infer.py 31.5 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import yaml
G
Guanghua Yu 已提交
17
import glob
Q
qingqing01 已提交
18 19 20 21
from functools import reduce

import cv2
import numpy as np
C
cnn 已提交
22
import math
Q
qingqing01 已提交
23 24 25 26
import paddle
from paddle.inference import Config
from paddle.inference import create_predictor

W
wangguanzhong 已提交
27 28 29 30 31
import sys
# add deploy path of PadleDetection to sys.path
parent_path = os.path.abspath(os.path.join(__file__, *(['..'])))
sys.path.insert(0, parent_path)

32
from benchmark_utils import PaddleInferBenchmark
33
from picodet_postprocess import PicoDetPostProcess
F
Feng Ni 已提交
34
from preprocess import preprocess, Resize, NormalizeImage, Permute, PadStride, LetterBoxResize, WarpAffine, Pad, decode_image
W
wangguanzhong 已提交
35
from keypoint_preprocess import EvalAffine, TopDownEvalAffine, expand_crop
G
Guanghua Yu 已提交
36
from visualize import visualize_box_mask
37
from utils import argsparser, Timer, get_current_memory_mb
G
Guanghua Yu 已提交
38

Q
qingqing01 已提交
39 40
# Global dictionary
SUPPORT_MODELS = {
F
Feng Ni 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
    'YOLO',
    'RCNN',
    'SSD',
    'Face',
    'FCOS',
    'SOLOv2',
    'TTFNet',
    'S2ANet',
    'JDE',
    'FairMOT',
    'DeepSORT',
    'GFL',
    'PicoDet',
    'CenterNet',
    'TOOD',
    'RetinaNet',
    'StrongBaseline',
    'STGCN',
    'YOLOX',
Q
qingqing01 已提交
60 61 62
}


W
wangguanzhong 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
def bench_log(detector, img_list, model_info, batch_size=1, name=None):
    mems = {
        'cpu_rss_mb': detector.cpu_mem / len(img_list),
        'gpu_rss_mb': detector.gpu_mem / len(img_list),
        'gpu_util': detector.gpu_util * 100 / len(img_list)
    }
    perf_info = detector.det_times.report(average=True)
    data_info = {
        'batch_size': batch_size,
        'shape': "dynamic_shape",
        'data_num': perf_info['img_num']
    }
    log = PaddleInferBenchmark(detector.config, model_info, data_info,
                               perf_info, mems)
    log(name)


Q
qingqing01 已提交
80 81 82
class Detector(object):
    """
    Args:
83
        pred_config (object): config of model, defined by `Config(model_dir)`
Q
qingqing01 已提交
84
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
85
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
86
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
87
        batch_size (int): size of pre batch in inference
88 89 90
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
91 92 93 94
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN
95
        enable_mkldnn_bfloat16 (bool): whether to turn on mkldnn bfloat16
W
wangguanzhong 已提交
96 97
        output_dir (str): The path of output
        threshold (float): The threshold of score for visualization
J
JYChen 已提交
98 99
        delete_shuffle_pass (bool): whether to remove shuffle_channel_detect_pass in TensorRT. 
                                    Used by action model.
Q
qingqing01 已提交
100 101
    """

J
JYChen 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
    def __init__(self,
                 model_dir,
                 device='CPU',
                 run_mode='paddle',
                 batch_size=1,
                 trt_min_shape=1,
                 trt_max_shape=1280,
                 trt_opt_shape=640,
                 trt_calib_mode=False,
                 cpu_threads=1,
                 enable_mkldnn=False,
                 enable_mkldnn_bfloat16=False,
                 output_dir='output',
                 threshold=0.5,
                 delete_shuffle_pass=False):
W
wangguanzhong 已提交
117
        self.pred_config = self.set_config(model_dir)
118
        self.predictor, self.config = load_predictor(
Q
qingqing01 已提交
119 120
            model_dir,
            run_mode=run_mode,
121
            batch_size=batch_size,
Q
qingqing01 已提交
122
            min_subgraph_size=self.pred_config.min_subgraph_size,
G
Guanghua Yu 已提交
123
            device=device,
124
            use_dynamic_shape=self.pred_config.use_dynamic_shape,
125 126
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
127
            trt_opt_shape=trt_opt_shape,
128 129
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
130
            enable_mkldnn=enable_mkldnn,
J
JYChen 已提交
131 132
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
            delete_shuffle_pass=delete_shuffle_pass)
G
Guanghua Yu 已提交
133 134
        self.det_times = Timer()
        self.cpu_mem, self.gpu_mem, self.gpu_util = 0, 0, 0
W
wangguanzhong 已提交
135 136 137 138 139 140
        self.batch_size = batch_size
        self.output_dir = output_dir
        self.threshold = threshold

    def set_config(self, model_dir):
        return PredictConfig(model_dir)
Q
qingqing01 已提交
141

C
cnn 已提交
142
    def preprocess(self, image_list):
Q
qingqing01 已提交
143 144 145 146 147
        preprocess_ops = []
        for op_info in self.pred_config.preprocess_infos:
            new_op_info = op_info.copy()
            op_type = new_op_info.pop('type')
            preprocess_ops.append(eval(op_type)(**new_op_info))
C
cnn 已提交
148 149 150 151

        input_im_lst = []
        input_im_info_lst = []
        for im_path in image_list:
152
            im, im_info = preprocess(im_path, preprocess_ops)
C
cnn 已提交
153 154 155
            input_im_lst.append(im)
            input_im_info_lst.append(im_info)
        inputs = create_inputs(input_im_lst, input_im_info_lst)
W
wangguanzhong 已提交
156 157 158 159 160
        input_names = self.predictor.get_input_names()
        for i in range(len(input_names)):
            input_tensor = self.predictor.get_input_handle(input_names[i])
            input_tensor.copy_from_cpu(inputs[input_names[i]])

Q
qingqing01 已提交
161 162
        return inputs

W
wangguanzhong 已提交
163
    def postprocess(self, inputs, result):
Q
qingqing01 已提交
164
        # postprocess output of predictor
W
wangguanzhong 已提交
165 166 167 168 169 170
        np_boxes_num = result['boxes_num']
        if np_boxes_num[0] <= 0:
            print('[WARNNING] No object detected.')
            result = {'boxes': np.zeros([0, 6]), 'boxes_num': [0]}
        result = {k: v for k, v in result.items() if v is not None}
        return result
Q
qingqing01 已提交
171

172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
    def filter_box(self, result, threshold):
        np_boxes_num = result['boxes_num']
        boxes = result['boxes']
        start_idx = 0
        filter_boxes = []
        filter_num = []
        for i in range(len(np_boxes_num)):
            boxes_num = np_boxes_num[i]
            boxes_i = boxes[start_idx:start_idx + boxes_num, :]
            idx = boxes_i[:, 1] > threshold
            filter_boxes_i = boxes_i[idx, :]
            filter_boxes.append(filter_boxes_i)
            filter_num.append(filter_boxes_i.shape[0])
            start_idx += boxes_num
        boxes = np.concatenate(filter_boxes)
        filter_num = np.array(filter_num)
        filter_res = {'boxes': boxes, 'boxes_num': filter_num}
        return filter_res

W
wangguanzhong 已提交
191
    def predict(self, repeats=1):
Q
qingqing01 已提交
192 193
        '''
        Args:
W
wangguanzhong 已提交
194
            repeats (int): repeats number for prediction
Q
qingqing01 已提交
195
        Returns:
W
wangguanzhong 已提交
196
            result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
Q
qingqing01 已提交
197
                            matix element:[class, score, x_min, y_min, x_max, y_max]
W
wangguanzhong 已提交
198
                            MaskRCNN's result include 'masks': np.ndarray:
G
Guanghua Yu 已提交
199
                            shape: [N, im_h, im_w]
Q
qingqing01 已提交
200
        '''
W
wangguanzhong 已提交
201
        # model prediction
W
wangguanzhong 已提交
202
        np_boxes, np_masks = None, None
Q
qingqing01 已提交
203 204 205 206 207
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
            boxes_tensor = self.predictor.get_output_handle(output_names[0])
            np_boxes = boxes_tensor.copy_to_cpu()
C
cnn 已提交
208 209
            boxes_num = self.predictor.get_output_handle(output_names[1])
            np_boxes_num = boxes_num.copy_to_cpu()
G
Guanghua Yu 已提交
210
            if self.pred_config.mask:
Q
qingqing01 已提交
211 212
                masks_tensor = self.predictor.get_output_handle(output_names[2])
                np_masks = masks_tensor.copy_to_cpu()
W
wangguanzhong 已提交
213 214 215 216 217 218 219 220 221 222 223 224
        result = dict(boxes=np_boxes, masks=np_masks, boxes_num=np_boxes_num)
        return result

    def merge_batch_result(self, batch_result):
        if len(batch_result) == 1:
            return batch_result[0]
        res_key = batch_result[0].keys()
        results = {k: [] for k in res_key}
        for res in batch_result:
            for k, v in res.items():
                results[k].append(v)
        for k, v in results.items():
225 226
            if k != 'masks':
                results[k] = np.concatenate(v)
W
wangguanzhong 已提交
227
        return results
Q
qingqing01 已提交
228

W
wangguanzhong 已提交
229 230
    def get_timer(self):
        return self.det_times
W
wangguanzhong 已提交
231

W
wangguanzhong 已提交
232 233 234 235 236 237
    def predict_image(self,
                      image_list,
                      run_benchmark=False,
                      repeats=1,
                      visual=True):
        batch_loop_cnt = math.ceil(float(len(image_list)) / self.batch_size)
Q
qingqing01 已提交
238
        results = []
W
wangguanzhong 已提交
239 240 241 242 243 244 245 246 247 248 249 250
        for i in range(batch_loop_cnt):
            start_index = i * self.batch_size
            end_index = min((i + 1) * self.batch_size, len(image_list))
            batch_image_list = image_list[start_index:end_index]
            if run_benchmark:
                # preprocess
                inputs = self.preprocess(batch_image_list)  # warmup
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
251
                result = self.predict(repeats=50)  # warmup
W
wangguanzhong 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
                self.det_times.inference_time_s.start()
                result = self.predict(repeats=repeats)
                self.det_times.inference_time_s.end(repeats=repeats)

                # postprocess
                result_warmup = self.postprocess(inputs, result)  # warmup
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(batch_image_list)

                cm, gm, gu = get_current_memory_mb()
                self.cpu_mem += cm
                self.gpu_mem += gm
                self.gpu_util += gu
            else:
                # preprocess
                self.det_times.preprocess_time_s.start()
                inputs = self.preprocess(batch_image_list)
                self.det_times.preprocess_time_s.end()

                # model prediction
                self.det_times.inference_time_s.start()
                result = self.predict()
                self.det_times.inference_time_s.end()

                # postprocess
                self.det_times.postprocess_time_s.start()
                result = self.postprocess(inputs, result)
                self.det_times.postprocess_time_s.end()
                self.det_times.img_num += len(batch_image_list)

                if visual:
                    visualize(
                        batch_image_list,
                        result,
                        self.pred_config.labels,
                        output_dir=self.output_dir,
                        threshold=self.threshold)

            results.append(result)
            if visual:
                print('Test iter {}'.format(i))

        results = self.merge_batch_result(results)
Q
qingqing01 已提交
297 298
        return results

W
wangguanzhong 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
    def predict_video(self, video_file, camera_id):
        video_out_name = 'output.mp4'
        if camera_id != -1:
            capture = cv2.VideoCapture(camera_id)
        else:
            capture = cv2.VideoCapture(video_file)
            video_out_name = os.path.split(video_file)[-1]
        # Get Video info : resolution, fps, frame count
        width = int(capture.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(capture.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(capture.get(cv2.CAP_PROP_FPS))
        frame_count = int(capture.get(cv2.CAP_PROP_FRAME_COUNT))
        print("fps: %d, frame_count: %d" % (fps, frame_count))

        if not os.path.exists(self.output_dir):
            os.makedirs(self.output_dir)
        out_path = os.path.join(self.output_dir, video_out_name)
316
        fourcc = cv2.VideoWriter_fourcc(* 'mp4v')
W
wangguanzhong 已提交
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
        writer = cv2.VideoWriter(out_path, fourcc, fps, (width, height))
        index = 1
        while (1):
            ret, frame = capture.read()
            if not ret:
                break
            print('detect frame: %d' % (index))
            index += 1
            results = self.predict_image([frame], visual=False)

            im = visualize_box_mask(
                frame,
                results,
                self.pred_config.labels,
                threshold=self.threshold)
            im = np.array(im)
            writer.write(im)
            if camera_id != -1:
                cv2.imshow('Mask Detection', im)
                if cv2.waitKey(1) & 0xFF == ord('q'):
                    break
        writer.release()
W
wangguanzhong 已提交
339

Q
qingqing01 已提交
340

G
Guanghua Yu 已提交
341 342 343 344
class DetectorSOLOv2(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
G
Guanghua Yu 已提交
345
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
346
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
347
        batch_size (int): size of pre batch in inference
348 349 350
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
351 352 353 354
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
        enable_mkldnn (bool): whether to open MKLDNN 
355
        enable_mkldnn_bfloat16 (bool): Whether to turn on mkldnn bfloat16
W
wangguanzhong 已提交
356 357 358
        output_dir (str): The path of output
        threshold (float): The threshold of score for visualization
       
G
Guanghua Yu 已提交
359 360
    """

W
wangguanzhong 已提交
361 362
    def __init__(
            self,
G
Guanghua Yu 已提交
363
            model_dir,
W
wangguanzhong 已提交
364 365 366 367 368 369 370 371 372
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1280,
            trt_opt_shape=640,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
373
            enable_mkldnn_bfloat16=False,
W
wangguanzhong 已提交
374 375 376 377 378
            output_dir='./',
            threshold=0.5, ):
        super(DetectorSOLOv2, self).__init__(
            model_dir=model_dir,
            device=device,
G
Guanghua Yu 已提交
379
            run_mode=run_mode,
380
            batch_size=batch_size,
381 382
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
G
Guanghua Yu 已提交
383
            trt_opt_shape=trt_opt_shape,
384 385
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
W
wangguanzhong 已提交
386
            enable_mkldnn=enable_mkldnn,
387
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
W
wangguanzhong 已提交
388 389
            output_dir=output_dir,
            threshold=threshold, )
G
Guanghua Yu 已提交
390

W
wangguanzhong 已提交
391
    def predict(self, repeats=1):
G
Guanghua Yu 已提交
392 393
        '''
        Args:
W
wangguanzhong 已提交
394
            repeats (int): repeat number for prediction
G
Guanghua Yu 已提交
395
        Returns:
W
wangguanzhong 已提交
396
            result (dict): 'segm': np.ndarray,shape:[N, im_h, im_w]
G
Guanghua Yu 已提交
397 398
                            'cate_label': label of segm, shape:[N]
                            'cate_score': confidence score of segm, shape:[N]
G
Guanghua Yu 已提交
399 400 401 402 403
        '''
        np_label, np_score, np_segms = None, None, None
        for i in range(repeats):
            self.predictor.run()
            output_names = self.predictor.get_output_names()
W
wangguanzhong 已提交
404 405
            np_boxes_num = self.predictor.get_output_handle(output_names[
                0]).copy_to_cpu()
G
Guanghua Yu 已提交
406 407
            np_label = self.predictor.get_output_handle(output_names[
                1]).copy_to_cpu()
G
Guanghua Yu 已提交
408
            np_score = self.predictor.get_output_handle(output_names[
G
Guanghua Yu 已提交
409
                2]).copy_to_cpu()
G
Guanghua Yu 已提交
410 411
            np_segms = self.predictor.get_output_handle(output_names[
                3]).copy_to_cpu()
G
Guanghua Yu 已提交
412

W
wangguanzhong 已提交
413
        result = dict(
W
wangguanzhong 已提交
414 415 416 417
            segm=np_segms,
            label=np_label,
            score=np_score,
            boxes_num=np_boxes_num)
W
wangguanzhong 已提交
418
        return result
G
Guanghua Yu 已提交
419 420


421 422 423 424 425
class DetectorPicoDet(Detector):
    """
    Args:
        model_dir (str): root path of model.pdiparams, model.pdmodel and infer_cfg.yml
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
426
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16)
427 428 429 430 431 432 433
        batch_size (int): size of pre batch in inference
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
        cpu_threads (int): cpu threads
434 435
        enable_mkldnn (bool): whether to turn on MKLDNN
        enable_mkldnn_bfloat16 (bool): whether to turn on MKLDNN_BFLOAT16
436 437
    """

W
wangguanzhong 已提交
438 439
    def __init__(
            self,
440
            model_dir,
W
wangguanzhong 已提交
441 442 443 444 445 446 447 448 449
            device='CPU',
            run_mode='paddle',
            batch_size=1,
            trt_min_shape=1,
            trt_max_shape=1280,
            trt_opt_shape=640,
            trt_calib_mode=False,
            cpu_threads=1,
            enable_mkldnn=False,
450
            enable_mkldnn_bfloat16=False,
W
wangguanzhong 已提交
451 452 453 454 455
            output_dir='./',
            threshold=0.5, ):
        super(DetectorPicoDet, self).__init__(
            model_dir=model_dir,
            device=device,
456 457 458 459 460 461 462
            run_mode=run_mode,
            batch_size=batch_size,
            trt_min_shape=trt_min_shape,
            trt_max_shape=trt_max_shape,
            trt_opt_shape=trt_opt_shape,
            trt_calib_mode=trt_calib_mode,
            cpu_threads=cpu_threads,
W
wangguanzhong 已提交
463
            enable_mkldnn=enable_mkldnn,
464
            enable_mkldnn_bfloat16=enable_mkldnn_bfloat16,
W
wangguanzhong 已提交
465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480
            output_dir=output_dir,
            threshold=threshold, )

    def postprocess(self, inputs, result):
        # postprocess output of predictor
        np_score_list = result['boxes']
        np_boxes_list = result['boxes_num']
        postprocessor = PicoDetPostProcess(
            inputs['image'].shape[2:],
            inputs['im_shape'],
            inputs['scale_factor'],
            strides=self.pred_config.fpn_stride,
            nms_threshold=self.pred_config.nms['nms_threshold'])
        np_boxes, np_boxes_num = postprocessor(np_score_list, np_boxes_list)
        result = dict(boxes=np_boxes, boxes_num=np_boxes_num)
        return result
481

W
wangguanzhong 已提交
482
    def predict(self, repeats=1):
483 484
        '''
        Args:
W
wangguanzhong 已提交
485
            repeats (int): repeat number for prediction
486
        Returns:
W
wangguanzhong 已提交
487
            result (dict): include 'boxes': np.ndarray: shape:[N,6], N: number of box,
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503
                            matix element:[class, score, x_min, y_min, x_max, y_max]
        '''
        np_score_list, np_boxes_list = [], []
        for i in range(repeats):
            self.predictor.run()
            np_score_list.clear()
            np_boxes_list.clear()
            output_names = self.predictor.get_output_names()
            num_outs = int(len(output_names) / 2)
            for out_idx in range(num_outs):
                np_score_list.append(
                    self.predictor.get_output_handle(output_names[out_idx])
                    .copy_to_cpu())
                np_boxes_list.append(
                    self.predictor.get_output_handle(output_names[
                        out_idx + num_outs]).copy_to_cpu())
W
wangguanzhong 已提交
504 505
        result = dict(boxes=np_score_list, boxes_num=np_boxes_list)
        return result
506 507


C
cnn 已提交
508
def create_inputs(imgs, im_info):
Q
qingqing01 已提交
509 510
    """generate input for different model type
    Args:
W
wangguanzhong 已提交
511 512
        imgs (list(numpy)): list of images (np.ndarray)
        im_info (list(dict)): list of image info
Q
qingqing01 已提交
513 514 515 516 517
    Returns:
        inputs (dict): input of model
    """
    inputs = {}

C
cnn 已提交
518 519
    im_shape = []
    scale_factor = []
520 521 522 523 524 525 526 527
    if len(imgs) == 1:
        inputs['image'] = np.array((imgs[0], )).astype('float32')
        inputs['im_shape'] = np.array(
            (im_info[0]['im_shape'], )).astype('float32')
        inputs['scale_factor'] = np.array(
            (im_info[0]['scale_factor'], )).astype('float32')
        return inputs

C
cnn 已提交
528 529 530 531
    for e in im_info:
        im_shape.append(np.array((e['im_shape'], )).astype('float32'))
        scale_factor.append(np.array((e['scale_factor'], )).astype('float32'))

C
cnn 已提交
532 533
    inputs['im_shape'] = np.concatenate(im_shape, axis=0)
    inputs['scale_factor'] = np.concatenate(scale_factor, axis=0)
C
cnn 已提交
534 535 536 537 538 539 540 541 542 543 544 545

    imgs_shape = [[e.shape[1], e.shape[2]] for e in imgs]
    max_shape_h = max([e[0] for e in imgs_shape])
    max_shape_w = max([e[1] for e in imgs_shape])
    padding_imgs = []
    for img in imgs:
        im_c, im_h, im_w = img.shape[:]
        padding_im = np.zeros(
            (im_c, max_shape_h, max_shape_w), dtype=np.float32)
        padding_im[:, :im_h, :im_w] = img
        padding_imgs.append(padding_im)
    inputs['image'] = np.stack(padding_imgs, axis=0)
Q
qingqing01 已提交
546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564
    return inputs


class PredictConfig():
    """set config of preprocess, postprocess and visualize
    Args:
        model_dir (str): root path of model.yml
    """

    def __init__(self, model_dir):
        # parsing Yaml config for Preprocess
        deploy_file = os.path.join(model_dir, 'infer_cfg.yml')
        with open(deploy_file) as f:
            yml_conf = yaml.safe_load(f)
        self.check_model(yml_conf)
        self.arch = yml_conf['arch']
        self.preprocess_infos = yml_conf['Preprocess']
        self.min_subgraph_size = yml_conf['min_subgraph_size']
        self.labels = yml_conf['label_list']
G
Guanghua Yu 已提交
565
        self.mask = False
566
        self.use_dynamic_shape = yml_conf['use_dynamic_shape']
G
Guanghua Yu 已提交
567 568
        if 'mask' in yml_conf:
            self.mask = yml_conf['mask']
569 570 571
        self.tracker = None
        if 'tracker' in yml_conf:
            self.tracker = yml_conf['tracker']
572 573 574 575
        if 'NMS' in yml_conf:
            self.nms = yml_conf['NMS']
        if 'fpn_stride' in yml_conf:
            self.fpn_stride = yml_conf['fpn_stride']
576 577 578 579
        if self.arch == 'RCNN' and yml_conf.get('export_onnx', False):
            print(
                'The RCNN export model is used for ONNX and it only supports batch_size = 1'
            )
Q
qingqing01 已提交
580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602
        self.print_config()

    def check_model(self, yml_conf):
        """
        Raises:
            ValueError: loaded model not in supported model type 
        """
        for support_model in SUPPORT_MODELS:
            if support_model in yml_conf['arch']:
                return True
        raise ValueError("Unsupported arch: {}, expect {}".format(yml_conf[
            'arch'], SUPPORT_MODELS))

    def print_config(self):
        print('-----------  Model Configuration -----------')
        print('%s: %s' % ('Model Arch', self.arch))
        print('%s: ' % ('Transform Order'))
        for op_info in self.preprocess_infos:
            print('--%s: %s' % ('transform op', op_info['type']))
        print('--------------------------------------------')


def load_predictor(model_dir,
603
                   run_mode='paddle',
Q
qingqing01 已提交
604
                   batch_size=1,
G
Guanghua Yu 已提交
605
                   device='CPU',
606 607 608 609
                   min_subgraph_size=3,
                   use_dynamic_shape=False,
                   trt_min_shape=1,
                   trt_max_shape=1280,
G
Guanghua Yu 已提交
610
                   trt_opt_shape=640,
611 612
                   trt_calib_mode=False,
                   cpu_threads=1,
613
                   enable_mkldnn=False,
J
JYChen 已提交
614 615
                   enable_mkldnn_bfloat16=False,
                   delete_shuffle_pass=False):
Q
qingqing01 已提交
616 617 618
    """set AnalysisConfig, generate AnalysisPredictor
    Args:
        model_dir (str): root path of __model__ and __params__
G
Guanghua Yu 已提交
619
        device (str): Choose the device you want to run, it can be: CPU/GPU/XPU, default is CPU
620
        run_mode (str): mode of running(paddle/trt_fp32/trt_fp16/trt_int8)
621 622 623 624
        use_dynamic_shape (bool): use dynamic shape or not
        trt_min_shape (int): min shape for dynamic shape in trt
        trt_max_shape (int): max shape for dynamic shape in trt
        trt_opt_shape (int): opt shape for dynamic shape in trt
G
Guanghua Yu 已提交
625 626
        trt_calib_mode (bool): If the model is produced by TRT offline quantitative
            calibration, trt_calib_mode need to set True
J
JYChen 已提交
627 628
        delete_shuffle_pass (bool): whether to remove shuffle_channel_detect_pass in TensorRT. 
                                    Used by action model.
Q
qingqing01 已提交
629 630 631
    Returns:
        predictor (PaddlePredictor): AnalysisPredictor
    Raises:
G
Guanghua Yu 已提交
632
        ValueError: predict by TensorRT need device == 'GPU'.
Q
qingqing01 已提交
633
    """
634
    if device != 'GPU' and run_mode != 'paddle':
Q
qingqing01 已提交
635
        raise ValueError(
G
Guanghua Yu 已提交
636 637
            "Predict by TensorRT mode: {}, expect device=='GPU', but device == {}"
            .format(run_mode, device))
Q
qingqing01 已提交
638 639 640
    config = Config(
        os.path.join(model_dir, 'model.pdmodel'),
        os.path.join(model_dir, 'model.pdiparams'))
G
Guanghua Yu 已提交
641
    if device == 'GPU':
Q
qingqing01 已提交
642 643 644
        # initial GPU memory(M), device ID
        config.enable_use_gpu(200, 0)
        # optimize graph and fuse op
645
        config.switch_ir_optim(True)
G
Guanghua Yu 已提交
646
    elif device == 'XPU':
647
        config.enable_lite_engine()
G
Guanghua Yu 已提交
648
        config.enable_xpu(10 * 1024 * 1024)
Q
qingqing01 已提交
649 650
    else:
        config.disable_gpu()
651 652
        config.set_cpu_math_library_num_threads(cpu_threads)
        if enable_mkldnn:
G
Guanghua Yu 已提交
653 654 655 656
            try:
                # cache 10 different shapes for mkldnn to avoid memory leak
                config.set_mkldnn_cache_capacity(10)
                config.enable_mkldnn()
657 658
                if enable_mkldnn_bfloat16:
                    config.enable_mkldnn_bfloat16()
G
Guanghua Yu 已提交
659 660 661 662 663
            except Exception as e:
                print(
                    "The current environment does not support `mkldnn`, so disable mkldnn."
                )
                pass
Q
qingqing01 已提交
664

G
Guanghua Yu 已提交
665 666 667 668 669
    precision_map = {
        'trt_int8': Config.Precision.Int8,
        'trt_fp32': Config.Precision.Float32,
        'trt_fp16': Config.Precision.Half
    }
Q
qingqing01 已提交
670 671
    if run_mode in precision_map.keys():
        config.enable_tensorrt_engine(
672
            workspace_size=(1 << 25) * batch_size,
Q
qingqing01 已提交
673 674 675 676
            max_batch_size=batch_size,
            min_subgraph_size=min_subgraph_size,
            precision_mode=precision_map[run_mode],
            use_static=False,
G
Guanghua Yu 已提交
677
            use_calib_mode=trt_calib_mode)
678 679

        if use_dynamic_shape:
680 681 682 683 684 685 686 687 688
            min_input_shape = {
                'image': [batch_size, 3, trt_min_shape, trt_min_shape]
            }
            max_input_shape = {
                'image': [batch_size, 3, trt_max_shape, trt_max_shape]
            }
            opt_input_shape = {
                'image': [batch_size, 3, trt_opt_shape, trt_opt_shape]
            }
689 690 691
            config.set_trt_dynamic_shape_info(min_input_shape, max_input_shape,
                                              opt_input_shape)
            print('trt set dynamic shape done!')
Q
qingqing01 已提交
692 693 694 695 696 697 698

    # disable print log when predict
    config.disable_glog_info()
    # enable shared memory
    config.enable_memory_optim()
    # disable feed, fetch OP, needed by zero_copy_run
    config.switch_use_feed_fetch_ops(False)
J
JYChen 已提交
699 700
    if delete_shuffle_pass:
        config.delete_pass("shuffle_channel_detect_pass")
Q
qingqing01 已提交
701
    predictor = create_predictor(config)
702
    return predictor, config
Q
qingqing01 已提交
703 704


G
Guanghua Yu 已提交
705 706 707 708 709
def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
710
        "--image_file or --image_dir should be set"
G
Guanghua Yu 已提交
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    print("Found {} inference images in total.".format(len(images)))

    return images


W
wangguanzhong 已提交
736
def visualize(image_list, result, labels, output_dir='output/', threshold=0.5):
Q
qingqing01 已提交
737
    # visualize the predict result
C
cnn 已提交
738 739
    start_idx = 0
    for idx, image_file in enumerate(image_list):
W
wangguanzhong 已提交
740
        im_bboxes_num = result['boxes_num'][idx]
C
cnn 已提交
741
        im_results = {}
W
wangguanzhong 已提交
742 743 744 745 746 747 748 749 750 751 752 753 754 755 756
        if 'boxes' in result:
            im_results['boxes'] = result['boxes'][start_idx:start_idx +
                                                  im_bboxes_num, :]
        if 'masks' in result:
            im_results['masks'] = result['masks'][start_idx:start_idx +
                                                  im_bboxes_num, :]
        if 'segm' in result:
            im_results['segm'] = result['segm'][start_idx:start_idx +
                                                im_bboxes_num, :]
        if 'label' in result:
            im_results['label'] = result['label'][start_idx:start_idx +
                                                  im_bboxes_num]
        if 'score' in result:
            im_results['score'] = result['score'][start_idx:start_idx +
                                                  im_bboxes_num]
W
wangguanzhong 已提交
757

C
cnn 已提交
758 759 760 761 762 763 764 765 766
        start_idx += im_bboxes_num
        im = visualize_box_mask(
            image_file, im_results, labels, threshold=threshold)
        img_name = os.path.split(image_file)[-1]
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)
        out_path = os.path.join(output_dir, img_name)
        im.save(out_path, quality=95)
        print("save result to: " + out_path)
Q
qingqing01 已提交
767 768 769 770 771 772 773 774 775 776


def print_arguments(args):
    print('-----------  Running Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------')


def main():
W
wangguanzhong 已提交
777 778 779 780
    deploy_file = os.path.join(FLAGS.model_dir, 'infer_cfg.yml')
    with open(deploy_file) as f:
        yml_conf = yaml.safe_load(f)
    arch = yml_conf['arch']
781
    detector_func = 'Detector'
W
wangguanzhong 已提交
782
    if arch == 'SOLOv2':
783
        detector_func = 'DetectorSOLOv2'
W
wangguanzhong 已提交
784
    elif arch == 'PicoDet':
785 786
        detector_func = 'DetectorPicoDet'

787 788 789 790 791 792 793 794 795 796 797 798 799 800
    detector = eval(detector_func)(
        FLAGS.model_dir,
        device=FLAGS.device,
        run_mode=FLAGS.run_mode,
        batch_size=FLAGS.batch_size,
        trt_min_shape=FLAGS.trt_min_shape,
        trt_max_shape=FLAGS.trt_max_shape,
        trt_opt_shape=FLAGS.trt_opt_shape,
        trt_calib_mode=FLAGS.trt_calib_mode,
        cpu_threads=FLAGS.cpu_threads,
        enable_mkldnn=FLAGS.enable_mkldnn,
        enable_mkldnn_bfloat16=FLAGS.enable_mkldnn_bfloat16,
        threshold=FLAGS.threshold,
        output_dir=FLAGS.output_dir)
G
Guanghua Yu 已提交
801

Q
qingqing01 已提交
802
    # predict from video file or camera video stream
G
Guanghua Yu 已提交
803
    if FLAGS.video_file is not None or FLAGS.camera_id != -1:
W
wangguanzhong 已提交
804
        detector.predict_video(FLAGS.video_file, FLAGS.camera_id)
G
Guanghua Yu 已提交
805 806
    else:
        # predict from image
C
cnn 已提交
807 808
        if FLAGS.image_dir is None and FLAGS.image_file is not None:
            assert FLAGS.batch_size == 1, "batch_size should be 1, when image_file is not None"
G
Guanghua Yu 已提交
809
        img_list = get_test_images(FLAGS.image_dir, FLAGS.image_file)
810
        detector.predict_image(img_list, FLAGS.run_benchmark, repeats=100)
G
Guanghua Yu 已提交
811 812 813
        if not FLAGS.run_benchmark:
            detector.det_times.info(average=True)
        else:
814
            mode = FLAGS.run_mode
W
wangguanzhong 已提交
815
            model_dir = FLAGS.model_dir
816
            model_info = {
817 818
                'model_name': model_dir.strip('/').split('/')[-1],
                'precision': mode.split('_')[-1]
819
            }
W
wangguanzhong 已提交
820
            bench_log(detector, img_list, model_info, name='DET')
Q
qingqing01 已提交
821 822 823 824


if __name__ == '__main__':
    paddle.enable_static()
G
Guanghua Yu 已提交
825
    parser = argsparser()
Q
qingqing01 已提交
826 827
    FLAGS = parser.parse_args()
    print_arguments(FLAGS)
G
Guanghua Yu 已提交
828 829 830 831
    FLAGS.device = FLAGS.device.upper()
    assert FLAGS.device in ['CPU', 'GPU', 'XPU'
                            ], "device should be CPU, GPU or XPU"
    assert not FLAGS.use_gpu, "use_gpu has been deprecated, please use --device"
Q
qingqing01 已提交
832

833 834 835
    assert not (
        FLAGS.enable_mkldnn == False and FLAGS.enable_mkldnn_bfloat16 == True
    ), 'To enable mkldnn bfloat, please turn on both enable_mkldnn and enable_mkldnn_bfloat16'
836

Q
qingqing01 已提交
837
    main()