infer.py 34.2 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
G
Guanghua Yu 已提交
17
import glob
18 19
import json
from pathlib import Path
Q
qingqing01 已提交
20 21 22 23
from functools import reduce

import cv2
import numpy as np
C
cnn 已提交
24
import math
Q
qingqing01 已提交
25 26 27 28
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor

W
wangguanzhong 已提交
29 30 31 32 33
import sys
# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'])))
sys.path.insert(0, parent_path)

34
from benchmark_utils import PaddleInferBenchmark
35
from picodet_postprocess import PicoDetPostProcess
F
Feng Ni 已提交
36
from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride, LetterBoxResize, WarpAffine, Pad, decode_image
W
wangguanzhong 已提交
37
from keypoint_preprocess import EvalAffine, TopDownEvalAffine, expand_crop
G
Guanghua Yu 已提交
38
from visualize import visualize_box_mask
39
from utils import argsparser, Timer, get_current_memory_mb
G
Guanghua Yu 已提交
40

Q
qingqing01 已提交
41 42
# Global dictionary
SUPPORT_MODELS = {
F
Feng Ni 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
    'YOLO',
    'RCNN',
    'SSD',
    'Face',
    'FCOS',
    'SOLOv2',
    'TTFNet',
    'S2ANet',
    'JDE',
    'FairMOT',
    'DeepSORT',
    'GFL',
    'PicoDet',
    'CenterNet',
    'TOOD',
    'RetinaNet',
    'StrongBaseline',
    'STGCN',
    'YOLOX',
Q
qingqing01 已提交
62 63 64
}


W
wangguanzhong 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
def bench_log(detector, img_list, model_info, batch_size=1, name=None):
    mems = {
        'cpu_rss_mb': detector.cpu_mem / len(img_list),
        'gpu_rss_mb': detector.gpu_mem / len(img_list),
        'gpu_util': detector.gpu_util * 100 / len(img_list)
    }
    perf_info = detector.det_times.report(average=True)
    data_info = {
        'batch_size': batch_size,
        'shape': "dynamic_shape",
        'data_num': perf_info['img_num']
    }
    log = PaddleInferBenchmark(detector.config, model_info, data_info,
                               perf_info, mems)
    log(name)


Q
qingqing01 已提交
82 83 84
class Detector(object):
    """
    Args:
85
        pred_config (object): config of model, defined by `Config(model_dir)`
Q
qingqing01 已提交
86
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
87
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
88
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
89
        batch_size (int): size of pre batch in inference
90 91 92
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
93 94 95 96
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
97
        enable_mkldnn_bfloat16 (bool): whether to turn on mkldnn bfloat16
W
wangguanzhong 已提交
98 99
        output_dir (str): The path of output
        threshold (float): The threshold of score for visualization
J
JYChen 已提交
100 101
        delete_shuffle_pass (bool): whether to remove shuffle_channel_detect_pass in TensorRT. 
                                    Used by action model.
Q
qingqing01 已提交
102 103
    """

J
JYChen 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
    def __init__(self,
                 model_dir,
                 device='CPU',
                 run_mode='paddle',
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
                 enable_mkldnn_bfloat16=False,
                 output_dir='output',
                 threshold=0.5,
                 delete_shuffle_pass=False):
W
wangguanzhong 已提交
119
        self.pred_config = self.set_config(model_dir)
120
        self.predictor, self.config = load_predictor(
Q
qingqing01 已提交
121 122
            model_dir,
            run_mode=run_mode,
123
            batch_size=batch_size,
Q
qingqing01 已提交
124
            min_subgraph_size=self.pred_config.min_subgraph_size,
G
Guanghua Yu 已提交
125
            device=device,
126
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
127 128
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
129
            trt_opt_shape=trt_opt_shape,
130 131
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
132
            enable_mkldnn=enable_mkldnn,
J
JYChen 已提交
133 134
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
            delete_shuffle_pass=delete_shuffle_pass)
G
Guanghua Yu 已提交
135 136
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
W
wangguanzhong 已提交
137 138 139 140 141 142
        self.batch_size = batch_size
        self.output_dir = output_dir
        self.threshold = threshold

    def set_config(self, model_dir):
        return PredictConfig(model_dir)
Q
qingqing01 已提交
143

C
cnn 已提交
144
    def preprocess(self, image_list):
Q
qingqing01 已提交
145 146 147 148 149
        preprocess_ops = []
        for op_info in self.pred_config.preprocess_infos:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            preprocess_ops.append(eval(op_type)(**new_op_info))
C
cnn 已提交
150 151 152 153

        input_im_lst = []
        input_im_info_lst = []
        for im_path in image_list:
154
            im, im_info = preprocess(im_path, preprocess_ops)
C
cnn 已提交
155 156 157
            input_im_lst.append(im)
            input_im_info_lst.append(im_info)
        inputs = create_inputs(input_im_lst, input_im_info_lst)
W
wangguanzhong 已提交
158 159 160 161 162
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])

Q
qingqing01 已提交
163 164
        return inputs

W
wangguanzhong 已提交
165
    def postprocess(self, inputs, result):
Q
qingqing01 已提交
166
        # postprocess output of predictor
W
wangguanzhong 已提交
167 168 169 170 171 172
        np_boxes_num = result['boxes_num']
        if np_boxes_num[0] <= 0:
            print('[WARNNING] No object detected.')
            result = {'boxes': np.zeros([0, 6]), 'boxes_num': [0]}
        result = {k: v for k, v in result.items() if v is not None}
        return result
Q
qingqing01 已提交
173

174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
    def filter_box(self, result, threshold):
        np_boxes_num = result['boxes_num']
        boxes = result['boxes']
        start_idx = 0
        filter_boxes = []
        filter_num = []
        for i in range(len(np_boxes_num)):
            boxes_num = np_boxes_num[i]
            boxes_i = boxes[start_idx:start_idx + boxes_num, :]
            idx = boxes_i[:, 1] > threshold
            filter_boxes_i = boxes_i[idx, :]
            filter_boxes.append(filter_boxes_i)
            filter_num.append(filter_boxes_i.shape[0])
            start_idx += boxes_num
        boxes = np.concatenate(filter_boxes)
        filter_num = np.array(filter_num)
        filter_res = {'boxes': boxes, 'boxes_num': filter_num}
        return filter_res

W
wangguanzhong 已提交
193
    def predict(self, repeats=1):
Q
qingqing01 已提交
194 195
        '''
        Args:
W
wangguanzhong 已提交
196
            repeats (int): repeats number for prediction
Q
qingqing01 已提交
197
        Returns:
W
wangguanzhong 已提交
198
            result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
Q
qingqing01 已提交
199
                            matix element:[class, score, x_min, y_min, x_max, y_max]
W
wangguanzhong 已提交
200
                            MaskRCNN's result include 'masks': np.ndarray:
G
Guanghua Yu 已提交
201
                            shape: [N, im_h, im_w]
Q
qingqing01 已提交
202
        '''
W
wangguanzhong 已提交
203
        # model prediction
W
wangguanzhong 已提交
204
        np_boxes, np_masks = None, None
Q
qingqing01 已提交
205 206 207 208 209
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
C
cnn 已提交
210 211
            boxes_num = self.predictor.get_output_handle(output_names[1])
            np_boxes_num = boxes_num.copy_to_cpu()
G
Guanghua Yu 已提交
212
            if self.pred_config.mask:
Q
qingqing01 已提交
213 214
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()
W
wangguanzhong 已提交
215 216 217 218 219 220 221 222 223 224 225 226
        result = dict(boxes=np_boxes, masks=np_masks, boxes_num=np_boxes_num)
        return result

    def merge_batch_result(self, batch_result):
        if len(batch_result) == 1:
            return batch_result[0]
        res_key = batch_result[0].keys()
        results = {k: [] for k in res_key}
        for res in batch_result:
            for k, v in res.items():
                results[k].append(v)
        for k, v in results.items():
227 228
            if k != 'masks':
                results[k] = np.concatenate(v)
W
wangguanzhong 已提交
229
        return results
Q
qingqing01 已提交
230

W
wangguanzhong 已提交
231 232
    def get_timer(self):
        return self.det_times
W
wangguanzhong 已提交
233

W
wangguanzhong 已提交
234 235 236 237
    def predict_image(self,
                      image_list,
                      run_benchmark=False,
                      repeats=1,
238 239
                      visual=True,
                      save_file=None):
W
wangguanzhong 已提交
240
        batch_loop_cnt = math.ceil(float(len(image_list)) / self.batch_size)
Q
qingqing01 已提交
241
        results = []
W
wangguanzhong 已提交
242 243 244 245 246 247 248 249 250 251 252 253
        for i in range(batch_loop_cnt):
            start_index = i * self.batch_size
            end_index = min((i + 1) * self.batch_size, len(image_list))
            batch_image_list = image_list[start_index:end_index]
            if run_benchmark:
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
254
                result = self.predict(repeats=50)  # warmup
W
wangguanzhong 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
                self.det_times.inference_time_s.start()
                result = self.predict(repeats=repeats)
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(batch_image_list)

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu
            else:
                # preprocess
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                # postprocess
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(batch_image_list)

                if visual:
                    visualize(
                        batch_image_list,
                        result,
                        self.pred_config.labels,
                        output_dir=self.output_dir,
                        threshold=self.threshold)

            results.append(result)
            if visual:
                print('Test iter {}'.format(i))

299 300 301 302
        if save_file is not None:
            Path(self.output_dir).mkdir(exist_ok=True)
            self.format_coco_results(image_list, results, save_file=save_file)

W
wangguanzhong 已提交
303
        results = self.merge_batch_result(results)
Q
qingqing01 已提交
304 305
        return results

W
wangguanzhong 已提交
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
    def predict_video(self, video_file, camera_id):
        video_out_name = 'output.mp4'
        if camera_id != -1:
            capture = cv2.VideoCapture(camera_id)
        else:
            capture = cv2.VideoCapture(video_file)
            video_out_name = os.path.split(video_file)[-1]
        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
        print("fps: %d, frame_count: %d" % (fps, frame_count))

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
323
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
W
wangguanzhong 已提交
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
        index = 1
        while (1):
            ret, frame = capture.read()
            if not ret:
                break
            print('detect frame: %d' % (index))
            index += 1
            results = self.predict_image([frame], visual=False)

            im = visualize_box_mask(
                frame,
                results,
                self.pred_config.labels,
                threshold=self.threshold)
            im = np.array(im)
            writer.write(im)
            if camera_id != -1:
                cv2.imshow('Mask Detection', im)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
        writer.release()
W
wangguanzhong 已提交
346

347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
    @staticmethod
    def format_coco_results(image_list, results, save_file=None):
        coco_results = []
        image_id = 0

        for result in results:
            start_idx = 0
            for box_num in result['boxes_num']:
                idx_slice = slice(start_idx, start_idx + box_num)
                start_idx += box_num

                image_file = image_list[image_id]
                image_id += 1

                if 'boxes' in result:
                    boxes = result['boxes'][idx_slice, :]
                    per_result = [
                        {
                            'image_file': image_file,
                            'bbox':
                            [box[2], box[3], box[4] - box[2],
                             box[5] - box[3]],  # xyxy -> xywh
                            'score': box[1],
                            'category_id': int(box[0]),
                        } for k, box in enumerate(boxes.tolist())
                    ]

                elif 'segm' in result:
                    import pycocotools.mask as mask_util

                    scores = result['score'][idx_slice].tolist()
                    category_ids = result['label'][idx_slice].tolist()
                    segms = result['segm'][idx_slice, :]
                    rles = [
                        mask_util.encode(
                            np.array(
                                mask[:, :, np.newaxis],
                                dtype=np.uint8,
                                order='F'))[0] for mask in segms
                    ]
                    for rle in rles:
                        rle['counts'] = rle['counts'].decode('utf-8')

                    per_result = [{
                        'image_file': image_file,
                        'segmentation': rle,
                        'score': scores[k],
                        'category_id': category_ids[k],
                    } for k, rle in enumerate(rles)]

                else:
                    raise RuntimeError('')

                # per_result = [item for item in per_result if item['score'] > threshold]
                coco_results.extend(per_result)

        if save_file:
            with open(os.path.join(save_file), 'w') as f:
                json.dump(coco_results, f)

        return coco_results

Q
qingqing01 已提交
409

G
Guanghua Yu 已提交
410 411 412 413
class DetectorSOLOv2(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
414
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
415
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
416
        batch_size (int): size of pre batch in inference
417 418 419
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
420 421 422 423
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN 
424
        enable_mkldnn_bfloat16 (bool): Whether to turn on mkldnn bfloat16
W
wangguanzhong 已提交
425 426 427
        output_dir (str): The path of output
        threshold (float): The threshold of score for visualization
       
G
Guanghua Yu 已提交
428 429
    """

W
wangguanzhong 已提交
430 431
    def __init__(
            self,
G
Guanghua Yu 已提交
432
            model_dir,
W
wangguanzhong 已提交
433 434 435 436 437 438 439 440 441
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1280,
            trt_opt_shape=640,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
442
            enable_mkldnn_bfloat16=False,
W
wangguanzhong 已提交
443 444 445 446 447
            output_dir='./',
            threshold=0.5, ):
        super(DetectorSOLOv2, self).__init__(
            model_dir=model_dir,
            device=device,
G
Guanghua Yu 已提交
448
            run_mode=run_mode,
449
            batch_size=batch_size,
450 451
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
452
            trt_opt_shape=trt_opt_shape,
453 454
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
W
wangguanzhong 已提交
455
            enable_mkldnn=enable_mkldnn,
456
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
W
wangguanzhong 已提交
457 458
            output_dir=output_dir,
            threshold=threshold, )
G
Guanghua Yu 已提交
459

W
wangguanzhong 已提交
460
    def predict(self, repeats=1):
G
Guanghua Yu 已提交
461 462
        '''
        Args:
W
wangguanzhong 已提交
463
            repeats (int): repeat number for prediction
G
Guanghua Yu 已提交
464
        Returns:
W
wangguanzhong 已提交
465
            result (dict): 'segm': np.ndarray,shape:[N, im_h, im_w]
G
Guanghua Yu 已提交
466 467
                            'cate_label': label of segm, shape:[N]
                            'cate_score': confidence score of segm, shape:[N]
G
Guanghua Yu 已提交
468 469 470 471 472
        '''
        np_label, np_score, np_segms = None, None, None
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
W
wangguanzhong 已提交
473 474
            np_boxes_num = self.predictor.get_output_handle(output_names[
                0]).copy_to_cpu()
G
Guanghua Yu 已提交
475 476
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
477
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
478
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
479 480
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
G
Guanghua Yu 已提交
481

W
wangguanzhong 已提交
482
        result = dict(
W
wangguanzhong 已提交
483 484 485 486
            segm=np_segms,
            label=np_label,
            score=np_score,
            boxes_num=np_boxes_num)
W
wangguanzhong 已提交
487
        return result
G
Guanghua Yu 已提交
488 489


490 491 492 493 494
class DetectorPicoDet(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
495
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
496 497 498 499 500 501 502
        batch_size (int): size of pre batch in inference
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
503 504
        enable_mkldnn (bool): whether to turn on MKLDNN
        enable_mkldnn_bfloat16 (bool): whether to turn on MKLDNN_BFLOAT16
505 506
    """

W
wangguanzhong 已提交
507 508
    def __init__(
            self,
509
            model_dir,
W
wangguanzhong 已提交
510 511 512 513 514 515 516 517 518
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1280,
            trt_opt_shape=640,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
519
            enable_mkldnn_bfloat16=False,
W
wangguanzhong 已提交
520 521 522 523 524
            output_dir='./',
            threshold=0.5, ):
        super(DetectorPicoDet, self).__init__(
            model_dir=model_dir,
            device=device,
525 526 527 528 529 530 531
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
W
wangguanzhong 已提交
532
            enable_mkldnn=enable_mkldnn,
533
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
W
wangguanzhong 已提交
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
            output_dir=output_dir,
            threshold=threshold, )

    def postprocess(self, inputs, result):
        # postprocess output of predictor
        np_score_list = result['boxes']
        np_boxes_list = result['boxes_num']
        postprocessor = PicoDetPostProcess(
            inputs['image'].shape[2:],
            inputs['im_shape'],
            inputs['scale_factor'],
            strides=self.pred_config.fpn_stride,
            nms_threshold=self.pred_config.nms['nms_threshold'])
        np_boxes, np_boxes_num = postprocessor(np_score_list, np_boxes_list)
        result = dict(boxes=np_boxes, boxes_num=np_boxes_num)
        return result
550

W
wangguanzhong 已提交
551
    def predict(self, repeats=1):
552 553
        '''
        Args:
W
wangguanzhong 已提交
554
            repeats (int): repeat number for prediction
555
        Returns:
W
wangguanzhong 已提交
556
            result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572
                            matix element:[class, score, x_min, y_min, x_max, y_max]
        '''
        np_score_list, np_boxes_list = [], []
        for i in range(repeats):
            self.predictor.run()
            np_score_list.clear()
            np_boxes_list.clear()
            output_names = self.predictor.get_output_names()
            num_outs = int(len(output_names) / 2)
            for out_idx in range(num_outs):
                np_score_list.append(
                    self.predictor.get_output_handle(output_names[out_idx])
                    .copy_to_cpu())
                np_boxes_list.append(
                    self.predictor.get_output_handle(output_names[
                        out_idx + num_outs]).copy_to_cpu())
W
wangguanzhong 已提交
573 574
        result = dict(boxes=np_score_list, boxes_num=np_boxes_list)
        return result
575 576


C
cnn 已提交
577
def create_inputs(imgs, im_info):
Q
qingqing01 已提交
578 579
    """generate input for different model type
    Args:
W
wangguanzhong 已提交
580 581
        imgs (list(numpy)): list of images (np.ndarray)
        im_info (list(dict)): list of image info
Q
qingqing01 已提交
582 583 584 585 586
    Returns:
        inputs (dict): input of model
    """
    inputs = {}

C
cnn 已提交
587 588
    im_shape = []
    scale_factor = []
589 590 591 592 593 594 595 596
    if len(imgs) == 1:
        inputs['image'] = np.array((imgs[0], )).astype('float32')
        inputs['im_shape'] = np.array(
            (im_info[0]['im_shape'], )).astype('float32')
        inputs['scale_factor'] = np.array(
            (im_info[0]['scale_factor'], )).astype('float32')
        return inputs

C
cnn 已提交
597 598 599 600
    for e in im_info:
        im_shape.append(np.array((e['im_shape'], )).astype('float32'))
        scale_factor.append(np.array((e['scale_factor'], )).astype('float32'))

C
cnn 已提交
601 602
    inputs['im_shape'] = np.concatenate(im_shape, axis=0)
    inputs['scale_factor'] = np.concatenate(scale_factor, axis=0)
C
cnn 已提交
603 604 605 606 607 608 609 610 611 612 613 614

    imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
    max_shape_h = max([e[0] for e in imgs_shape])
    max_shape_w = max([e[1] for e in imgs_shape])
    padding_imgs = []
    for img in imgs:
        im_c, im_h, im_w = img.shape[:]
        padding_im = np.zeros(
            (im_c, max_shape_h, max_shape_w), dtype=np.float32)
        padding_im[:, :im_h, :im_w] = img
        padding_imgs.append(padding_im)
    inputs['image'] = np.stack(padding_imgs, axis=0)
Q
qingqing01 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633
    return inputs


class PredictConfig():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
G
Guanghua Yu 已提交
634
        self.mask = False
635
        self.use_dynamic_shape = yml_conf['use_dynamic_shape']
G
Guanghua Yu 已提交
636 637
        if 'mask' in yml_conf:
            self.mask = yml_conf['mask']
638 639 640
        self.tracker = None
        if 'tracker' in yml_conf:
            self.tracker = yml_conf['tracker']
641 642 643 644
        if 'NMS' in yml_conf:
            self.nms = yml_conf['NMS']
        if 'fpn_stride' in yml_conf:
            self.fpn_stride = yml_conf['fpn_stride']
645 646 647 648
        if self.arch == 'RCNN' and yml_conf.get('export_onnx', False):
            print(
                'The RCNN export model is used for ONNX and it only supports batch_size = 1'
            )
Q
qingqing01 已提交
649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
        for support_model in SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
            'arch'], SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


def load_predictor(model_dir,
672
                   run_mode='paddle',
Q
qingqing01 已提交
673
                   batch_size=1,
G
Guanghua Yu 已提交
674
                   device='CPU',
675 676 677 678
                   min_subgraph_size=3,
                   use_dynamic_shape=False,
                   trt_min_shape=1,
                   trt_max_shape=1280,
G
Guanghua Yu 已提交
679
                   trt_opt_shape=640,
680 681
                   trt_calib_mode=False,
                   cpu_threads=1,
682
                   enable_mkldnn=False,
J
JYChen 已提交
683 684
                   enable_mkldnn_bfloat16=False,
                   delete_shuffle_pass=False):
Q
qingqing01 已提交
685 686 687
    """set AnalysisConfig, generate AnalysisPredictor
    Args:
        model_dir (str): root path of __model__ and __params__
G
Guanghua Yu 已提交
688
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
689
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16/trt_int8)
690 691 692 693
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
G
Guanghua Yu 已提交
694 695
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
J
JYChen 已提交
696 697
        delete_shuffle_pass (bool): whether to remove shuffle_channel_detect_pass in TensorRT. 
                                    Used by action model.
Q
qingqing01 已提交
698 699 700
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
G
Guanghua Yu 已提交
701
        ValueError: predict by TensorRT need device == 'GPU'.
Q
qingqing01 已提交
702
    """
703
    if device != 'GPU' and run_mode != 'paddle':
Q
qingqing01 已提交
704
        raise ValueError(
G
Guanghua Yu 已提交
705 706
            "Predict by TensorRT mode: {}, expect device=='GPU', but device == {}"
            .format(run_mode, device))
Q
qingqing01 已提交
707 708 709
    config = Config(
        os.path.join(model_dir, 'model.pdmodel'),
        os.path.join(model_dir, 'model.pdiparams'))
G
Guanghua Yu 已提交
710
    if device == 'GPU':
Q
qingqing01 已提交
711 712 713
        # initial GPU memory(M), device ID
        config.enable_use_gpu(200, 0)
        # optimize graph and fuse op
714
        config.switch_ir_optim(True)
G
Guanghua Yu 已提交
715
    elif device == 'XPU':
716
        config.enable_lite_engine()
G
Guanghua Yu 已提交
717
        config.enable_xpu(10 * 1024 * 1024)
Q
qingqing01 已提交
718 719
    else:
        config.disable_gpu()
720 721
        config.set_cpu_math_library_num_threads(cpu_threads)
        if enable_mkldnn:
G
Guanghua Yu 已提交
722 723 724 725
            try:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
726 727
                if enable_mkldnn_bfloat16:
                    config.enable_mkldnn_bfloat16()
G
Guanghua Yu 已提交
728 729 730 731 732
            except Exception as e:
                print(
                    "The current environment does not support `mkldnn`, so disable mkldnn."
                )
                pass
Q
qingqing01 已提交
733

G
Guanghua Yu 已提交
734 735 736 737 738
    precision_map = {
        'trt_int8': Config.Precision.Int8,
        'trt_fp32': Config.Precision.Float32,
        'trt_fp16': Config.Precision.Half
    }
Q
qingqing01 已提交
739 740
    if run_mode in precision_map.keys():
        config.enable_tensorrt_engine(
741
            workspace_size=(1 << 25) * batch_size,
Q
qingqing01 已提交
742 743 744 745
            max_batch_size=batch_size,
            min_subgraph_size=min_subgraph_size,
            precision_mode=precision_map[run_mode],
            use_static=False,
G
Guanghua Yu 已提交
746
            use_calib_mode=trt_calib_mode)
747 748

        if use_dynamic_shape:
749 750 751 752 753 754 755 756 757
            min_input_shape = {
                'image': [batch_size, 3, trt_min_shape, trt_min_shape]
            }
            max_input_shape = {
                'image': [batch_size, 3, trt_max_shape, trt_max_shape]
            }
            opt_input_shape = {
                'image': [batch_size, 3, trt_opt_shape, trt_opt_shape]
            }
758 759 760
            config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                              opt_input_shape)
            print('trt set dynamic shape done!')
Q
qingqing01 已提交
761 762 763 764 765 766 767

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
    # disable feed, fetch OP, needed by zero_copy_run
    config.switch_use_feed_fetch_ops(False)
J
JYChen 已提交
768 769
    if delete_shuffle_pass:
        config.delete_pass("shuffle_channel_detect_pass")
Q
qingqing01 已提交
770
    predictor = create_predictor(config)
771
    return predictor, config
Q
qingqing01 已提交
772 773


G
Guanghua Yu 已提交
774 775 776 777 778
def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
779
        "--image_file or --image_dir should be set"
G
Guanghua Yu 已提交
780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    print("Found {} inference images in total.".format(len(images)))

    return images


W
wangguanzhong 已提交
805
def visualize(image_list, result, labels, output_dir='output/', threshold=0.5):
Q
qingqing01 已提交
806
    # visualize the predict result
C
cnn 已提交
807 808
    start_idx = 0
    for idx, image_file in enumerate(image_list):
W
wangguanzhong 已提交
809
        im_bboxes_num = result['boxes_num'][idx]
C
cnn 已提交
810
        im_results = {}
W
wangguanzhong 已提交
811 812 813 814 815 816 817 818 819 820 821 822 823 824 825
        if 'boxes' in result:
            im_results['boxes'] = result['boxes'][start_idx:start_idx +
                                                  im_bboxes_num, :]
        if 'masks' in result:
            im_results['masks'] = result['masks'][start_idx:start_idx +
                                                  im_bboxes_num, :]
        if 'segm' in result:
            im_results['segm'] = result['segm'][start_idx:start_idx +
                                                im_bboxes_num, :]
        if 'label' in result:
            im_results['label'] = result['label'][start_idx:start_idx +
                                                  im_bboxes_num]
        if 'score' in result:
            im_results['score'] = result['score'][start_idx:start_idx +
                                                  im_bboxes_num]
W
wangguanzhong 已提交
826

C
cnn 已提交
827 828 829 830 831 832 833 834 835
        start_idx += im_bboxes_num
        im = visualize_box_mask(
            image_file, im_results, labels, threshold=threshold)
        img_name = os.path.split(image_file)[-1]
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        out_path = os.path.join(output_dir, img_name)
        im.save(out_path, quality=95)
        print("save result to: " + out_path)
Q
qingqing01 已提交
836 837 838 839 840 841 842 843 844 845


def print_arguments(args):
    print('-----------  Running Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------')


def main():
W
wangguanzhong 已提交
846 847 848 849
    deploy_file = os.path.join(FLAGS.model_dir, 'infer_cfg.yml')
    with open(deploy_file) as f:
        yml_conf = yaml.safe_load(f)
    arch = yml_conf['arch']
850
    detector_func = 'Detector'
W
wangguanzhong 已提交
851
    if arch == 'SOLOv2':
852
        detector_func = 'DetectorSOLOv2'
W
wangguanzhong 已提交
853
    elif arch == 'PicoDet':
854 855
        detector_func = 'DetectorPicoDet'

856 857 858 859 860 861 862 863 864 865 866 867 868 869
    detector = eval(detector_func)(
        FLAGS.model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
        batch_size=FLAGS.batch_size,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn,
        enable_mkldnn_bfloat16=FLAGS.enable_mkldnn_bfloat16,
        threshold=FLAGS.threshold,
        output_dir=FLAGS.output_dir)
G
Guanghua Yu 已提交
870

Q
qingqing01 已提交
871
    # predict from video file or camera video stream
G
Guanghua Yu 已提交
872
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
W
wangguanzhong 已提交
873
        detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
G
Guanghua Yu 已提交
874 875
    else:
        # predict from image
C
cnn 已提交
876 877
        if FLAGS.image_dir is None and FLAGS.image_file is not None:
            assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None"
G
Guanghua Yu 已提交
878
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
879 880 881 882
        save_file = os.path.join(FLAGS.output_dir,
                                 'results.json') if FLAGS.save_results else None
        detector.predict_image(
            img_list, FLAGS.run_benchmark, repeats=100, save_file=save_file)
G
Guanghua Yu 已提交
883 884 885
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
886
            mode = FLAGS.run_mode
W
wangguanzhong 已提交
887
            model_dir = FLAGS.model_dir
888
            model_info = {
889 890
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
891
            }
W
wangguanzhong 已提交
892
            bench_log(detector, img_list, model_info, name='DET')
Q
qingqing01 已提交
893 894 895 896


if __name__ == '__main__':
    paddle.enable_static()
G
Guanghua Yu 已提交
897
    parser = argsparser()
Q
qingqing01 已提交
898 899
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
G
Guanghua Yu 已提交
900 901 902 903
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
    assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
Q
qingqing01 已提交
904

905 906 907
    assert not (
        FLAGS.enable_mkldnn == False and FLAGS.enable_mkldnn_bfloat16 == True
    ), 'To enable mkldnn bfloat, please turn on both enable_mkldnn and enable_mkldnn_bfloat16'
908

Q
qingqing01 已提交
909
    main()