pybind.cc 44.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
L
lgone2000 已提交
14
#include <Python.h>
C
chengduoZH 已提交
15 16
#include <algorithm>
#include <map>
S
sneaxiy 已提交
17
#include <memory>
C
chengduoZH 已提交
18 19 20 21 22
#include <mutex>  // NOLINT // for call_once
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
23

Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/framework.pb.h"
27
#include "paddle/fluid/framework/ir/pass_builder.h"
Y
Yi Wang 已提交
28 29 30
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
31
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
32
#include "paddle/fluid/framework/parallel_executor.h"
Y
Yi Wang 已提交
33
#include "paddle/fluid/framework/prune.h"
Y
Refine  
Yu Yang 已提交
34
#include "paddle/fluid/framework/reader.h"
S
sneaxiy 已提交
35
#include "paddle/fluid/framework/scope_pool.h"
Y
Yi Wang 已提交
36
#include "paddle/fluid/framework/selected_rows.h"
X
Xin Pan 已提交
37
#include "paddle/fluid/framework/version.h"
38
#include "paddle/fluid/imperative/layer.h"
Y
Refine  
Yu Yang 已提交
39
#include "paddle/fluid/memory/allocation/allocator_strategy.h"
D
dzhwinter 已提交
40
#include "paddle/fluid/operators/activation_op.h"
S
sneaxiy 已提交
41
#include "paddle/fluid/operators/py_func_op.h"
S
sneaxiy 已提交
42
#include "paddle/fluid/operators/reader/lod_tensor_blocking_queue.h"
Y
Yu Yang 已提交
43
#include "paddle/fluid/platform/cpu_info.h"
Y
Yi Wang 已提交
44
#include "paddle/fluid/platform/enforce.h"
45
#include "paddle/fluid/platform/init.h"
Y
Yi Wang 已提交
46 47
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
W
Wang Guibao 已提交
48
#include "paddle/fluid/pybind/async_executor_py.h"
Y
Yi Wang 已提交
49 50
#include "paddle/fluid/pybind/const_value.h"
#include "paddle/fluid/pybind/exception.h"
51
#include "paddle/fluid/pybind/imperative.h"
52 53
#include "paddle/fluid/pybind/protobuf.h"
#include "paddle/fluid/pybind/pybind.h"  // NOLINT
Y
Yu Yang 已提交
54
#include "paddle/fluid/pybind/recordio.h"
Y
Yi Wang 已提交
55
#include "paddle/fluid/pybind/tensor_py.h"
Y
Yu Yang 已提交
56

57
#include "paddle/fluid/string/to_string.h"
58

D
Dong Zhihong 已提交
59
#ifdef PADDLE_WITH_CUDA
P
peizhilin 已提交
60
#ifndef _WIN32
Y
Yi Wang 已提交
61
#include "paddle/fluid/operators/nccl/nccl_gpu_common.h"
P
peizhilin 已提交
62
#endif
Y
Yi Wang 已提交
63 64
#include "paddle/fluid/platform/cuda_profiler.h"
#include "paddle/fluid/platform/gpu_info.h"
D
Dong Zhihong 已提交
65 66
#endif

M
minqiyang 已提交
67 68
#include "pybind11/stl.h"

69 70 71 72
DEFINE_bool(reader_queue_speed_test_mode, false,
            "If set true, the queue.pop will only get data from queue but not "
            "remove the data from queue for speed testing");

Q
Qiao Longfei 已提交
73 74 75
// disable auto conversion to list in Python
PYBIND11_MAKE_OPAQUE(paddle::framework::LoDTensorArray);

76
namespace paddle {
77
namespace pybind {
78
bool IsCompiledWithCUDA() {
79
#ifndef PADDLE_WITH_CUDA
Q
qijun 已提交
80 81 82 83 84 85
  return false;
#else
  return true;
#endif
}

86
bool IsCompiledWithBrpc() {
87
#ifndef PADDLE_WITH_DISTRIBUTE
88 89
  return false;
#endif
90 91 92 93 94 95

#ifdef PADDLE_WITH_GRPC
  return false;
#endif

  return true;
96 97
}

Y
update  
Yancey1989 已提交
98
bool IsCompiledWithDIST() {
Y
Yancey1989 已提交
99
#ifdef PADDLE_WITH_DISTRIBUTE
Y
update  
Yancey1989 已提交
100 101 102 103 104 105
  return true;
#else
  return false;
#endif
}

106
PYBIND11_MODULE(core, m) {
Y
Yu Yang 已提交
107 108 109
  // Not used, just make sure cpu_info.cc is linked.
  paddle::platform::CpuTotalPhysicalMemory();

Y
Refine  
Yu Yang 已提交
110
  paddle::memory::allocation::UseAllocatorStrategyGFlag();
111
  m.doc() = "C++ core of PaddlePaddle";
112

113 114 115 116
  // using framework in this function. Since it is inside a function, it will
  // not cause namespace pollution.
  using namespace paddle::framework;  // NOLINT

117
  BindException(&m);
Y
Yu Yang 已提交
118

S
sneaxiy 已提交
119
  m.def(
S
sneaxiy 已提交
120
      "_append_python_callable_object_and_return_id",
S
sneaxiy 已提交
121 122 123 124
      [](py::object py_obj) -> size_t {
        return paddle::operators::AppendPythonCallableObjectAndReturnId(py_obj);
      });

S
sneaxiy 已提交
125 126 127
  m.add_object("_cleanup",
               py::capsule([]() { ScopePool::Instance().Clear(); }));

128
  py::class_<imperative::VarBase, PyVarBase>(m, "VarBase", R"DOC()DOC")
129 130
      // .def(py::init<>())
      .def(py::init<bool>(), py::arg("stop_gradient") = false)
131
      .def("_run_backward",
X
Xin Pan 已提交
132
           [](imperative::VarBase &self) { self.RunBackward(); })
M
minqiyang 已提交
133
      .def("_grad_name", &imperative::VarBase::GradName)
134
      .def("_grad", &imperative::VarBase::Grad)
M
minqiyang 已提交
135 136 137 138 139 140
      .def_property("grad_value",
                    [](const imperative::VarBase &self) { return self.grads_; },
                    [](imperative::VarBase &self, framework::Variable *grad) {
                      self.grads_ = grad;
                    },
                    py::return_value_policy::reference)
M
minqiyang 已提交
141 142 143 144 145 146
      .def_property("value",
                    [](const imperative::VarBase &self) { return self.var_; },
                    [](imperative::VarBase &self, framework::Variable *var) {
                      self.var_ = var;
                    },
                    py::return_value_policy::reference)
147 148 149 150 151 152
      .def_property(
          "desc",
          [](const imperative::VarBase &self) { return self.var_desc_; },
          [](imperative::VarBase &self, framework::VarDesc *var_desc) {
            self.var_desc_ = var_desc;
          },
153 154 155 156 157 158
          py::return_value_policy::reference)
      .def_property(
          "stop_gradient",
          [](const imperative::VarBase &self) { return self.stop_gradient_; },
          [](imperative::VarBase &self, bool stop_gradient) {
            self.stop_gradient_ = stop_gradient;
159
          });
160

161
  py::class_<imperative::OpBase, PyOpBase>(m, "OpBase", R"DOC()DOC")
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
      .def(py::init<>())
      .def_property(
          "desc", [](const imperative::OpBase &self) { return self.op_desc_; },
          [](imperative::OpBase &self, framework::OpDesc *op_desc) {
            if (op_desc) {
              self.op_desc_ = op_desc;
            }
          },
          py::return_value_policy::reference);

  py::class_<imperative::Layer, PyLayer /* <--- trampoline*/> layer(m, "Layer");
  layer.def(py::init<>())
      .def("forward",
           [](imperative::Layer &self,
              const std::vector<imperative::VarBase> &inputs) {
             return self.Forward(inputs);
           })
      .def("backward", &imperative::Layer::Backward);
  BindTracer(&m);

182 183 184
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
yuyang18 已提交
185
      .def("_get_dims",
186
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
187
      .def("_set_dims",
Q
qijun 已提交
188
           [](Tensor &self, const std::vector<int64_t> &dim) {
Y
Yu Yang 已提交
189
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
190
           })
Y
yuyang18 已提交
191
      .def("_set_layout",
D
dzhwinter 已提交
192 193 194
           [](Tensor &self, const std::string &layout) {
             self.set_layout(StringToDataLayout(layout));
           })
Y
yuyang18 已提交
195
      .def("_alloc_float",
D
dzhwinter 已提交
196
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
197
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
198
           })
Y
yuyang18 已提交
199
      .def("_alloc_float",
Y
Yu Yang 已提交
200
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
201
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
202
           })
Y
yuyang18 已提交
203
      .def("_alloc_int",
Y
Yu Yang 已提交
204
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
205
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
206
           })
Y
yuyang18 已提交
207
      .def("_alloc_int",
D
dzhwinter 已提交
208
           [](Tensor &self, paddle::platform::CUDAPlace &place) {
Q
qijun 已提交
209
             self.mutable_data<int>(place);
Q
qijun 已提交
210
           })
Y
yuyang18 已提交
211
      .def("_alloc_int",
C
chengduoZH 已提交
212 213 214
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<int>(place);
           })
Y
yuyang18 已提交
215
      .def("_alloc_float",
C
chengduoZH 已提交
216 217 218
           [](Tensor &self, paddle::platform::CUDAPinnedPlace &place) {
             self.mutable_data<float>(place);
           })
Y
Yu Yang 已提交
219 220
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
221
      .def("set", PyCPUTensorSetFromArray<double>)
222
      .def("set", PyCPUTensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
223
      .def("set", PyCPUTensorSetFromArray<bool>)
224
      .def("set", PyCPUTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
225
      .def("set", PyCPUTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
226
      .def("set", PyCPUTensorSetFromArray<int8_t>)
227
#ifdef PADDLE_WITH_CUDA
Y
Yu Yang 已提交
228 229
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
230
      .def("set", PyCUDATensorSetFromArray<double>)
231
      .def("set", PyCUDATensorSetFromArray<int64_t>)
Y
Yu Yang 已提交
232
      .def("set", PyCUDATensorSetFromArray<bool>)
233
      .def("set", PyCUDATensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
234
      .def("set", PyCUDATensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
235
      .def("set", PyCUDATensorSetFromArray<int8_t>)
C
chengduoZH 已提交
236 237 238 239 240 241
      .def("set", PyCUDAPinnedTensorSetFromArray<float>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int>)
      .def("set", PyCUDAPinnedTensorSetFromArray<double>)
      .def("set", PyCUDAPinnedTensorSetFromArray<int64_t>)
      .def("set", PyCUDAPinnedTensorSetFromArray<bool>)
      .def("set", PyCUDAPinnedTensorSetFromArray<uint16_t>)
F
fengjiayi 已提交
242
      .def("set", PyCUDAPinnedTensorSetFromArray<uint8_t>)
Q
qingqing01 已提交
243
      .def("set", PyCUDAPinnedTensorSetFromArray<int8_t>)
Q
qijun 已提交
244
#endif
245
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
yuyang18 已提交
246 247 248 249
      .def("_set_float_element", TensorSetElement<float>)
      .def("_get_float_element", TensorGetElement<float>)
      .def("_set_double_element", TensorSetElement<double>)
      .def("_get_double_element", TensorGetElement<double>)
Y
Yu Yang 已提交
250
      .def("_dtype", [](Tensor &self) { return self.type(); });
Y
Yu Yang 已提交
251

X
Xin Pan 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264
  py::class_<LoDTensor, Tensor>(m, "LoDTensor", R"DOC(
    LoDTensor is a Tensor with optional LoD information.

    np.array(lod_tensor) can convert LoDTensor to numpy array.
    lod_tensor.lod() can retrieve the LoD information.

    LoD is short for Level of Details and is usually used for varied sequence
    length. You can skip the following comment if you don't need optional LoD.

  For example:
     A LoDTensor X can look like the example below. It contains 2 sequences.
     The first has length 2 and the second has length 3, as described by x.lod.

X
fix doc  
Xin Pan 已提交
265
     The first tensor dimension 5=2+3 is calculated from LoD if it's available.
X
Xin Pan 已提交
266
     It means the total number of sequence element. In X, each element has 2
X
fix doc  
Xin Pan 已提交
267
     columns, hence [5, 2].
X
Xin Pan 已提交
268 269 270

      x.lod  = [[2, 3]]
      x.data = [[1, 2], [3, 4],
X
fix doc  
Xin Pan 已提交
271 272
                [5, 6], [7, 8], [9, 10]]
      x.shape = [5, 2]
X
Xin Pan 已提交
273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295

      LoD can have multiple levels (for example, a paragraph can have multiple
      sentences and a sentence can have multiple words). In the following
      LodTensor Y, the lod_level is 2. It means there are 2 sequence, the
      first sequence length is 2 (has 2 sub-sequences), the second one's
      length is 1. The first sequence's 2 sub-sequences have length 2 and 2,
      respectively. And the second sequence's 1 sub-sequence has length 3.

      y.lod = [[2 1], [2 2 3]]
      y.shape = [2+2+3, ...]

  Note:
      In above description, LoD is length-based. In Paddle internal
      implementation, lod is offset-based. Hence, internally,
      y.lod is represented as [[0, 2, 3], [0, 2, 4, 7]] (length-based
      equivlent would be [[2-0, 3-2], [2-0, 4-2, 7-4]]).

      Sometimes LoD is called recursive_sequence_length to be more
      self-explanatory. In this case, it must be length-based. Due to history
      reasons. when LoD is called lod in public API, it might be offset-based.
      Users should be careful about it.

        )DOC")
296 297
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
298 299 300 301 302 303 304 305 306 307 308 309 310 311
      .def("__init__",
           [](LoDTensor &instance, const std::vector<std::vector<size_t>>
                                       &recursive_sequence_lengths) {
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, -1),
                 "the provided recursive_sequence_lengths info is invalid");
             new (&instance) LoDTensor(new_offset_lod);
           })
Y
Yu Yang 已提交
312
      .def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
G
gongweibao 已提交
313 314 315 316 317
      // We implement offset based LOD in C++ while we use length based with
      // Python API. So we changed set_lod to set_recursive_sequence_lengths to
      // avoid misuse.
      // The discussion is here:
      // https://github.com/PaddlePaddle/Paddle/issues/10855
D
dangqingqing 已提交
318
      .def("set_lod",
319
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
320
             // the input lod is offset-based level-of-detail info
Y
Yu Yang 已提交
321
             LoD new_lod;
322 323
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
324 325
             PADDLE_ENFORCE(CheckLoD(new_lod, vectorize(self.dims()).front()),
                            "the provided lod info is invalid");
326
             self.set_lod(new_lod);
D
dangqingqing 已提交
327
           })
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352
      .def("set_recursive_sequence_lengths",
           [](LoDTensor &self, const std::vector<std::vector<size_t>>
                                   &recursive_sequence_lengths) {
             // the input recursive_sequence_lengths is length-based
             // level-of-detail info
             LoD new_lod;
             new_lod.reserve(recursive_sequence_lengths.size());
             std::copy(recursive_sequence_lengths.begin(),
                       recursive_sequence_lengths.end(),
                       std::back_inserter(new_lod));
             LoD new_offset_lod = ConvertToOffsetBasedLoD(new_lod);
             PADDLE_ENFORCE(
                 CheckLoD(new_offset_lod, vectorize(self.dims()).front()),
                 "the provided recursive_sequence_lengths info is invalid");
             self.set_lod(new_offset_lod);
           })
      .def("lod",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the offset-based lod info
             LoD lod = self.lod();
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
G
gongweibao 已提交
353
      // Set above comments of set_lod.
354 355 356 357 358 359 360 361 362 363 364 365 366
      .def("recursive_sequence_lengths",
           [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
             // output the length-based lod info
             LoD lod = ConvertToLengthBasedLoD(self.lod());
             std::vector<std::vector<size_t>> new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             return new_lod;
           })
      .def("has_valid_recursive_sequence_lengths", [](LoDTensor &self) -> bool {
        // Check that the lod info is valid and match the outermost
        // dimension of the LoDTensor data
        return CheckLoD(self.lod(), vectorize(self.dims()).front());
D
dangqingqing 已提交
367 368
      });

Q
qijun 已提交
369 370 371 372 373 374 375 376 377 378 379
  py::class_<SelectedRows>(m, "SelectedRows")
      .def("__init__",
           [](SelectedRows &instance) { new (&instance) SelectedRows(); })
      .def("__init__",
           [](SelectedRows &instance, const std::vector<int64_t> rows,
              const int64_t &height) {
             new (&instance) SelectedRows(rows, height);
           })
      .def("get_tensor",
           [](SelectedRows &self) { return self.mutable_value(); },
           py::return_value_policy::reference)
380 381
      .def("numel",
           [](SelectedRows &self) -> int64_t { return self.value().numel(); })
Q
qijun 已提交
382 383
      .def("set_height", &SelectedRows::set_height)
      .def("height", &SelectedRows::height)
Q
qijun 已提交
384 385 386 387 388 389 390 391 392
      .def("set_rows",
           [](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
             self.set_rows(rows);
#else
        Vector<int64_t> new_rows(rows);
        self.set_rows(new_rows);
#endif
           })
393
      .def("sync_index", [](SelectedRows &instance) { instance.SyncIndex(); })
394
      .def("rows", [](SelectedRows &self) {
395 396 397 398 399
        auto rows = self.rows();
        std::vector<int64_t> new_rows;
        new_rows.reserve(rows.size());
        std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
        return new_rows;
400
      });
Q
qijun 已提交
401

402
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
403 404 405

All parameter, weight, gradient are variables in Paddle.
)DOC")
406
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
407
      .def("set_int",
408 409
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
410 411 412 413 414 415 416
      .def("is_float", [](const Variable &var) { return var.IsType<float>(); })
      .def("set_float",
           [](Variable &var, float val) -> void {
             *var.GetMutable<float>() = val;
           })
      .def("get_float",
           [](const Variable &var) -> float { return var.Get<float>(); })
Y
Yu Yang 已提交
417
      .def("get_tensor",
418 419
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
420 421
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
422 423 424
      .def("get_lod_rank_table",
           [](Variable &self) { return self.GetMutable<LoDRankTable>(); },
           py::return_value_policy::reference)
Q
qijun 已提交
425 426 427 428 429
      .def("get_selected_rows",
           [](Variable &self) -> SelectedRows * {
             return self.GetMutable<SelectedRows>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
430 431 432
      .def("get_lod_tensor_array",
           [](Variable &self) { return self.GetMutable<LoDTensorArray>(); },
           py::return_value_policy::reference)
P
peizhilin 已提交
433
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
434 435 436 437 438
      .def("get_communicator",
           [](Variable &self) -> platform::Communicator * {
             return self.GetMutable<platform::Communicator>();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
439
#endif
Y
Refine  
Yu Yang 已提交
440 441 442 443 444
      .def("get_reader",
           [](Variable &self) -> framework::ReaderHolder * {
             PADDLE_ENFORCE(self.IsType<framework::ReaderHolder>());
             return self.GetMutable<framework::ReaderHolder>();
           },
W
wopeizl 已提交
445
           py::return_value_policy::reference);
446

Y
Refine  
Yu Yang 已提交
447
  py::class_<framework::ReaderHolder>(m, "Reader", "")
448
      .def("reset", &framework::ReaderHolder::ResetAll);
Y
Refine  
Yu Yang 已提交
449

S
sneaxiy 已提交
450 451 452 453
  using LoDTensorBlockingQueue =
      ::paddle::operators::reader::LoDTensorBlockingQueue;
  using LoDTensorBlockingQueueHolder =
      ::paddle::operators::reader::LoDTensorBlockingQueueHolder;
S
sneaxiy 已提交
454 455
  py::class_<LoDTensorBlockingQueue, std::shared_ptr<LoDTensorBlockingQueue>>(
      m, "LoDTensorBlockingQueue", "")
S
sneaxiy 已提交
456
      .def("push",
S
sneaxiy 已提交
457
           [](LoDTensorBlockingQueue &self,
S
sneaxiy 已提交
458
              const std::vector<framework::LoDTensor> &lod_tensor_vec) {
S
sneaxiy 已提交
459
             pybind11::gil_scoped_release release;
S
sneaxiy 已提交
460
             return self.Push(lod_tensor_vec);
S
sneaxiy 已提交
461
           })
S
sneaxiy 已提交
462 463 464 465
      .def("size", &LoDTensorBlockingQueue::Size)
      .def("capacity", &LoDTensorBlockingQueue::Cap)
      .def("close", &LoDTensorBlockingQueue::Close)
      .def("is_closed", &LoDTensorBlockingQueue::IsClosed);
S
sneaxiy 已提交
466

S
sneaxiy 已提交
467
  m.def("init_lod_tensor_blocking_queue",
S
sneaxiy 已提交
468
        [](Variable &var, size_t capacity,
S
sneaxiy 已提交
469
           const std::vector<std::vector<int64_t>> &shapes)
S
sneaxiy 已提交
470
            -> std::shared_ptr<LoDTensorBlockingQueue> {
S
sneaxiy 已提交
471 472 473 474 475 476
              std::vector<DDim> dims(shapes.size());
              std::transform(shapes.begin(), shapes.end(), dims.begin(),
                             [](const std::vector<int64_t> &shape) {
                               return make_ddim(shape);
                             });
              auto *holder = var.GetMutable<LoDTensorBlockingQueueHolder>();
477 478
              holder->InitOnce(capacity, dims,
                               FLAGS_reader_queue_speed_test_mode);
S
sneaxiy 已提交
479
              return holder->GetQueue();
S
sneaxiy 已提交
480
            },
S
sneaxiy 已提交
481
        py::return_value_policy::copy);
S
sneaxiy 已提交
482

S
sneaxiy 已提交
483
  py::class_<Scope>(m, "_Scope", R"DOC(
Q
Qiao Longfei 已提交
484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
    Scope is an association of a name to Variable. All variables belong to Scope.

    Variables in a parent scope can be retrieved from local scope.

    You need to specify a scope to run a Net, i.e., `exe.Run(&scope)`.
    One net can run in different scopes and update different variable in the
    scope.

    You can create var in a scope and get it from the scope.

    Examples:
        .. code-block:: python

          # create tensor from a scope and set value to it.
          param = scope.var('Param').get_tensor()
          param_array = np.full((height, row_numel), 5.0).astype("float32")
          param.set(param_array, place)

        )DOC")
S
sneaxiy 已提交
503 504
      .def("_remove_from_pool",
           [](Scope &self) { ScopePool::Instance().Remove(&self); })
D
dongzhihong 已提交
505
      .def("var",
506
           [](Scope &self, const std::string &name) -> Variable * {
D
dongzhihong 已提交
507
             return self.Var(name);
Y
Yu Yang 已提交
508
           },
509
           py::return_value_policy::reference)
510
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
511
      .def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
512
           py::return_value_policy::reference)
Y
Yu Yang 已提交
513
      .def("drop_kids", &Scope::DropKids);
514

S
sneaxiy 已提交
515 516 517 518 519 520 521 522
  m.def("Scope",
        []() -> Scope * {
          auto *s = new Scope();
          ScopePool::Instance().Insert(std::unique_ptr<Scope>(s));
          return s;
        },
        py::return_value_policy::reference);

Y
Yu Yang 已提交
523 524
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
525 526
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
527 528 529 530 531 532 533 534 535 536
    for (auto &iter : OpInfoMap::Instance().map()) {
      auto &info = iter.second;
      if (info.HasOpProtoAndChecker()) {
        std::string str;
        PADDLE_ENFORCE(
            info.Proto().SerializeToString(&str),
            "Serialize OpProto Error. This could be a bug of Paddle.");
        ret_values.emplace_back(str);
      }
    }
Y
Yu Yang 已提交
537 538
    return ret_values;
  });
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554
  m.def(
      "get_grad_op_desc", [](const OpDesc &op_desc,
                             const std::unordered_set<std::string> &no_grad_set,
                             const std::vector<BlockDesc *> &grad_sub_block) {
        std::unordered_map<std::string, std::string> grad_to_var;
        std::vector<std::unique_ptr<OpDesc>> grad_op_descs =
            framework::OpInfoMap::Instance()
                .Get(op_desc.Type())
                .GradOpMaker()(op_desc, no_grad_set, &grad_to_var,
                               grad_sub_block);
        std::vector<OpDesc *> grad_op_desc_ptrs(grad_op_descs.size());
        std::transform(grad_op_descs.begin(), grad_op_descs.end(),
                       grad_op_desc_ptrs.begin(),
                       [](std::unique_ptr<OpDesc> &p) { return p.release(); });
        return std::make_pair(grad_op_desc_ptrs, grad_to_var);
      });
Y
Yu Yang 已提交
555
  m.def("prune", [](const ProgramDesc &origin,
556
                    const std::vector<std::array<size_t, 2>> &targets) {
Y
Yu Yang 已提交
557
    ProgramDesc prog_with_targets(origin);
558
    for (const auto &t : targets) {
559
      prog_with_targets.MutableBlock(t[0])->Op(t[1])->SetIsTarget(true);
560
    }
561
    proto::ProgramDesc pruned_desc;
562
    Prune(*prog_with_targets.Proto(), &pruned_desc);
Y
Yu Yang 已提交
563
    return new ProgramDesc(pruned_desc);
564
  });
565 566 567 568
  m.def("empty_var_name",
        []() { return std::string(framework::kEmptyVarName); });
  m.def("grad_var_suffix",
        []() { return std::string(framework::kGradVarSuffix); });
569 570 571
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
572 573
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
574
  // clang-format off
Y
Yu Yang 已提交
575
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
576 577
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
578
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
579 580 581
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
D
dzhwinter 已提交
582
                  [](paddle::platform::CUDAPlace& place)
Q
qijun 已提交
583
                      -> paddle::platform::DeviceContext* {
584
#ifndef PADDLE_WITH_CUDA
D
dzhwinter 已提交
585
                    PADDLE_THROW("CUDAPlace is not supported in CPU device.");
Q
qijun 已提交
586
#else
Q
qijun 已提交
587
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
588
#endif
C
chengduoZH 已提交
589 590 591 592 593 594 595 596 597 598 599
                  })
          .def_static("create",
                [](paddle::platform::CUDAPinnedPlace& place)
                        -> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
                  PADDLE_THROW(
                        "CUDAPinnedPlace is not supported in CPU device.");
#else
                  return new paddle::platform::CUDAPinnedDeviceContext(place);
#endif
                });;
D
Dong Zhihong 已提交
600
// clang-format on
P
peizhilin 已提交
601
#if (defined(PADDLE_WITH_CUDA) && !defined(_WIN32))
D
Dong Zhihong 已提交
602 603
  py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
D
dzhwinter 已提交
604
  py::class_<platform::CUDAPlace>(m, "CUDAPlace")
605
      .def(py::init<int>())
D
dzhwinter 已提交
606
      .def("__str__", string::to_string<const platform::CUDAPlace &>);
Q
qijun 已提交
607

608 609 610
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
611

C
chengduoZH 已提交
612 613 614 615
  py::class_<paddle::platform::CUDAPinnedPlace>(m, "CUDAPinnedPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CUDAPinnedPlace &>);

Y
Yu Yang 已提交
616 617 618 619 620 621 622
  py::class_<platform::Place>(m, "Place")
      .def(py::init<>())
      .def("set_place",
           [](platform::Place &self, const platform::CPUPlace &cpu_place) {
             self = cpu_place;
           })
      .def("set_place",
D
dzhwinter 已提交
623
           [](platform::Place &self, const platform::CUDAPlace &gpu_place) {
Y
Yu Yang 已提交
624
             self = gpu_place;
C
chengduoZH 已提交
625 626
           })
      .def("set_place", [](platform::Place &self,
C
chengduoZH 已提交
627 628
                           const platform::CUDAPinnedPlace &cuda_pinned_place) {
        self = cuda_pinned_place;
C
chengduoZH 已提交
629
      });
Y
Yu Yang 已提交
630

Y
Yu Yang 已提交
631 632 633
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
634
                    proto::OpDesc desc;
Y
Yu Yang 已提交
635 636 637 638 639
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
640
                    return OpRegistry::CreateOp(desc);
Y
Yu Yang 已提交
641
                  })
642
      .def("run",
643
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
644 645 646
              const platform::CPUPlace &place) { self.Run(scope, place); })
      .def("run",
           [](OperatorBase &self, const Scope &scope,
D
dzhwinter 已提交
647
              const platform::CUDAPlace &place) { self.Run(scope, place); })
C
chengduoZH 已提交
648 649 650 651 652
      .def("run",
           [](OperatorBase &self, const Scope &scope,
              const platform::CUDAPinnedPlace &place) {
             self.Run(scope, place);
           })
Y
Yu Yang 已提交
653 654 655 656 657 658 659
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
660 661
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
662
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
663
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
664 665 666 667
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
668

F
fengjiayi 已提交
669
  py::class_<framework::Executor>(m, "Executor")
D
dzhwinter 已提交
670
      .def(py::init<const platform::Place &>())
Y
Yancey1989 已提交
671
      .def("close", &Executor::Close)
S
sneaxiy 已提交
672 673 674 675 676
      .def("run", [](Executor &self, const ProgramDesc &prog, Scope *scope,
                     int block_id, bool create_local_scope, bool create_vars) {
        pybind11::gil_scoped_release release;
        self.Run(prog, scope, block_id, create_local_scope, create_vars);
      });
S
sneaxiy 已提交
677

D
dzhwinter 已提交
678
  m.def("init_gflags", framework::InitGflags);
Y
Yang Yu 已提交
679
  m.def("init_glog", framework::InitGLOG);
X
Xin Pan 已提交
680 681
  m.def("init_devices",
        [](bool init_p2p) { framework::InitDevices(init_p2p); });
682

683
  m.def("is_compiled_with_cuda", IsCompiledWithCUDA);
684
  m.def("is_compiled_with_brpc", IsCompiledWithBrpc);
Y
update  
Yancey1989 已提交
685
  m.def("is_compiled_with_dist", IsCompiledWithDIST);
686 687 688 689 690 691
#ifdef PADDLE_WITH_CUDA
  m.def("is_float16_supported", [](const platform::CUDAPlace &place) -> bool {
    // Only GPUs with Compute Capability >= 53 support float16
    return platform::GetCUDAComputeCapability(place.device) >= 53;
  });
#endif
692

693
  m.def("set_feed_variable", framework::SetFeedVariable);
Q
qijun 已提交
694
  m.def("get_fetch_variable", framework::GetFetchVariable);
695
  m.def("get_variable_tensor", framework::GetVariableTensor);
Q
qijun 已提交
696

X
Xin Pan 已提交
697 698
  m.def("_is_program_version_supported", IsProgramVersionSupported);

699 700 701 702 703
  BindProgramDesc(&m);
  BindBlockDesc(&m);
  BindVarDsec(&m);
  BindOpDesc(&m);
  BindConstValue(&m);
Y
Yu Yang 已提交
704

Y
Yu Yang 已提交
705 706 707 708 709 710 711 712 713
  py::class_<framework::LoDRankTable>(m, "LodRankTable")
      .def("items", [](framework::LoDRankTable &table) {
        std::vector<std::pair<size_t, size_t>> res;
        for (auto &item : table.items()) {
          res.push_back({item.index, item.length});
        }
        return res;
      });

Y
Yu Yang 已提交
714
  py::class_<LoDTensorArray>(m, "LoDTensorArray")
S
sneaxiy 已提交
715 716
      .def("__init__",
           [](LoDTensorArray &instance) { new (&instance) LoDTensorArray(); })
Y
Yu Yang 已提交
717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732
      .def("__getitem__",
           [](LoDTensorArray &self, size_t i) { return &self.at(i); },
           py::return_value_policy::reference)
      .def("__len__", [](LoDTensorArray &self) { return self.size(); })
      .def("__setitem__",
           [](LoDTensorArray &self, size_t i, const LoDTensor &t) {
             PADDLE_ENFORCE_LT(i, self.size());
             self[i].ShareDataWith(t);
             self[i].set_lod(t.lod());
           })
      .def("append", [](LoDTensorArray &self, const LoDTensor &t) {
        self.emplace_back();
        self.back().ShareDataWith(t);
        self.back().set_lod(t.lod());
      });

D
dzhwinter 已提交
733 734 735
  m.def("IsInplace",
        [](std::string op) -> bool { return operators::IsInplace(op); });

Y
Yu Yang 已提交
736
  m.def("op_support_gpu", OpSupportGPU);
D
Dong Zhihong 已提交
737
#ifdef PADDLE_WITH_CUDA
D
Dong Zhihong 已提交
738
  m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
D
dangqingqing 已提交
739

P
peizhilin 已提交
740
#ifndef _WIN32
D
dangqingqing 已提交
741 742 743
  m.def("nvprof_init", platform::CudaProfilerInit);
  m.def("nvprof_start", platform::CudaProfilerStart);
  m.def("nvprof_stop", platform::CudaProfilerStop);
D
Dong Zhihong 已提交
744
#endif
P
peizhilin 已提交
745
#endif
Y
Yu Yang 已提交
746

747 748 749 750
  py::enum_<platform::ProfilerState>(m, "ProfilerState", py::arithmetic())
      .value("kDisabled", platform::ProfilerState::kDisabled)
      .value("kCPU", platform::ProfilerState::kCPU)
      .value("kCUDA", platform::ProfilerState::kCUDA)
751
      .value("kAll", platform::ProfilerState::kAll)
752 753 754 755 756 757 758 759 760 761 762 763 764
      .export_values();

  py::enum_<platform::EventSortingKey>(m, "EventSortingKey", py::arithmetic())
      .value("kDefault", platform::EventSortingKey::kDefault)
      .value("kCalls", platform::EventSortingKey::kCalls)
      .value("kTotal", platform::EventSortingKey::kTotal)
      .value("kMin", platform::EventSortingKey::kMin)
      .value("kMax", platform::EventSortingKey::kMax)
      .value("kAve", platform::EventSortingKey::kAve)
      .export_values();

  m.def("enable_profiler", platform::EnableProfiler);
  m.def("disable_profiler", platform::DisableProfiler);
X
Xin Pan 已提交
765
  m.def("is_profiler_enabled", platform::IsProfileEnabled);
766
  m.def("reset_profiler", platform::ResetProfiler);
Y
Yu Yang 已提交
767

768 769
  py::class_<ir::Pass, std::shared_ptr<ir::Pass>> pass(m, "Pass");
  pass.def(py::init())
770 771 772 773 774
      .def(
          "set_str",
          [](ir::Pass &self, const std::string &name, const std::string &attr) {
            self.Set<std::string>(name, new std::string(attr));
          })
X
Xin Pan 已提交
775 776 777
      .def("set_int", [](ir::Pass &self, const std::string &name,
                         int val) { self.Set<const int>(name, new int(val)); })
      .def("type", &ir::Pass::Type);
778

X
fix  
Xin Pan 已提交
779 780
  py::class_<ir::PassBuilder, std::shared_ptr<ir::PassBuilder>> pb(
      m, "PassBuilder");
781 782 783 784 785 786 787 788 789 790 791 792 793 794
  pb.def(py::init())
      .def("append_pass",
           [](ir::PassBuilder &self,
              const std::string &pass_type) -> std::shared_ptr<ir::Pass> {
             return self.AppendPass(pass_type);
           })
      .def("all_passes", [](ir::PassBuilder &self) { return self.AllPasses(); })
      .def("insert_pass",
           [](ir::PassBuilder &self, size_t idx, const std::string &pass_type) {
             return self.InsertPass(idx, pass_type);
           })
      .def("remove_pass",
           [](ir::PassBuilder &self, size_t idx) { self.RemovePass(idx); });

Y
yuyang18 已提交
795
  // -- python binds for parallel executor.
Y
yuyang18 已提交
796
  py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
C
chengduo 已提交
797 798 799 800
  py::class_<ExecutionStrategy> exec_strategy(pe, "ExecutionStrategy", R"DOC(
    ExecutionStrategy allows the user to more preciously control how to run
    the program in ParallelExecutor by setting the property.

C
chengduo 已提交
801 802 803 804 805 806 807 808 809 810 811
    Examples:
        .. code-block:: python

          exec_strategy = fluid.ExecutionStrategy()
          exec_strategy.num_threads = 4

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             exec_strategy=exec_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
812 813 814

        )DOC");

Y
yuyang18 已提交
815
  exec_strategy.def(py::init())
Y
yuyang18 已提交
816 817 818 819 820
      .def_property(
          "num_threads",
          [](const ExecutionStrategy &self) { return self.num_threads_; },
          [](ExecutionStrategy &self, size_t num_threads) {
            self.num_threads_ = num_threads;
C
chengduo 已提交
821 822 823 824 825 826 827 828 829 830
          },
          R"DOC(The type is INT, num_threads represents the size of thread pool that
            used to run the operators of the current program in ParallelExecutor.
            If :math:`num\_threads=1`, all the operators will execute one by one,
            but the order maybe difference between iterations.
            If it is not set, it will be set in ParallelExecutor according to the
            device type and device count, for GPU, :math:`num\_threads=device\_count*4`, for CPU,
            :math:`num\_threads=CPU\_NUM*4`, the explanation of:math:`CPU\_NUM` is in ParallelExecutor.
            if it is not set, ParallelExecutor will get the cpu count by calling
            `multiprocessing.cpu_count()`. Default 0.)DOC")
Y
yuyang18 已提交
831
      .def_property(
832 833 834 835
          "use_cuda",
          [](const ExecutionStrategy &self) { return self.use_cuda_; },
          [](ExecutionStrategy &self, bool use_cuda) {
            self.use_cuda_ = use_cuda;
C
chengduo 已提交
836 837 838 839
          })  // FIXME(chengduo): Doesn't add doc for 'use_cuda', use_cuda may
      // make user confuse, because ParallelExecutor has a parameter named
      // 'use_cuda' too, in current implementation, ParallelExecutor's
      // 'use_cuda' will rewrite ExecutionStrategy's 'use_cuda'.
Y
yuyang18 已提交
840 841 842 843 844
      .def_property(
          "allow_op_delay",
          [](const ExecutionStrategy &self) { return self.allow_op_delay_; },
          [](ExecutionStrategy &self, bool allow_op_delay) {
            self.allow_op_delay_ = allow_op_delay;
C
chengduo 已提交
845 846 847 848
          },
          R"DOC(The type is BOOL, allow_op_delay represents whether to delay the
                communication operators to run, it may make the execution faster.
                Note that in some models, allow_op_delay may cause program hang. Default False.)DOC")
Y
yuyang18 已提交
849 850 851 852 853 854 855
      .def_property(
          "num_iteration_per_drop_scope",
          [](const ExecutionStrategy &self) {
            return self.num_iteration_per_drop_scope_;
          },
          [](ExecutionStrategy &self, size_t num_iteration_per_drop_scope) {
            self.num_iteration_per_drop_scope_ = num_iteration_per_drop_scope;
C
chengduo 已提交
856 857 858 859 860 861 862 863 864 865 866
          },
          R"DOC(The type is INT, num_iteration_per_drop_scope indicates how
                many iterations to clean up the temp variables which
                is generated during execution. It may make the execution faster,
                because the temp variable's shape maybe the same between two iterations. Default 100.

                NOTES:
                    1. If you fetch data when calling the 'run', the ParallelExecutor
                       will clean up the temp variables at the end of the current iteration.
                    2. In some NLP model, it may cause the GPU memory is insufficient,
                       in this case, you should reduce `num_iteration_per_drop_scope`.
867 868 869 870 871 872
              )DOC")
      .def_property("_dry_run",
                    [](const ExecutionStrategy &self) { return self.dry_run_; },
                    [](ExecutionStrategy &self, bool dry_run) {
                      self.dry_run_ = dry_run;
                    });
C
chengduo 已提交
873

Y
yuyang18 已提交
874
  exec_strategy.def_property(
Y
yuyang18 已提交
875 876 877 878 879 880 881
      "use_experimental_executor",
      [](const ExecutionStrategy &self) {
        return self.type_ == ExecutionStrategy::kExperimental;
      },
      [](ExecutionStrategy &self, bool experimental) {
        self.type_ = experimental ? ExecutionStrategy::kExperimental
                                  : ExecutionStrategy::kDefault;
Y
yuyang18 已提交
882 883
      });

C
chengduo 已提交
884 885 886 887
  py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy", R"DOC(
    BuildStrategy allows the user to more preciously control how to
    build the SSA Graph in ParallelExecutor by setting the property.

C
chengduo 已提交
888 889 890 891 892 893 894 895 896 897 898
    Examples:
        .. code-block:: python

          build_strategy = fluid.BuildStrategy()
          build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce

          train_exe = fluid.ParallelExecutor(use_cuda=True,
                                             loss_name=loss.name,
                                             build_strategy=build_strategy)

          train_loss, = train_exe.run([loss.name], feed=feed_dict)
C
chengduo 已提交
899
)DOC");
Y
yuyang18 已提交
900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915

  py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
      .value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
      .value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
  py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
                                                  "GradientScaleStrategy")
      .value("CoeffNumDevice",
             BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
      .value("One", BuildStrategy::GradientScaleStrategy::kOne)
      .value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);

  build_strategy.def(py::init())
      .def_property(
          "reduce_strategy",
          [](const BuildStrategy &self) { return self.reduce_; },
          [](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
X
Xin Pan 已提交
916
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
917
            self.reduce_ = strategy;
C
chengduo 已提交
918 919 920 921 922 923 924
          },
          R"DOC(The type is STR, there are two reduce strategies in ParallelExecutor,
                  'AllReduce' and 'Reduce'. If you want that all the parameters'
                  optimization are done on all devices independently, you should choose 'AllReduce';
                  if you choose 'Reduce', all the parameters' optimization will be evenly distributed
                  to different devices, and then broadcast the optimized parameter to other devices.
                  In some models, `Reduce` is faster. Default 'AllReduce'. )DOC")
Y
yuyang18 已提交
925 926 927 928 929
      .def_property(
          "gradient_scale_strategy",
          [](const BuildStrategy &self) { return self.gradient_scale_; },
          [](BuildStrategy &self,
             BuildStrategy::GradientScaleStrategy strategy) {
X
Xin Pan 已提交
930
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
931
            self.gradient_scale_ = strategy;
C
chengduo 已提交
932 933 934 935 936 937
          },
          R"DOC(The type is STR, there are three ways of defining :math:`loss@grad` in
                   ParallelExecutor, 'CoeffNumDevice', 'One' and 'Customized'. By default,
                   ParallelExecutor sets the :math:`loss@grad` according to the number of devices.
                   If you want to customize :math:`loss@grad`, you can choose 'Customized'.
                   Default 'CoeffNumDevice'.)DOC")
Y
yuyang18 已提交
938 939 940 941
      .def_property(
          "debug_graphviz_path",
          [](const BuildStrategy &self) { return self.debug_graphviz_path_; },
          [](BuildStrategy &self, const std::string &path) {
X
Xin Pan 已提交
942
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
Y
yuyang18 已提交
943
            self.debug_graphviz_path_ = path;
C
chengduo 已提交
944 945 946 947
          },
          R"DOC(The type is STR, debug_graphviz_path indicate the path that
                    writing the SSA Graph to file in the form of graphviz, you.
                    It is useful for debugging. Default "")DOC")
F
fengjiayi 已提交
948 949 950
      .def_property(
          "enable_data_balance",
          [](const BuildStrategy &self) { return self.enable_data_balance_; },
C
chengduo 已提交
951
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
952
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
953 954
            self.enable_data_balance_ = b;
          })  // FIXME(chengudo): enable_data_balance seems not important
S
sneaxiy 已提交
955 956 957 958 959 960
      .def_property(
          "enable_sequential_execution",
          [](const BuildStrategy &self) {
            return self.enable_sequential_execution_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
961
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
962 963 964 965 966 967 968 969 970
            self.enable_sequential_execution_ = b;
          },
          R"DOC(The type is BOOL. If set True, the execution order of ops would be the same as what is in the program. Default False.)DOC")
      .def_property(
          "remove_unnecessary_lock",
          [](const BuildStrategy &self) {
            return self.remove_unnecessary_lock_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
971
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
S
sneaxiy 已提交
972 973 974
            self.remove_unnecessary_lock_ = b;
          },
          R"DOC(The type is BOOL. If set True, some locks in GPU ops would be released and ParallelExecutor would run faster. Default False.)DOC")
975 976 977 978 979 980
      .def_property(
          "num_trainers",
          [](const BuildStrategy &self) { return self.num_trainers_; },
          [](BuildStrategy &self, int num_trainers) {
            self.num_trainers_ = num_trainers;
          })
981 982 983 984 985 986 987 988 989 990 991 992
      .def_property(
          "trainers_endpoints",
          [](const BuildStrategy &self) { return self.trainers_endpoints_; },
          [](BuildStrategy &self,
             const std::vector<std::string> &trainers_endpoints) {
            self.trainers_endpoints_ = trainers_endpoints;
          })
      .def_property("trainer_id",
                    [](const BuildStrategy &self) { return self.trainer_id_; },
                    [](BuildStrategy &self, int trainer_id) {
                      self.trainer_id_ = trainer_id;
                    })
C
chengduo 已提交
993 994 995 996 997 998
      .def_property(
          "fuse_elewise_add_act_ops",
          [](const BuildStrategy &self) {
            return self.fuse_elewise_add_act_ops_;
          },
          [](BuildStrategy &self, bool b) {
X
Xin Pan 已提交
999
            PADDLE_ENFORCE(!self.IsFinalized(), "BuildStrategy is finlaized.");
C
chengduo 已提交
1000 1001 1002 1003 1004
            self.fuse_elewise_add_act_ops_ = b;
          },
          R"DOC(The type is BOOL, fuse_elewise_add_act_ops indicate whether
                     to fuse elementwise_add_op and activation_op,
                     it may make the execution faster. Default False)DOC")
D
dzhwinter 已提交
1005 1006 1007 1008 1009 1010 1011 1012
      .def_property(
          "memory_optimize",
          [](const BuildStrategy &self) { return self.memory_optimize_; },
          [](BuildStrategy &self, bool b) { self.memory_optimize_ = b; })
      .def_property(
          "memory_early_delete",
          [](const BuildStrategy &self) { return self.memory_early_delete_; },
          [](BuildStrategy &self, bool b) { self.memory_early_delete_ = b; })
1013
      .def("_finalize_strategy_and_create_passes",
X
fix  
Xin Pan 已提交
1014
           [](BuildStrategy &self) -> std::shared_ptr<ir::PassBuilder> {
1015 1016 1017 1018 1019
             return self.CreatePassesFromStrategy(true);
           },
           R"DOC(Allow user to customized passes. Normally model-specific
                optimization passes should be defined in this way. BuildStrategy
                cannot be updated after being finalized.)DOC");
Y
yuyang18 已提交
1020 1021 1022

  pe.def(py::init<const std::vector<platform::Place> &,
                  const std::unordered_set<std::string> &, const ProgramDesc &,
Y
yuyang18 已提交
1023
                  const std::string &, Scope *, std::vector<Scope *> &,
1024 1025
                  const ExecutionStrategy &, const BuildStrategy &, size_t,
                  size_t>())
Y
Yu Yang 已提交
1026 1027 1028 1029
      // NOTE: even we return a vec<Scope*>* to Python use reference policy.
      // We still cannot get local_scope from this vector, since the element
      // of vec<Scope*> will be freed by Python GC. We can only return Scope*
      // one by one and mark them as reference.
1030 1031 1032 1033 1034
      .def("local_scopes",
           [](ParallelExecutor &self) -> std::vector<Scope *> * {
             return &self.GetLocalScopes();
           },
           py::return_value_policy::reference)
Y
Yu Yang 已提交
1035 1036 1037 1038
      .def("feed_tensors_into_local_scopes",
           &ParallelExecutor::FeedTensorsIntoLocalScopes)
      .def("feed_and_split_tensor_into_local_scopes",
           &ParallelExecutor::FeedAndSplitTensorIntoLocalScopes)
S
sneaxiy 已提交
1039 1040 1041 1042 1043 1044
      .def("run", [](ParallelExecutor &self,
                     const std::vector<std::string> &fetch_tensors,
                     const std::string &fetched_var_name) {
        pybind11::gil_scoped_release release;
        self.Run(fetch_tensors, fetched_var_name);
      });
Y
Yu Yang 已提交
1045

1046
  BindRecordIOWriter(&m);
W
Wang Guibao 已提交
1047
  BindAsyncExecutor(&m);
L
Luo Tao 已提交
1048
}
1049
}  // namespace pybind
1050
}  // namespace paddle