pybind.cc 44.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
Y
Yi Wang 已提交
35
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
36
#include "paddle/fluid/framework/version.h"
37
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
38
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
39
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
40
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
41
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
42
#include "paddle/fluid/platform/enforce.h"
43
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
44 45
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
46
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
47 48
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
49
#include "paddle/fluid/pybind/imperative.h"
50 51
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
52
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
53
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
54

55
#include "paddle/fluid/string/to_string.h"
56

D
Dong Zhihong 已提交
57
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
58
#ifndef _WIN32
Y
Yi Wang 已提交
59
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
60
#endif
Y
Yi Wang 已提交
61 62
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
63 64
#endif

M
minqiyang 已提交
65 66
#include "pybind11/stl.h"

67 68 69 70
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
71 72 73
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

74
namespace paddle {
75
namespace pybind {
76
bool IsCompiledWithCUDA() {
77
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
78 79 80 81 82 83
  return false;
#else
  return true;
#endif
}

84 85 86 87 88 89 90 91
bool IsCompiledWithBrpc() {
#if defined(PADDLE_WITH_BRPC) || defined(PADDLE_WITH_BRPC_RDMA)
  return true;
#else
  return false;
#endif
}

Y
update  
Yancey1989 已提交
92
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
93
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
94 95 96 97 98 99
  return true;
#else
  return false;
#endif
}

100
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
101 102 103
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
104
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
105
  m.doc() = "C++ core of PaddlePaddle";
106

107 108 109 110
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

111
  BindException(&m);
Y
Yu Yang 已提交
112

113
  py::class_<imperative::VarBase, PyVarBase>(m, "VarBase", R"DOC()DOC")
114 115
      // .def(py::init<>())
      .def(py::init<bool>(), py::arg("stop_gradient") = false)
116 117 118 119
      .def("_run_backward",
           [](imperative::VarBase &self, framework::Scope *scope) {
             self.RunBackward(scope);
           })
M
minqiyang 已提交
120 121 122 123 124 125 126
      .def("_grad_var",
           [](const imperative::VarBase &self) {
             LOG(ERROR) << "grad_var_ pointer: " << self.grads_;
             return self.grads_;
           },
           py::return_value_policy::reference)
      .def("_grad_name", &imperative::VarBase::GradName)
127
      .def("_grad", &imperative::VarBase::Grad)
M
minqiyang 已提交
128 129 130 131 132
      .def("_print_var_pointer",
           [](const imperative::VarBase &self) {
             LOG(ERROR) << self.var_desc_->Name()
                        << " print_var pointer: " << self.var_;
           })
M
minqiyang 已提交
133 134 135
      .def_property("value",
                    [](const imperative::VarBase &self) { return self.var_; },
                    [](imperative::VarBase &self, framework::Variable *var) {
M
minqiyang 已提交
136
                      LOG(ERROR) << "set var to pointer: " << var;
M
minqiyang 已提交
137 138 139
                      self.var_ = var;
                    },
                    py::return_value_policy::reference)
140 141 142 143 144 145
      .def_property(
          "desc",
          [](const imperative::VarBase &self) { return self.var_desc_; },
          [](imperative::VarBase &self, framework::VarDesc *var_desc) {
            self.var_desc_ = var_desc;
          },
146 147 148 149 150 151 152
          py::return_value_policy::reference)
      .def_property(
          "stop_gradient",
          [](const imperative::VarBase &self) { return self.stop_gradient_; },
          [](imperative::VarBase &self, bool stop_gradient) {
            self.stop_gradient_ = stop_gradient;
          });
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
      .def(py::init<>())
      .def_property(
          "desc", [](const imperative::OpBase &self) { return self.op_desc_; },
          [](imperative::OpBase &self, framework::OpDesc *op_desc) {
            if (op_desc) {
              self.op_desc_ = op_desc;
            }
          },
          py::return_value_policy::reference);

  py::class_<imperative::Layer, PyLayer /* <--- trampoline*/> layer(m, "Layer");
  layer.def(py::init<>())
      .def("forward",
           [](imperative::Layer &self,
              const std::vector<imperative::VarBase> &inputs) {
             return self.Forward(inputs);
           })
      .def("backward", &imperative::Layer::Backward);
  BindTracer(&m);

175 176 177
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
178
      .def("_get_dims",
179
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
180
      .def("_set_dims",
Q
qijun 已提交
181
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
182
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
183
           })
Y
yuyang18 已提交
184
      .def("_set_layout",
D
dzhwinter 已提交
185 186 187
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
188
      .def("_alloc_float",
D
dzhwinter 已提交
189
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
190
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
191
           })
Y
yuyang18 已提交
192
      .def("_alloc_float",
Y
Yu Yang 已提交
193
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
194
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
195
           })
Y
yuyang18 已提交
196
      .def("_alloc_int",
Y
Yu Yang 已提交
197
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
198
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
199
           })
Y
yuyang18 已提交
200
      .def("_alloc_int",
D
dzhwinter 已提交
201
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
202
             self.mutable_data<int>(place);
Q
qijun 已提交
203
           })
Y
yuyang18 已提交
204
      .def("_alloc_int",
C
chengduoZH 已提交
205 206 207
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
208
      .def("_alloc_float",
C
chengduoZH 已提交
209 210 211
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
212 213
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
214
      .def("set", PyCPUTensorSetFromArray<double>)
215
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
216
      .def("set", PyCPUTensorSetFromArray<bool>)
217
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
218
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
219
      .def("set", PyCPUTensorSetFromArray<int8_t>)
220
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
221 222
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
223
      .def("set", PyCUDATensorSetFromArray<double>)
224
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
225
      .def("set", PyCUDATensorSetFromArray<bool>)
226
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
227
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
228
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
229 230 231 232 233 234
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
235
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
236
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
237
#endif
238
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
239 240 241 242
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
Y
Yu Yang 已提交
243
      .def("_dtype", [](Tensor &self) { return self.type(); });
Y
Yu Yang 已提交
244

X
Xin Pan 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
258
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
259
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
260
     columns, hence [5, 2].
X
Xin Pan 已提交
261 262 263

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
264 265
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
289 290
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
291 292 293 294 295 296 297 298 299 300 301 302 303 304
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
305
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
306 307 308 309 310
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
311
      .def("set_lod",
312
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
313
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
314
             LoD new_lod;
315 316
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
317 318
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
319
             self.set_lod(new_lod);
D
dangqingqing 已提交
320
           })
321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
346
      // Set above comments of set_lod.
347 348 349 350 351 352 353 354 355 356 357 358 359
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
360 361
      });

Q
qijun 已提交
362 363 364 365 366 367 368 369 370 371 372
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
373 374
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
375 376
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
377 378 379 380 381 382 383 384 385
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
386
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
387
      .def("rows", [](SelectedRows &self) {
388 389 390 391 392
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
393
      });
Q
qijun 已提交
394

395
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
396 397 398

All parameter, weight, gradient are variables in Paddle.
)DOC")
399
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
400
      .def("set_int",
401 402
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
403 404 405 406 407 408 409
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
410
      .def("get_tensor",
411 412
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
413 414
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
415 416 417
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
418 419 420 421 422
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
423 424 425
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
426
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
427 428 429 430 431
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
432
#endif
Y
Refine  
Yu Yang 已提交
433 434 435 436 437
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
438
           py::return_value_policy::reference);
439

Y
Refine  
Yu Yang 已提交
440
  py::class_<framework::ReaderHolder>(m, "Reader", "")
441
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
442

S
sneaxiy 已提交
443 444 445 446
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
447 448
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
449
      .def("push",
S
sneaxiy 已提交
450
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
451
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
452
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
453
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
454
           })
S
sneaxiy 已提交
455 456 457 458
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
459

S
sneaxiy 已提交
460
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
461
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
462
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
463
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
464 465 466 467 468 469
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
470 471
              holder->InitOnce(capacity, dims,
                               FLAGS_reader_queue_speed_test_mode);
S
sneaxiy 已提交
472
              return holder->GetQueue();
S
sneaxiy 已提交
473
            },
S
sneaxiy 已提交
474
        py::return_value_policy::copy);
S
sneaxiy 已提交
475

Q
Qiao Longfei 已提交
476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
  py::class_<Scope>(m, "Scope", R"DOC(
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
D
dongzhihong 已提交
496
      .def("var",
497
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
498
             return self.Var(name);
Y
Yu Yang 已提交
499
           },
500
           py::return_value_policy::reference)
501
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
502
      .def(py::init<>())
503
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
504
           py::return_value_policy::reference)
Y
Yu Yang 已提交
505
      .def("drop_kids", &Scope::DropKids);
506

Y
Yu Yang 已提交
507 508
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
509 510
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
511 512 513 514 515 516 517 518 519 520
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
521 522
    return ret_values;
  });
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
539
  m.def("prune", [](const ProgramDesc &origin,
540
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
541
    ProgramDesc prog_with_targets(origin);
542
    for (const auto &t : targets) {
543
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
544
    }
545
    proto::ProgramDesc pruned_desc;
546
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
547
    return new ProgramDesc(pruned_desc);
548
  });
549 550 551 552
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
553 554 555
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
556 557
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
558
  // clang-format off
Y
Yu Yang 已提交
559
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
560 561
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
562
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
563 564 565
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
566
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
567
                      -> paddle::platform::DeviceContext* {
568
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
569
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
570
#else
Q
qijun 已提交
571
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
572
#endif
C
chengduoZH 已提交
573 574 575 576 577 578 579 580 581 582 583
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
584
// clang-format on
P
peizhilin 已提交
585
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
586 587
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
588
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
589
      .def(py::init<int>())
D
dzhwinter 已提交
590
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
591

592 593 594
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
595

C
chengduoZH 已提交
596 597 598 599
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
600 601 602 603 604 605 606
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
607
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
608
             self = gpu_place;
C
chengduoZH 已提交
609 610
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
611 612
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
613
      });
Y
Yu Yang 已提交
614

Y
Yu Yang 已提交
615 616 617
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
618
                    proto::OpDesc desc;
Y
Yu Yang 已提交
619 620 621 622 623
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
624
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
625
                  })
626
      .def("run",
627
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
628 629 630
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
631
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
632 633 634 635 636
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
637 638 639 640 641 642 643
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
644 645
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
646
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
647
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
648 649 650 651
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
652

F
fengjiayi 已提交
653
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
654
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
655
      .def("close", &Executor::Close)
S
sneaxiy 已提交
656 657 658 659 660
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
661

D
dzhwinter 已提交
662
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
663
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
664 665
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
666

667
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
668
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
669
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
670 671 672 673 674 675
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
676

677
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
678
  m.def("get_fetch_variable", framework::GetFetchVariable);
679
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
680

X
Xin Pan 已提交
681 682
  m.def("_is_program_version_supported", IsProgramVersionSupported);

683 684 685 686 687
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
688

Y
Yu Yang 已提交
689 690 691 692 693 694 695 696 697
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
698
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
699 700
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
717 718 719
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
720
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
721
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
722
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
723

P
peizhilin 已提交
724
#ifndef _WIN32
D
dangqingqing 已提交
725 726 727
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
728
#endif
P
peizhilin 已提交
729
#endif
Y
Yu Yang 已提交
730

731 732 733 734
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
735
      .value("kAll", platform::ProfilerState::kAll)
736 737 738 739 740 741 742 743 744 745 746 747 748
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
749
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
750
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
751

752 753
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
754 755 756 757 758
      .def(
          "set_str",
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
X
Xin Pan 已提交
759 760 761
      .def("set_int", [](ir::Pass &self, const std::string &name,
                         int val) { self.Set<const int>(name, new int(val)); })
      .def("type", &ir::Pass::Type);
762

X
fix  
Xin Pan 已提交
763 764
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
765 766 767 768 769 770 771 772 773 774 775 776 777 778
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
779
  // -- python binds for parallel executor.
Y
yuyang18 已提交
780
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
781 782 783 784
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
785 786 787 788 789 790 791 792 793 794 795
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
796 797 798

        )DOC");

Y
yuyang18 已提交
799
  exec_strategy.def(py::init())
Y
yuyang18 已提交
800 801 802 803 804
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
805 806 807 808 809 810 811 812 813 814
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
815
      .def_property(
816 817 818 819
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
820 821 822 823
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
824 825 826 827 828
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
829 830 831 832
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
833 834 835 836 837 838 839
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
840 841 842 843 844 845 846 847 848 849 850
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
851 852 853 854 855 856
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
857

Y
yuyang18 已提交
858
  exec_strategy.def_property(
Y
yuyang18 已提交
859 860 861 862 863 864 865
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
866 867
      });

C
chengduo 已提交
868 869 870 871
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
872 873 874 875 876 877 878 879 880 881 882
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
883
)DOC");
Y
yuyang18 已提交
884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
900
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
901
            self.reduce_ = strategy;
C
chengduo 已提交
902 903 904 905 906 907 908
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
909 910 911 912 913
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
914
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
915
            self.gradient_scale_ = strategy;
C
chengduo 已提交
916 917 918 919 920 921
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
922 923 924 925
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
926
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
927
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
928 929 930 931
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
F
fengjiayi 已提交
932 933 934
      .def_property(
          "enable_data_balance",
          [](const BuildStrategy &self) { return self.enable_data_balance_; },
C
chengduo 已提交
935
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
936
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
937 938
            self.enable_data_balance_ = b;
          })  // FIXME(chengudo): enable_data_balance seems not important
S
sneaxiy 已提交
939 940 941 942 943 944
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
945
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
946 947 948 949 950 951 952 953 954
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
955
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
956 957 958
            self.remove_unnecessary_lock_ = b;
          },
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC")
959 960 961 962 963 964
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
965 966 967 968 969 970 971 972 973 974 975 976
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
977 978 979 980 981 982
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
983
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
984 985 986 987 988
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
D
dzhwinter 已提交
989 990 991 992 993 994 995 996
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
      .def_property(
          "memory_early_delete",
          [](const BuildStrategy &self) { return self.memory_early_delete_; },
          [](BuildStrategy &self, bool b) { self.memory_early_delete_ = b; })
997
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
998
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
999 1000 1001 1002 1003
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1004 1005 1006

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
1007
                  const std::string &, Scope *, std::vector<Scope *> &,
1008 1009
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
Y
Yu Yang 已提交
1010 1011 1012 1013
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1014 1015 1016 1017 1018
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1019 1020 1021 1022
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1023 1024 1025 1026 1027 1028
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1029

1030
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1031
  BindAsyncExecutor(&m);
L
Luo Tao 已提交
1032
}
1033
}  // namespace pybind
1034
}  // namespace paddle