 已提交
328 329 330 331 332
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
333 334

        if lod_level is not None:
Y
Yu Yang 已提交
335
            if is_new_var:
336
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
337 338 339 340 341 342 343
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
344 345 346 347 348 349 350 351 352 353 354
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

355 356 357 358 359 360 361 362
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
363
        self.block.vars[name] = self
Y
Yu Yang 已提交
364
        self.op = None
M
minqiyang 已提交
365
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
366
        self.is_data = is_data
X
Xin Pan 已提交
367 368 369
        if _in_imperative_mode():
            self._ivar = core.VarBase()
            self._ivar.desc = self.desc
370
            self._ivar.stop_gradient = stop_gradient
Y
Yu Yang 已提交
371

372
    def _numpy(self):
373
        tensor = self._ivar.value.get_tensor()
374 375 376
        return np.array(tensor)

    def _backward(self):
X
Xin Pan 已提交
377
        self._ivar._run_backward()
378 379

    def _gradient(self):
X
Xin Pan 已提交
380
        return np.array(self._ivar._grad())
381

M
minqiyang 已提交
382 383 384 385 386 387 388 389
    @property
    def _value(self):
        return self._ivar.value

    @_value.setter
    def _value(self, v):
        self._ivar.value = v

390
    def __str__(self):
Y
Yang Yang(Tony) 已提交
391 392
        return self.to_string(True)

F
update  
fengjiayi 已提交
393
    def to_string(self, throw_on_error, with_details=False):
394 395 396 397
        """
        Get debug string.

        Args:
398 399
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
400
            with_details(bool): more details about variables and parameters
401 402
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
403

404 405
        Returns:
            str: The debug string.
406
        """
F
update  
fengjiayi 已提交
407 408
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
409
        protostr = self.desc.serialize_to_string()
410
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
411 412 413 414
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
415 416
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
417
        return res_str
418 419 420

    __repr__ = __str__

W
Wu Yi 已提交
421
    def _set_desc(self, input):
422 423 424 425 426 427 428 429 430
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
431 432
        self.desc = input

433 434 435 436 437 438 439 440
    @property
    def _stop_gradient(self):
        return self._ivar.stop_gradient

    @_stop_gradient.setter
    def _stop_gradient(self, s):
        self._ivar.stop_gradient = s

441 442 443 444
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
445 446 447 448
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
449 450
    @property
    def name(self):
M
minqiyang 已提交
451
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
452

T
typhoonzero 已提交
453 454 455 456
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
457 458 459
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
460
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
461 462

    @property
F
fengjiayi 已提交
463 464
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
465 466 467

    @property
    def lod_level(self):
468
        return self.desc.lod_level()
Y
Yu Yang 已提交
469

Y
Yu Yang 已提交
470 471 472 473
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
474
    def _set_error_clip(self, error_clip):
475 476 477 478 479 480 481 482 483
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
484 485
        self.error_clip = error_clip

Y
Yu Yang 已提交
486

F
fengjiayi 已提交
487 488 489
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
490

491 492
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
493 494 495 496
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
497
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
498 499 500 501 502
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
503 504 505 506
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
507 508 509 510 511 512 513 514 515
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
516
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
517 518 519 520 521 522
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
523 524 525 526 527 528 529 530
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
531 532
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
533 534
        return self.op_proto_map[type]

535 536 537 538
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
539
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
540
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
541 542
        }

F
fengjiayi 已提交
543

X
Xin Pan 已提交
544
class Operator(object):
545
    """
546 547 548 549 550 551 552
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
553
        type(str): The type of operator. Default None.
554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
574
        Block.append_op or Block._prepend_op instead.
575 576 577 578 579 580 581 582 583 584

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
585
    """
586 587 588
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
X
Xin Pan 已提交
589 590
        'listen_and_serv', 'save_combine', 'load_combine', 'ncclInit', 'select',
        'checkpoint_notify', 'gen_nccl_id'
591
    }
592

Y
Yu Yang 已提交
593 594
    def __init__(self,
                 block,
Y
Yu Yang 已提交
595
                 desc,
Y
Yu Yang 已提交
596 597 598
                 type=None,
                 inputs=None,
                 outputs=None,
M
minqiyang 已提交
599
                 attrs=None):
Y
Yu Yang 已提交
600
        self.block = block
Y
Yu Yang 已提交
601
        self.desc = desc
G
gongweibao 已提交
602 603 604 605 606
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
607 608 609 610
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
611 612
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
613 614 615

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
616 617
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
618

G
gongweibao 已提交
619 620
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
621

F
fengjiayi 已提交
622 623 624 625 626
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
627
        self.desc.set_type(type)
F
fengjiayi 已提交
628
        proto = OpProtoHolder.instance().get_op_proto(type)
629

630 631 632
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
633 634
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
635
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
636 637
                    return True
            return False
Q
QI JUN 已提交
638

Y
Yang Yang(Tony) 已提交
639 640 641 642 643 644 645
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
646 647 648 649
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
650 651
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
652 653 654
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
655
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
656
                            in_arg_names.append(arg)
657 658
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
659
                        else:
M
minqiyang 已提交
660
                            in_arg_names.append(cpt.to_text(arg.name))
661
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
662 663
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
664

Y
Yu Yang 已提交
665
        if outputs is not None:
666
            for m in proto.outputs:
Q
qingqing01 已提交
667 668 669 670 671 672
                if (m.name not in outputs) and m.dispensable:
                    continue
                if not ((m.name in outputs) or m.dispensable):
                    raise ValueError(
                        ("Incorrect setting for output(s) of "
                         "operator \"%s\", should set: [%s].") % (type, m.name))
F
fengjiayi 已提交
673
            for out_proto in proto.outputs:
Q
qingqing01 已提交
674 675
                if out_proto.name not in outputs:
                    continue
676 677 678 679
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
680 681
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
682 683 684
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
685
                    out_arg_names.append(cpt.to_text(arg.name))
686 687
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
688

G
gongweibao 已提交
689 690
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
691
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
692
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
693
                attr_name = attr.name
G
gongweibao 已提交
694
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
695
                    continue
G
gongweibao 已提交
696
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
697 698
                self._update_desc_attr(attr_name, attr_val)

699
        self.desc.check_attrs()
M
minqiyang 已提交
700

W
Wu Yi 已提交
701
        if self._has_kernel(type):
Q
QI JUN 已提交
702
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
703
            self.desc.infer_shape(self.block.desc)
M
minqiyang 已提交
704

X
Xin Pan 已提交
705 706 707
        if _in_imperative_mode():
            self.iop = core.OpBase()
            self.iop.desc = self.desc
X
Xin Pan 已提交
708
            self.inputs = defaultdict(list)
X
Xin Pan 已提交
709
            if inputs is not None:
X
Xin Pan 已提交
710 711 712 713 714 715
                for k, v in six.iteritems(inputs):
                    if isinstance(v, Variable):
                        self.inputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.inputs[k].extend([var._ivar for var in v])
            self.outputs = defaultdict(list)
X
Xin Pan 已提交
716
            if outputs is not None:
X
Xin Pan 已提交
717 718 719 720 721
                for k, v in six.iteritems(outputs):
                    if isinstance(v, Variable):
                        self.outputs[k].append(v._ivar)
                    elif isinstance(v, list) or isinstance(v, tuple):
                        self.outputs[k].extend([var._ivar for var in v])
F
fengjiayi 已提交
722

W
Wu Yi 已提交
723
    def _has_kernel(self, op_type):
724 725
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
726
    def to_string(self, throw_on_error):
727
        """
728 729
        Get debug string.

730
        Args:
731 732
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
733

734 735
        Returns:
            str: The debug string.
736 737

        """
738
        protostr = self.desc.serialize_to_string()
739
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
740 741 742 743
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
744 745 746

    __repr__ = __str__

F
fengjiayi 已提交
747 748 749 750 751
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
752
        """
753
        Get the input arguments according to the input parameter name.
754

755 756
        Args:
            name(str): The input parameter name.
757

758 759 760
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
761
        """
F
fengjiayi 已提交
762 763
        return self.desc.input(name)

W
Wu Yi 已提交
764
    def _rename_input(self, old_name, new_name):
765 766 767 768 769 770 771 772 773 774
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
775
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
776

W
Wu Yi 已提交
777
    def _rename_output(self, old_name, new_name):
778 779 780 781 782 783 784 785 786 787
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
788
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
789

F
fengjiayi 已提交
790 791 792 793
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
794 795 796 797 798 799 800 801
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
802
    def output(self, name):
803
        """
804
        Get output arguments by the output parameter name.
805

806 807
        Args:
            name(str): The output parameter name.
808

809 810 811
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
812
        """
F
fengjiayi 已提交
813 814 815 816 817 818
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

819 820 821 822 823 824 825 826
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
827
    def has_attr(self, name):
828
        """
829 830
        Whether this Operator has the attribute with name or not.

831
        Args:
832
            name(str): the attribute name.
833

834 835
        Returns:
            bool: True if has this attribute.
836 837

        """
F
fengjiayi 已提交
838 839 840
        return self.desc.has_attr(name)

    def attr_type(self, name):
841
        """
842
        Get the type of attribute by attribute's name.
843

844 845
        Args:
            name(str): the attribute name.
846

847 848
        Returns:
            core.AttrType: the attribute type.
849
        """
F
fengjiayi 已提交
850 851
        return self.desc.attr_type(name)

W
Wu Yi 已提交
852
    def _set_attr(self, name, val):
853 854 855 856 857 858 859 860 861 862
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
863 864 865 866 867 868 869 870 871 872 873 874 875
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
876 877
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
878 879
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
880
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
881 882 883 884
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
885
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
886

F
fengjiayi 已提交
887 888 889 890 891
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
892
        """
893 894
        Get the attribute by name.

895
        Args:
896
            name(str): the attribute name.
897

898 899
        Returns:
            bool|int|str|float|list: The attribute value. The return value
900 901
            can be any valid attribute type.
        """
F
fengjiayi 已提交
902
        return self.desc.attr(name)
Y
Yu Yang 已提交
903

W
Wu Yi 已提交
904
    def _block_attr_id(self, name):
905
        """
G
gongweibao 已提交
906
        Get the block attribute's id by name.
907

908 909
        Args:
            name(str): the attribute name.
910

911 912
        Returns:
            int: the block index.
913
        """
W
Wu Yi 已提交
914
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
915

W
Wu Yi 已提交
916
    def _block_attr(self, name):
G
gongweibao 已提交
917 918 919 920 921 922 923 924 925 926
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
927
        id = self._block_attr_id(name)
G
gongweibao 已提交
928 929 930
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
931
    def _blocks_attr(self, name):
G
gongweibao 已提交
932 933 934 935 936 937 938 939 940 941
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
942
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
943 944 945 946 947
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
948
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
949 950 951 952 953 954 955 956 957 958
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
959
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
960

J
JiayiFeng 已提交
961
    def all_attrs(self):
F
fengjiayi 已提交
962
        """
963 964 965
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
966
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
967 968 969 970
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
971 972
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
973
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
974 975 976
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
977
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
978 979 980 981
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
982 983
        return attr_map

Y
Yu Yang 已提交
984

Y
Yu Yang 已提交
985
class Block(object):
986 987 988 989 990 991 992 993 994 995 996 997 998 999
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
1000
        use `Program._create_block()` to create a block.
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
1015
    def __init__(self, program, idx):
Y
Yu Yang 已提交
1016
        self.desc = program.desc.block(idx)
1017
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
1018
        self.ops = list()  # operator list
Y
Yu Yang 已提交
1019
        self.program = program
1020
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
1021

1022
    def __str__(self):
Y
Yang Yang(Tony) 已提交
1023 1024
        return self.to_string(True)

F
fengjiayi 已提交
1025 1026
    def to_string(self, throw_on_error, with_details=False):
        """
1027 1028
        Get debug string.

F
fengjiayi 已提交
1029 1030
        Args:
            throw_on_error(bool): raise exception when self is not initialized
1031
                when throw_on_error is True.
F
update  
fengjiayi 已提交
1032
            with_details(bool): more details about variables and parameters
1033 1034
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
1035

1036 1037
        Returns:
            str: The debug string.
F
fengjiayi 已提交
1038 1039 1040 1041
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
1042
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
1043 1044
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
1045
            for var in list(self.vars.values()):
F
fengjiayi 已提交
1046
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
1047
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
1048
            for op in self.ops:
F
fengjiayi 已提交
1049 1050
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1051 1052 1053
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1054 1055
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1056 1057
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1058 1059 1060

    __repr__ = __str__

Y
Yu Yang 已提交
1061 1062
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1063
        return self.desc.parent
Y
Yu Yang 已提交
1064

Y
Yu Yang 已提交
1065 1066 1067 1068
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1069
    def _set_forward_block_idx(self, idx):
1070 1071 1072 1073 1074 1075 1076 1077 1078
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1079
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1080

Y
Yu Yang 已提交
1081 1082
    @property
    def idx(self):
Y
Yu Yang 已提交
1083
        return self.desc.id
Y
Yu Yang 已提交
1084

Q
Qiao Longfei 已提交
1085
    def var(self, name):
1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1099
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1100 1101 1102
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1103 1104
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1105
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1106
        return v
Q
Qiao Longfei 已提交
1107

X
Xin Pan 已提交
1108
    def _find_var_recursive(self, name):
1109 1110 1111 1112 1113 1114 1115
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Returns:
X
Xin Pan 已提交
1116
            Variable: the Variable with the giving name. Or None if not found.
1117
        """
Y
Yu Yang 已提交
1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))
X
Xin Pan 已提交
1142
        return None
Y
Yu Yang 已提交
1143

X
Xin Pan 已提交
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
    def _var_recursive(self, name):
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
        var = self._find_var_recursive(name)
        if var:
            return var
        else:
            raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1163

Q
Qiao Longfei 已提交
1164
    def all_parameters(self):
1165
        return list(self.iter_parameters())
1166

1167
    def iter_parameters(self):
M
minqiyang 已提交
1168
        return (item[1] for item in six.iteritems(self.vars)
1169
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1170

Y
Yu Yang 已提交
1171
    def create_var(self, *args, **kwargs):
1172
        var = Variable(block=self, *args, **kwargs)
1173 1174
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1175
        return var
Y
Yu Yang 已提交
1176

Q
Qiao Longfei 已提交
1177 1178 1179
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1180
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1181 1182
        """
        Rename variable in vars and ops' inputs and outputs
1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1195
        """
M
minqiyang 已提交
1196 1197
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1198

T
typhoonzero 已提交
1199
        if not self.has_var(name):
1200
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1201 1202
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1203
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1204 1205 1206 1207 1208 1209 1210
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1211
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1212 1213 1214 1215
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1216
        orig_var_type = v.type
M
minqiyang 已提交
1217
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1218
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1219
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1220
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1221 1222 1223 1224
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1225
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1226 1227 1228 1229 1230 1231 1232
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1233
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1234 1235
            var = Variable(
                self,
T
typhoonzero 已提交
1236
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1237 1238 1239 1240
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1241
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1242 1243 1244
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1245
        self._sync_with_cpp()
1246
        return var
T
typhoonzero 已提交
1247

W
Wu Yi 已提交
1248 1249
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1250
        self.desc._remove_var(cpt.to_bytes(name))
1251 1252
        del self.vars[name]

Y
Yu Yang 已提交
1253 1254
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1255
        param = Parameter(global_block, *args, **kwargs)
1256
        if 'initializer' in kwargs:
1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1277
        return param
Y
Yu Yang 已提交
1278

Y
Yu Yang 已提交
1279
    def append_op(self, *args, **kwargs):
1280 1281 1282 1283 1284 1285
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
Y
Yu Yang 已提交
1286
        op_desc = self.desc.append_op()
1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298
        op = Operator(
            block=self,
            desc=op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
        self.ops.append(op)
        self._trace_op(op, kwargs.get("stop_gradient", False))
        return op

    def _trace_op(self, op, stop_gradient=False):
1299
        if _in_imperative_mode():
1300
            _imperative_tracer().trace(op.iop, op.inputs, op.outputs, self.desc,
1301
                                       stop_gradient)
Y
Yu Yang 已提交
1302

W
Wu Yi 已提交
1303
    def _insert_op(self, index, *args, **kwargs):
1304 1305 1306 1307 1308 1309 1310 1311 1312
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1313 1314
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1315 1316 1317 1318
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1319
    def _remove_op(self, index):
1320 1321 1322 1323 1324 1325 1326 1327 1328
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1329 1330
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1331 1332
        del self.ops[index]

W
Wu Yi 已提交
1333
    def _slice_ops(self, start, end):
1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1344
        return self.ops[start:end]
Y
Yancey1989 已提交
1345

W
Wu Yi 已提交
1346 1347
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
1348 1349 1350 1351 1352 1353 1354
        op = Operator(
            self,
            op_desc,
            type=kwargs.get("type", None),
            inputs=kwargs.get("inputs", None),
            outputs=kwargs.get("outputs", None),
            attrs=kwargs.get("attrs", None))
Q
qiaolongfei 已提交
1355
        self.ops.insert(0, op)
1356
        self._trace_op(op, kwargs.get("stop_gradient", False))
Y
Yu Yang 已提交
1357 1358
        return op

W
Wu Yi 已提交
1359
    def _sync_with_cpp(self):
1360
        """
1361 1362
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1363
        """
Q
Qiao Longfei 已提交
1364 1365 1366 1367 1368
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1369
        # sync variables removed from c++ end
1370
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1371
            if not self.desc.find_var(cpt.to_bytes(var)):
1372 1373
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1374
        # sync operators from cpp
1375 1376 1377 1378
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1395 1396 1397 1398 1399

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1400
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1401 1402 1403 1404 1405 1406 1407

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1421 1422 1423 1424
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1425
    def _copy_param_info_from(self, other):
1426
        """
1427 1428
        Copy the information of parameters from the other block.

1429
        Args:
1430 1431 1432 1433 1434
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1435 1436 1437 1438 1439

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1440 1441
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1442
        for p in other.iter_parameters():
1443 1444 1445
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1446
                raise ValueError("_copy_param_info_from should be invoked with "
1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1459
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1460
                error_clip=p.error_clip,
1461 1462 1463
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1464
    def _clone_variable(self, var):
1465 1466
        """
        Clone a variable into current block.
1467

1468 1469 1470 1471
        Args:
            var: the variable to be cloned.

        Returns:
1472
            Variable: the new  variable cloned from 'var' in current block.
1473 1474
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1475 1476 1477 1478 1479
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1480 1481
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1482
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1483 1484 1485 1486 1487 1488
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1489 1490
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1491 1492 1493 1494 1495 1496 1497
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1498 1499
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1500
        return ret_var
1501

Y
Yu Yang 已提交
1502 1503

class Program(object):
D
dzhwinter 已提交
1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1515
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1516 1517

    Returns:
Y
yuyang18 已提交
1518
        A empty program.
D
dzhwinter 已提交
1519 1520

    Examples:
Y
yuyang18 已提交
1521 1522 1523 1524 1525 1526
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1527 1528 1529

    """

1530 1531
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1532 1533
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1534
        self._seed = 0
Y
yuyang18 已提交
1535
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1536
        self._op_role_var = []
T
tangwei12 已提交
1537 1538 1539 1540

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1541
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1542
        self._endpoints = []
1543
        self._trainers_endpoints = []
T
tangwei12 已提交
1544
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1545 1546 1547

    @property
    def op_role(self):
Y
yuyang18 已提交
1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1561 1562 1563 1564 1565 1566 1567 1568
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1569 1570 1571 1572 1573 1574 1575
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1576 1577 1578 1579
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1580
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1581 1582

    @contextlib.contextmanager
W
Wu Yi 已提交
1583
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1584 1585 1586 1587 1588 1589 1590
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1591
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1592 1593 1594 1595

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1596
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1597 1598
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1599 1600 1601
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1602 1603
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1604 1605 1606 1607
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1608
        yield
X
Xin Pan 已提交
1609 1610
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
1611

1612
    @contextlib.contextmanager
X
Xin Pan 已提交
1613
    def _lr_schedule_guard(self, is_with_opt=False):
1614 1615 1616 1617 1618 1619 1620
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
1621 1622 1623 1624
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
1625 1626 1627 1628 1629 1630 1631

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
1632 1633 1634 1635

        tmp_role = self._current_role
        tmp_var = self._op_role_var

1636 1637
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
1638 1639
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
1640 1641 1642
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
1643 1644
        self._op_role_var = tmp_var
        self._current_role = tmp_role
1645

1646
    def __str__(self):
Y
yuyang18 已提交
1647 1648 1649 1650 1651 1652 1653 1654 1655
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1656 1657
        return self.to_string(True)

F
fengjiayi 已提交
1658 1659 1660
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1661

F
fengjiayi 已提交
1662
        Args:
Y
yuyang18 已提交
1663 1664
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1665

Y
yuyang18 已提交
1666 1667 1668 1669
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

H
haowang101779990 已提交
1670 1671
        Returns:
            str : The debug string.
Y
yuyang18 已提交
1672 1673 1674 1675

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1676 1677 1678 1679 1680 1681 1682 1683 1684 1685

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1686 1687
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1688 1689
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1690

W
Wu Yi 已提交
1691
    def _get_desc(self):
Y
yuyang18 已提交
1692 1693 1694 1695 1696 1697 1698
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1699 1700
        return self.desc

X
version  
Xin Pan 已提交
1701 1702 1703
    def _version(self):
        return self.desc._version()

1704
    def clone(self, for_test=False):
Y
yuyang18 已提交
1705 1706 1707
        """
        Create a new, duplicated program.

1708

Y
yuyang18 已提交
1709 1710 1711 1712
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1713

Y
yuyang18 已提交
1714 1715 1716 1717
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1718 1719 1720 1721 1722
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1723 1724

        Args:
Y
yuyang18 已提交
1725 1726
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1727

D
dzhwinter 已提交
1728
        Returns:
Y
yuyang18 已提交
1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1782 1783
        """
        if for_test:
X
Xin Pan 已提交
1784
            p = self._inference_optimize(prune_read_op=False)
1785
        else:
1786
            p = Program()
G
gongweibao 已提交
1787 1788
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1789
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1790 1791 1792
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1793 1794 1795 1796

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1797
            p._sync_with_cpp()
1798

W
Wu Yi 已提交
1799
        p._copy_param_info_from(self)
W
Wu Yi 已提交
1800
        p._copy_data_info_from(self)
1801
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
1802
        return p
1803

W
Wu Yi 已提交
1804
    def _prune(self, targets):
Y
yuyang18 已提交
1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1820 1821 1822 1823 1824 1825
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1826 1827
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1828
                    # and we need to find the current op that generate this
1829 1830 1831 1832 1833 1834 1835 1836
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1837
                    t = t.op
1838 1839 1840 1841
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1842
                else:
1843 1844
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1845 1846 1847 1848

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1849 1850 1851
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1852
        res._sync_with_cpp()
1853 1854
        return res

X
Xin Pan 已提交
1855
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
1856
        """
F
fengjiayi 已提交
1857 1858 1859 1860 1861
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1862
        3. change the :code:`is_test`
Y
yuyang18 已提交
1863 1864 1865
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1866
        Args:
X
Xin Pan 已提交
1867 1868
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
1869

Y
yuyang18 已提交
1870 1871 1872 1873 1874 1875
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1876
        res = Program()
1877
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1878 1879 1880 1881

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
1882
        if prune_read_op:
1883 1884 1885 1886 1887 1888 1889 1890 1891
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1892
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1893 1894

        # change all `is_test` attributes to True
M
minqiyang 已提交
1895
        for i in six.moves.range(res.desc.num_blocks()):
1896
            block = res.desc.block(i)
M
minqiyang 已提交
1897
            for j in six.moves.range(block.op_size()):
1898 1899
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
1900
                    op._set_attr('is_test', True)
M
minqiyang 已提交
1901 1902 1903
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1904
        res._sync_with_cpp()
1905 1906
        return res

1907 1908
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1909 1910 1911 1912 1913 1914 1915
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1916
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1917 1918 1919 1920

        Returns:
            Program: A deserialized program desc.
        """
1921 1922
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1923
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1924
        p._sync_with_cpp()
1925
        return p
Y
Yu Yang 已提交
1926

D
dzhwinter 已提交
1927 1928
    @property
    def random_seed(self):
Y
yuyang18 已提交
1929 1930 1931 1932 1933 1934
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1935 1936
        return self._seed

Q
qiaolongfei 已提交
1937 1938
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1939 1940 1941
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1942 1943
        return self.desc.num_blocks()

D
dzhwinter 已提交
1944 1945 1946 1947 1948 1949
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1950
    def __repr__(self):
1951
        return self.__str__()
1952

Y
Yu Yang 已提交
1953
    def global_block(self):
Y
yuyang18 已提交
1954 1955 1956
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1957 1958
        return self.blocks[0]

Q
Qiao Longfei 已提交
1959
    def block(self, index):
Y
yuyang18 已提交
1960 1961 1962 1963 1964 1965 1966 1967
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1968 1969
        return self.blocks[index]

Y
Yu Yang 已提交
1970
    def current_block(self):
Y
yuyang18 已提交
1971 1972 1973 1974
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1975 1976
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
1977
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
1978 1979 1980 1981 1982 1983 1984 1985 1986 1987
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1988
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1989 1990 1991
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1992 1993 1994 1995
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
1996
    def _rollback(self):
Y
yuyang18 已提交
1997 1998 1999 2000 2001
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
2002 2003
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
2004
    def _sync_with_cpp(self):
Y
yuyang18 已提交
2005 2006 2007 2008 2009 2010 2011 2012 2013 2014
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
2015 2016 2017
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
2018
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
2019

W
Wu Yi 已提交
2020
    def _copy_param_info_from(self, other):
2021
        """
2022
        Copy the information of parameters from other program.
D
dzhwinter 已提交
2023

Y
yuyang18 已提交
2024 2025 2026
        Notes: This is a very low level API. Users should not invoke it
        directly.

2027 2028 2029 2030 2031 2032 2033
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2034
            raise TypeError("_copy_param_info_from should be invoked with "
2035 2036 2037
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2038
            raise ValueError("_copy_param_info_from should be invoked with two "
2039
                             "program, with represent the same topology")
W
Wu Yi 已提交
2040
        self.global_block()._copy_param_info_from(other.global_block())
2041

2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
        self._slice_vars_and_attrs = other._slice_vars_and_attrs
        self._endpoints = other._endpoints
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
2061
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
2062 2063
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
2064

Y
yuyang18 已提交
2065 2066 2067
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
2068 2069 2070 2071 2072 2073 2074
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
2075
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
2076 2077 2078
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2079
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2080
                             "program, with represent the same topology")
2081
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2082 2083 2084
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2085
    def list_vars(self):
Y
yuyang18 已提交
2086 2087 2088 2089 2090 2091
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2092
        for each_block in self.blocks:
2093
            for each_var in list(each_block.vars.values()):
2094 2095
                yield each_var

Y
Yu Yang 已提交
2096

Y
Yu Yang 已提交
2097
class Parameter(Variable):
2098
    """
2099
    Parameter is derived from Variable. A parameter is a persistable
2100
    Variable, and will be updated by optimizers after each iteration.
2101
    The training of a neural network is essentially the updating of
2102 2103
    its parameters.

2104
    Relative to a general Variable, a Parameter has several its own
2105 2106
    member variables:

2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2119 2120
    """

Y
Yu Yang 已提交
2121 2122 2123 2124 2125 2126 2127 2128 2129 2130
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2131 2132 2133

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2134 2135 2136 2137
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2138 2139
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2140
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2141

W
wanghaoshuang 已提交
2142
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2143

F
fengjiayi 已提交
2144 2145 2146
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2147 2148 2149
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2150

F
update  
fengjiayi 已提交
2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2165
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2166
            for attr_name in additional_attr:
2167 2168
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2169 2170
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2171 2172 2173 2174
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2175

Y
Yu Yang 已提交
2176
# program is a global instance.
Y
Yu Yang 已提交
2177 2178
_main_program_ = Program()
_startup_program_ = Program()
2179

2180

2181
def default_startup_program():
Y
Yu Yang 已提交
2182
    """
Y
yuyang18 已提交
2183 2184 2185 2186 2187 2188 2189 2190 2191
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2192

Y
Yu Yang 已提交
2193 2194 2195
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2196
    return _startup_program_
2197

2198

2199
def default_main_program():
Y
Yu Yang 已提交
2200
    """
Y
yuyang18 已提交
2201 2202 2203 2204 2205 2206 2207 2208 2209
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2210

Y
Yu Yang 已提交
2211 2212 2213
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2214
    return _main_program_
Y
Yu Yang 已提交
2215 2216 2217 2218 2219


def switch_main_program(program):
    """
    Switch the main program to a new program.
2220

Y
Yu Yang 已提交
2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2235
    Switch the startup program to a new program
Y
Yu Yang 已提交
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2251 2252 2253
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2254

Y
Yu Yang 已提交
2255
    Examples:
Y
yuyang18 已提交
2256 2257 2258 2259 2260 2261 2262 2263 2264 2265

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2266

Y
Yu Yang 已提交
2267
    Examples:
Y
yuyang18 已提交
2268 2269 2270 2271 2272 2273

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2274

Y
Yu Yang 已提交
2275
    Args:
Y
yuyang18 已提交
2276
        main_program(Program): New main program inside `with` statement.
2277
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2291 2292


W
Wu Yi 已提交
2293
def _get_var(name, program=None):
X
xuwei06 已提交
2294
    """
Y
yuyang18 已提交
2295
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2296

X
xuwei06 已提交
2297 2298 2299
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2300
        If None, default_global_program() will be used.
X
xuwei06 已提交
2301 2302 2303 2304 2305 2306 2307

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2308
    assert isinstance(program, Program)
X
xuwei06 已提交
2309 2310

    return program.global_block().var(name)
2311 2312 2313 2314 2315 2316 2317 2318 2319


@contextlib.contextmanager
def _imperative_guard(tracer):
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = tracer
    yield
    _imperative_tracer_ = tmp_trace